HYPERSURFACES OF ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

Mobin Ahmad, Jae-Bok Jun, and Abdul Haseeb

ABSTRACT. We define a quarter symmetric metric connection in an almost r-paracontact Riemannian manifold and we consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

1. Introduction

In [1], T. Adati studied Hypersurfaces of almost paracontact Riemannian manifolds. In [3], A. Bucki, considered hypersurfaces of almost r-paracontact Riemannian manifold. Some properties of invariant hypersurfaces of an almost r-paracontact Riemannian manifold were investigated in [4] by A. Bucki and A. Miernowski. In [2], M. Ahmad, C. Ozgur, and A. Haseeb studied hypersurfaces of almost r-paracontact Riemannian manifold with quarter symmetric non-metric connection. Moreover in [7], I. Mihai and K. Matsumoto studied submanifolds of an almost r-paracontact Riemannian manifold of P-Sasakian type.

Let ∇ be a linear connection in an *n*-dimensional differentiable manifold M. The torsion tensor T of ∇ is given by

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

The connection ∇ is symmetric if its torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is metric if there is a Riemannian metric g in M such that $\nabla g=0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection. In [6], S. Golab introduced the idea of a quarter symmetric linear connection if its torsion tensor T is of the form

$$T(X,Y) = u(Y)\phi X - u(X)\phi Y,$$

Received June 4, 2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 53C05,\ 53D12.$

 $[\]it Key\ words\ and\ phrases.$ hypersurfaces, almost $\it r-$ paracontact Riemannian manifold, quarter symmetric metric connection.

where u is a 1-form and ϕ is a tensor field of the type (1,1). In [8], R. S. Mishra and S. N. Pandey considered a quarter symmetric metric F-connection and studied some of its properties. In [8], [9] and [10], some kinds of quarter symmetric metric connection were studied.

In this paper, we study quarter symmetric metric connection in an almost r-paracontact Riemannian manifold. We consider invariant, non-invariant and anti-invariant hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

The paper is organized as follows: In Section 2, we give a brief introduction about an almost r-paracontact Riemannian manifold. In Section 3, we show that the induced connection on a hypersurface of an almost r-paracontact Riemannian manifold with quarter symmetric metric connection with respect to the normal is also a quarter symmetric metric connection. We find the characteristic properties of invariant, non-invariant and anti-invariant hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection.

2. Preliminaries

Let M be an n-dimensional Riemannian manifold with a positive definite metric g. If there exist a tensor field ϕ of type (1,1), r vector fields $\xi_1, \xi_2, \ldots, \xi_r$ (n > r), r 1-forms $\eta^1, \eta^2, \ldots, \eta^r$ such that

(2.1)
$$\eta^{\alpha}(\xi_{\beta}) = \delta^{\alpha}_{\beta}, \ \alpha, \beta \in (r) = \{1, 2, 3, \dots, r\},\$$

$$\phi^2(X) = X - \eta^{\alpha}(X)\xi_{\alpha},$$

(2.3)
$$\eta^{\alpha}(X) = g(X, \xi_{\alpha}), \alpha \in (r),$$

(2.4)
$$g(\phi X, \phi Y) = g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y),$$

where X and Y are vector fields on M, then the structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be an almost r-paracontact Riemannian structure and M is an almost r-paracontact Riemannian manifold [3]. From (2.1) through (2.4), we have for $\alpha \in (r)$

(2.5)
$$\phi(\xi_{\alpha}) = 0, \quad \eta^{\alpha} \circ \phi = 0,$$
$$\Phi(X, Y) = g(\phi X, Y) = g(X, \phi Y).$$

An almost r-paracontact Riemannian manifold M with structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of S-paracontact type if [4]

(2.6)
$$\Phi(X,Y) = (\nabla^*_Y \eta^\alpha)(X), \ \alpha \in (r)$$

for the Riemannian connection ∇^* on M. An almost r-paracontact Riemannian manifold M with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is said to be of P-Sasakian

type if it satisfies (2.6) and (2.7)

(2.7)
$$(\nabla^*_Z \Phi)(X, Y) = -\sum_{\alpha} \eta^{\alpha}(X) [g(Y, Z) - \sum_{\beta} \eta^{\beta}(Y) \eta^{\beta}(Z)]$$
$$-\sum_{\alpha} \eta^{\alpha}(Y) [g(X, Z) - \sum_{\beta} \eta^{\beta}(X) \eta^{\beta}(Z)]$$

for all vector fields X, Y and Z on M [7]. The conditions (2.6) and (2.7) are equivalent respectively to

(2.8)
$$\phi X = \nabla_X^* \xi_\alpha, \ \alpha \in (r),$$

(2.9)
$$(\nabla_Y^* \phi)(X) = -\sum_{\alpha} \eta^{\alpha}(X) [Y - \eta^{\alpha}(Y) \xi_{\alpha}]$$
$$- [g(X, Y) - \sum_{\alpha} \eta^{\alpha}(X) \eta^{\alpha}(Y)] \sum_{\beta} \xi_{\beta}.$$

A quarter symmetric metric connection ∇ on M is defined as

(2.10)
$$\nabla_{\bar{X}}\bar{Y} = \nabla_{\bar{Y}}^*\bar{Y} + \eta^{\alpha}(\bar{Y})\phi\bar{X} - g(\phi\bar{X},\bar{Y})\xi_{\alpha}, \ \alpha \in (r).$$

Using (2.10) in (2.8) and (2.9), we get

$$(2.11) \nabla_X \xi_\alpha = 2\phi X,$$

$$(2.12) \qquad (\nabla_Y \phi)(X) = -\sum_{\alpha} \eta^{\alpha}(X)[Y - \eta^{\alpha}(Y)\xi_{\alpha}]$$
$$- [g(X,Y) - \sum_{\alpha} \eta^{\alpha}(X)\eta^{\alpha}(Y)] \sum_{\beta} \xi_{\beta}$$
$$- g(X,Y)\xi_{\alpha} + \sum_{\alpha} \eta^{\alpha}(X)\eta^{\alpha}(Y)\xi_{\alpha}.$$

3. Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection

Let M^{n+1} be an almost r-paracontact Riemannian manifold with a positive definite metric q and M^n be the hypersurface immersed in M^{n+1} by the immersion $\tau: M^n \to M^{n+1}$. If B denotes the differential of τ , then any vector field $\bar{X} \in M^n$ implies $B\bar{X} \in M^{n+1}$. We denote the objects belonging to M^n by the mark of hyphen placed over them, for example $\bar{\phi}, \bar{X}, \bar{\eta}, \bar{\xi}$. Let N be the unit normal vector field to M^n . Then the induced metric \bar{g} on M^n is defined by

$$\bar{q}(\bar{X}, \bar{Y}) = q(\bar{X}, \bar{Y}).$$

Then we have [5]

(3.2)
$$g(\bar{X}, N) = 0, \quad g(N, N) = 1.$$

If $\bar{\nabla}^*$ is the induced connection on hypersurface from ∇^* with respect to the unit normal vector N, then the Gauss formula is given by

(3.3)
$$\nabla_{\bar{Y}}^* \bar{Y} = \bar{\nabla}_{\bar{Y}}^* \bar{Y} + h(\bar{X}, \bar{Y}) N,$$

where h is the second fundamental tensor satisfying

$$h(\bar{Y}, \bar{X}) = h(\bar{X}, \bar{Y}) = \bar{g}(H\bar{X}, \bar{Y}).$$

If $\bar{\nabla}$ is the induced connection on hypersurface from ∇ with respect to the unit normal vector N, then we have

(3.4)
$$\nabla_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + m(\bar{X},\bar{Y})N,$$

where m is a tensor field of type (0, 2) of hypersurface M^n . From (2.10), we obtain

(3.5)
$$\nabla_{\bar{X}}\bar{Y} = \nabla_{\bar{X}}^*\bar{Y} + \eta^{\alpha}(\bar{Y})(\bar{\phi}\bar{X} + b(\bar{X})N) - \bar{g}(\bar{\phi}\bar{X}, \bar{Y})\xi_{\alpha},$$

where $\phi \bar{X} = \bar{\phi} \bar{X} + b(\bar{X})N$. From equations (3.3), (3.4) and (3.5), we get

$$\begin{split} \bar{\nabla}_{\bar{X}}\bar{Y} + m(\bar{X},\bar{Y})N &= \bar{\nabla}^*_{\bar{X}}\bar{Y} + h(\bar{X},\bar{Y})N + \eta^{\alpha}(\bar{Y})\bar{\phi}\bar{X} \\ &+ \bar{\eta}^{\alpha}(\bar{Y})b(\bar{X})N - \bar{g}(\bar{\phi}\bar{X},\bar{Y})(\bar{\xi}_{\alpha} + a_{\alpha}N), \end{split}$$

where $\xi_{\alpha} = \bar{\xi}_{\alpha} + a_{\alpha}N$ and $\bar{\eta}^{\alpha}(\bar{X}) = \eta^{\alpha}(\bar{X})$ for each $\alpha \in (r)$. By taking the tangential and normal parts from the both sides, we get respectively

Thus we get the following theorem.

Theorem 3.1. The connection induced on a hypersurface of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection with respect to the unit normal vector is also a quarter symmetric metric connection.

From (3.4) and (3.6), we have

$$\nabla_{\bar{X}}\bar{Y} = \bar{\nabla}_{\bar{X}}\bar{Y} + \{h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{X},\bar{Y}) + \bar{\eta}^{\alpha}(\bar{Y})b(\bar{X})\}N,$$

which is the Gauss formula for a quarter symmetric metric connection. The Weingarten formula with respect to the Riemannian connection ∇^* is given by

$$\nabla_{\bar{X}}^* N = -H\bar{X}$$

for every \bar{X} in M^n , where H is a tensor field of type (1,1) of M^n given by

$$\bar{g}(H\bar{X},\bar{Y}) = h(\bar{X},\bar{Y}) = h(\bar{Y},\bar{X}).$$

From equation (2.10), we have

(3.10)
$$\nabla_{\bar{X}} N = \nabla_{\bar{Y}}^* N + a_{\alpha} \bar{\phi} \bar{X} - b(\bar{X}) \bar{\xi}_{\alpha},$$

where we have put

(3.11)
$$\eta^{\alpha}(N) = a_{\alpha} = m(\xi_{\alpha}).$$

From (3.8) and (3.10), we have

(3.12)
$$\nabla_{\bar{X}} N = -H\bar{X} + a_{\alpha}\bar{\phi}\bar{X} - b(\bar{X})\bar{\xi}_{\alpha},$$

which is the Weingarten formula with respect to the quarter symmetric metric

Now, suppose that $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ is an almost r-paracontact Riemannian structure on M^{n+1} . Then every vector field X on M^{n+1} is decom-

$$X = \bar{X} + \lambda(X)N,$$

where λ is an 1-form on M^{n+1} and \bar{X} is any vector field and N is normal vector on M^n . Also we have

$$\phi \bar{X} = \bar{\phi} \bar{X} + b(\bar{X})N,$$

$$\phi N = \bar{N} + KN,$$

where $\bar{\phi}$ is a tensor field of type (1,1), b is an 1-form and K is a scalar function on M^n . For each $\alpha \in (r)$, we have

$$\xi_{\alpha} = \bar{\xi}_{\alpha} + a_{\alpha} N,$$

where $a_{\alpha} = m(\xi_{\alpha}) = \eta^{\alpha}(N)$. Now, we define $\bar{\eta}^{\alpha}$ as

(3.16)
$$\bar{\eta}^{\alpha}(\bar{X}) = \eta^{\alpha}(\bar{X}), \ \alpha \in (r).$$

Making use of (3.13), (3.14), (3.15) and (3.11), we obtain from (2.1) through (2.5) for $\alpha \in (r)$

(3.17)
$$b(\bar{N}) + K^2 = 1 - \sum_{\alpha} (a_{\alpha})^2,$$

(3.18)
$$Ka_{\alpha} + b(\bar{\xi}_{\alpha}) = 0,$$

(3.19)
$$\Phi(\bar{X}, \bar{Y}) = \bar{q}(\bar{\phi}\bar{X}, \bar{Y}) = \bar{q}(\bar{X}, \bar{\phi}\bar{Y}) = \bar{\Phi}(\bar{X}, \bar{Y}).$$

Making use of (3.1), (3.2), (3.13), (3.14) and (2.5), we have

$$g(\bar{\phi}\bar{X}, N) = g(\phi\bar{X}, N) - b(\bar{X}) = g(\bar{X}, \phi N) - b(\bar{X}) = 0.$$

Hence we get

$$(3.20) g(\bar{X}, \bar{N}) = b(\bar{X}).$$

Differentiating covariantly (3.13) and (3.14) along M^n and making use of (3.7) and (3.12), we get respectively

$$(3.21) \qquad (\nabla_{\bar{Y}}\phi)\bar{X} = (\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X} - (h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X}) + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y}))\bar{N}$$

$$+ [(\bar{\nabla}_{\bar{Y}}b)(\bar{X}) + h(\bar{\phi}\bar{X},\bar{Y}) - (h(\bar{X},\bar{Y})$$

$$- a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X}) + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y}))K - a_{\alpha}\bar{g}(\bar{X},\bar{Y})$$

$$+ a_{\alpha}\sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y}) - 2a_{\alpha}b(\bar{X})b(\bar{Y})]N$$

$$- b(\bar{X})(H\bar{Y}) - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} - a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y},$$

$$(3.22) \qquad (\nabla_{\bar{Y}}\phi)N = \bar{\nabla}_{\bar{Y}}\bar{N} + [\bar{Y}(K) + 2(a_{\alpha})^{2}\bar{\eta}^{\alpha}(\bar{Y}) + h(\bar{X},\bar{N}) + b(H\bar{Y})]N + \bar{\phi}(H\bar{Y}) - K(H\bar{Y}) + a_{\alpha}(\bar{Y} - \bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}) + K(\bar{\phi}\bar{Y}) - Kb(\bar{Y})\bar{\xi}_{\alpha}.$$

From (3.11) and (3.15), we have

$$(3.23) \quad \nabla_{\bar{Y}}\xi_{\alpha} = \bar{\nabla}_{\bar{Y}}\bar{\xi}_{\alpha} - a_{\alpha}(H\bar{Y}) + (a_{\alpha})^{2}\bar{\phi}\bar{Y} - b(\bar{Y})a_{\alpha}\bar{\xi}_{\alpha} + [\bar{Y}(a_{\alpha}) + h(\bar{Y},\bar{\xi}_{\alpha}) + b(\bar{Y}) - (a_{\alpha})^{2}b(\bar{Y}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{\xi}_{\alpha})]N,$$

(3.24)
$$(\nabla_{\bar{Y}}\eta^{\alpha})(\bar{X}) = (\bar{\nabla}_{\bar{Y}}\bar{\eta}^{\alpha})(\bar{X}) - a_{\alpha}h(\bar{Y},\bar{X})$$
$$- a_{\alpha}\bar{\eta}^{\alpha}(\bar{X})b(\bar{Y}) + (a_{\alpha})^{2}\bar{g}(\bar{\phi}\bar{Y},\bar{X}).$$

From the identity $(\nabla_Z \Phi)(X, Y) = g((\nabla_Z \phi)(X), Y)$, making use of (3.19), (3.20) and (3.21), we have

$$(3.25) \qquad (\nabla_{\bar{Z}}\Phi)(\bar{X},\bar{Y}) = (\bar{\nabla}_{\bar{Z}}\bar{\Phi})(\bar{X},\bar{Y}) - b(\bar{X})h(\bar{Z},\bar{Y}) - b(\bar{Y})h(\bar{Z},\bar{X}) + a_{\alpha}b(\bar{X})\bar{\Phi}(\bar{Y},\bar{Z}) + a_{\alpha}b(\bar{Y})\bar{\Phi}(\bar{X},\bar{Z}) - b(\bar{X})b(\bar{Z})\bar{\eta}^{\alpha}(\bar{Y}) - b(\bar{Y})b(\bar{Z})\bar{\eta}^{\alpha}(\bar{X}).$$

From the above identities, we have the followings.

Theorem 3.2. If M^n is an invariant hypersurface immersed in an almost r-paracontact Riemannian manifold M^{n+1} endowed with a quarter symmetric metric connection with structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, then either

- (i) All ξ_{α} are tangent to M^n and M^n admits an almost r-paracontact Riemannian structure $\sum_1=(\bar{\phi},\bar{\xi}_{\alpha},\bar{\eta}^{\alpha},\bar{g})_{\alpha\in(r)}(n-r>2)$ or (ii) One of ξ_{α} (say, ξ_r) is normal to M^n and remaining ξ_{α} are tangent to
- (ii) One of ξ_{α} (say, ξ_{r}) is normal to M^{n} and remaining ξ_{α} are tangent to M^{n} and M^{n} admits an almost (r-1)-paracontact Riemannian structure $\sum_{2} = (\bar{\phi}, \bar{\xi}_{i}, \bar{\eta}^{i}, \bar{g})_{i \in (r)} (n-r > 1)$.

Proof. From (3.18), $Ka_{\alpha}=0, \alpha\in(r)$. Hence we have the two possibilities when K=0 or $K\neq0$.

(i) If $K \neq 0$, then $a_{\alpha} = 0$ and $\xi_{\alpha} = \bar{\xi}_{\alpha}$ (all ξ_{α} are tangent to M^n) and the structure $(\bar{\phi}, \bar{\xi}_{\alpha}, \bar{\eta}^{\alpha}, \bar{g})_{\alpha \in (r)}$ is an almost r-paracontact Riemannian structure on M^n .

(ii) If K = 0, then $\phi(N) = 0$. Let $N = \xi_r$, then $\bar{\xi}_r = 0, a_r = 1, \bar{\eta}^r = 0$. From (3.17) $\sum_{\alpha} (a_{\alpha})^2 = 1$ and since $a_r = 1, \sum_i (a_i)^2 = 0, i \in (r-1)$. Thus $a_i = 0$ for all $i \in (r-1)$. Thus, $\xi_i = \bar{\xi}_i, \xi_r = N$ (all ξ_α but one tangent to M^n). Hence structure $(\bar{\phi}, \bar{\xi}_i, \bar{\eta}^i, \bar{g})_{i \in (r-1)}$ is an almost (r-1)-paracontact structure on M^n .

Corollary 3.1. If M^n is a hypersurface immersed in an almost r-paracontact Riemannian manifold M^{n+1} with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ endowed with a quarter symmetric metric connection, then the following statements are equivalent:

- (a) M^n is invariant.
- (b) The Normal field N is an eigenvector of ϕ .
- (c) All ξ_{α} are tangent to M^n if and only if M^n admits an almost rparacontact Riemannian structure \sum_{1} , or one of ξ_{α} is normal and (r-1) remaining ξ_i are tangent to M^n if and only if M^n admits an almost (r-1)-paracontact Riemannian structure \sum_2 .

Theorem 3.3. If M^n is an invariant hypersurface immersed in an almost rparacontact Riemannian manifold of P-Sasakian type endowed with a quarter symmetric metric connection, then the induced almost r-paracontact Riemannian structure \sum_1 or (r-1)-paracontact Riemannian structure \sum_2 are also of P-Sasakian type.

Proof. Making use of (3.1), (3.16), (3.19), (3.24) and (3.25), we observe that the conditions (2.11) and (2.12) are satisfied for both \sum_1 and \sum_2 .

Lemma 3.1. $\bar{\nabla}_{\bar{X}}(\operatorname{trace}\bar{\phi}) = \operatorname{trace}(\bar{\nabla}_{\bar{X}}\bar{\phi}).$

Proof. Let $\{e_1, e_2, e_3, \ldots, e_n\}$ be an orthogonal basis of TM^n , then trace $\bar{\phi} =$ $\sum_{a} \bar{g}(\bar{\phi}(e_a, e_a)) \text{ for } a \in (n-1). \text{ Let } \bar{\nabla}_{\bar{X}} e_a = A_a^b e_b \text{ and } \phi(e_a) = B_a^b e_b, \text{ then from } 0 = \bar{g}(\bar{\nabla}_{\bar{X}} e_a, e_b) + \bar{g}(e_a, \bar{\nabla}_{\bar{X}} e_b) \text{ and from } \bar{g}(\bar{\phi}(e_a), e_b) = \bar{g}(e_a, \bar{\phi}(e_b)), \text{ we obtain } A_a^b - A_b^a = 0 \text{ and } B_b^a = B_a^b. \text{ Hence } \sum_{\alpha} \bar{g}(\bar{\phi}(e_a), \bar{\nabla}_{\bar{X}} e_a) = \sum_{a,b} A_b^a B_b^a = 0 \text{ and } B_b^a = B_a^b.$

$$\bar{\nabla}_{\bar{X}}(\operatorname{trace}\bar{\phi}) = \sum_{a} \bar{g}((\bar{\nabla}_{\bar{X}}\bar{\phi})(e_a), e_a) + 2\sum_{a} \bar{g}(\bar{\phi}(e_a), \bar{\nabla}_{\bar{X}}e_a) = \operatorname{trace}(\bar{\nabla}_{\bar{X}}\bar{\phi}).$$

Theorem 3.4. Let M^n be a non-invariant hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with a quarter symmetric metric connection with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ satisfying $\nabla \phi = 0$ along M^n , then M^n is totally geodesic if and only if

$$(\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X} + a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X})\bar{N} + a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y} - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y})\bar{N} = 0.$$

Proof. From (3.21) we have

$$(3.26) \qquad (\bar{\nabla}_{\bar{Y}}\phi)\bar{X} = (\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X} - (h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X}) + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y}))\bar{N}$$

$$+ [(\bar{\nabla}_{\bar{Y}}b)(\bar{X}) + h(\bar{\phi}\bar{X},\bar{Y}) - (h(\bar{X},\bar{Y})$$

$$- a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X}) + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y}))K$$

$$- a_{\alpha}\bar{g}(\bar{X},\bar{Y}) + a_{\alpha}\sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y}) - 2a_{\alpha}b(\bar{X})b(\bar{Y})]N$$

$$- b(\bar{X})(H\bar{Y}) - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} + b(\bar{X})a_{\alpha}\bar{\phi}\bar{Y}.$$

If M^n is totally geodesic, then h=0 and H=0. Thus from (3.26), we get $(\bar{\nabla}_{\bar{Y}}\phi)\bar{X} + a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X})\bar{N} + a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y} - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y})\bar{N} = 0$. Conversely, if

$$(\bar{\nabla}_{\bar{Y}}\phi)\bar{X} + a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X})\bar{N} + a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y} - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y})\bar{N} = 0,$$
 then it holds

(3.27)
$$h(\bar{Y}, \bar{X})\bar{N} + b(\bar{X})H(\bar{Y}) = 0.$$

Making use of (3.9) and (3.20), we have

(3.28)
$$h(\bar{X}, \bar{Y})b(\bar{Z}) + h(\bar{X}, \bar{Z})b(\bar{Y}) = 0.$$

Using (3.27), we get from (3.9)

$$(3.29) h(\bar{X}, \bar{Z})b(\bar{Y}) = h(\bar{X}, \bar{Y})b(\bar{Z}).$$

From (3.28) and (3.29), we get $b(\bar{Z})h(\bar{X},\bar{Y})=0$ which gives h=0 as $b\neq 0$. Using h=0 in (3.27), we get H=0. Thus h=0 and H=0. Hence M^n is totally geodesic.

Theorem 3.5. Let M^n be a non-invariant hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with a quarter symmetric metric connection satisfying $\nabla \phi = 0$ along M^n and if trace $\bar{\phi} = constant$, then

$$h(\bar{X}, \bar{N}) = \sum_{a} [a_{\alpha}b(e_a)\Phi(e_a, \bar{X}) - b(\bar{X})b(e_a)\bar{\eta}^{\alpha}(e_a)],$$

where $\bar{N} = \sum_a b(e_a)e_a$.

Proof. From (3.26) we have

$$\bar{g}((\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X},\bar{X}) = 2b(\bar{X})h(\bar{X},\bar{Y}) - 2a_{\alpha}b(\bar{X})\bar{\Phi}(\bar{X},\bar{Y}) + 2b(\bar{X})b(\bar{Y})\bar{\eta}^{\alpha}(\bar{X})$$

and

$$\bar{\nabla}_{\bar{X}}(\operatorname{trace}\bar{\phi}) = 2h(\bar{X},\bar{N}) - 2a_{\alpha}\sum_{a}b(e_{a})z\bar{\Phi}(e_{a},\bar{X}) + 2\sum_{a}b(\bar{X})b(e_{a})\bar{\eta}^{\alpha}(e_{a}).$$

Using Lemma 3.1, we get

$$h(\bar{X}, \bar{N}) = \sum_{a} [a_{\alpha}b(e_a)\bar{\Phi}(e_a, \bar{X}) - b(\bar{X})b(e_a)\bar{\eta}^{\alpha}(e_a)],$$

where $\bar{N} = \sum_{a} b(e_a)e_a$.

Let M^n be an almost r-paracontact Riemannian manifold of S-paracontact type with a quarter symmetric metric connection, then from (2.11), (3.13) and (3.23), we get

$$(3.30) \qquad \bar{\phi}\bar{X} = \frac{1}{2} [\bar{\nabla}_{\bar{X}}\bar{\xi}_{\alpha} - a_{\alpha}(H\bar{X}) + (a_{\alpha})^{2}\bar{\phi}(\bar{X}) - a_{\alpha}b(\bar{X})\bar{\xi}_{\alpha}], \ \alpha \in (r),$$

$$(3.31) \ b(\bar{X}) = \frac{1}{2} [\bar{X}(a_{\alpha}) + h(\bar{X}, \bar{\xi}_{\alpha}) + (1 - (a_{\alpha})^{2})b(\bar{X}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{X}, \bar{\xi}_{\alpha})], \ \alpha \in (r).$$

Making use of (3.31), we have that if M^n is totally geodesic, then $a_{\alpha} = 0$ and h = 0. Hence b = 0, that is, M^n is invariant. Thus we have the following.

Proposition 3.1. If M^n is totally geodesic hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with a quarter symmetric metric connection of S-paracontact type with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$ and all ξ_{α} are tangent to M^n , then M^n is invariant.

Theorem 3.6. If M^n is an anti-invariant hypersurface of an almost r-paracontact Riemannian manifold M^{n+1} endowed with a quarter symmetric metric connection of S-paracontact type with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, then all $\bar{\xi}_{\alpha}$ are parallel to M^n .

Proof. If
$$M^n$$
 is anti-invariant, then $\bar{\phi} = 0$ and $a_{\alpha} = 0$ and from (3.30) we have $\bar{\nabla}_{\bar{X}}\bar{\xi}_{\alpha} = 0$.

Now, let M^n be an almost r-paracontact Riemannian manifold of P-Sasakian type endowed with a quarter symmetric metric connection. Then from (2.12) and (3.21), we have

$$(3.32) \qquad (\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X} - [h(\bar{X},\bar{Y}) - a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X}) + \bar{\eta}^{\alpha}(\bar{X})b(\bar{Y})]\bar{N}$$

$$-b(\bar{X})(H\bar{Y}) + a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y} - b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha}$$

$$= -\sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})(\bar{Y} - \bar{\eta}^{\alpha}(\bar{X})\bar{\xi}_{\alpha})$$

$$-[\bar{g}(\bar{X},\bar{Y}) - \sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})]\sum_{\beta}\bar{\xi}_{\beta} - \bar{g}(\bar{X},\bar{Y})\bar{\xi}_{\alpha}$$

$$+\sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}.$$

Theorem 3.7. Let M^{n+1} be an almost r-paracontact Riemannian manifold of P-Sasakian type endowed with a quarter symmetric metric connection with a structure $\sum = (\phi, \xi_{\alpha}, \eta^{\alpha}, g)_{\alpha \in (r)}$, and let M^n be a hypersurface immersed in M^{n+1} such that none of ξ_{α} are tangent to M^n . Then M^n is totally geodesic if

and only if

$$(3.33) \quad (\bar{\nabla}_{\bar{Y}}\bar{\phi})\bar{X} = -a_{\alpha}b(\bar{X})\bar{\phi}\bar{Y} - a_{\alpha}\bar{g}(\bar{\phi}\bar{Y},\bar{X})\bar{N} - \sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})[\bar{Y} - \bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}]$$

$$+ b(\bar{X})b(\bar{Y})\bar{\xi}_{\alpha} - [\bar{g}(\bar{X},\bar{Y}) - \sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})]\sum_{\beta}\bar{\xi}_{\beta}$$

$$- \bar{g}(\bar{X},\bar{Y})\bar{\xi}_{\alpha} + \sum_{\alpha}\bar{\eta}^{\alpha}(\bar{X})\bar{\eta}^{\alpha}(\bar{Y})\bar{\xi}_{\alpha}.$$

Proof. If (3.33) is satisfied, then from (3.32), we get $h(\bar{X}, \bar{Y})\bar{N} + b(\bar{X})H(\bar{Y}) = 0$. Since $b \neq 0$, so that $h(\bar{X}, \bar{Y}) = 0$. Hence M^n is totally geodesic. Conversely, let M^n is totally geodesic, that is H = 0, then from (3.32) we get (3.33) and from (3.31) we have b = 0, which is contradiction. Hence ξ_{α} are not tangent to M^n .

References

- T. Adati, Hypersurfaces of almost paracontact Riemannian manifolds, TRU Math. 17 (1981), no. 2, 189–198.
- [2] M. Ahmad, C. Ozgur, and A. Haseeb, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection, Accepted at Kyungpook Math. J.
- [3] A. Bucki, Hypersurfaces of almost r-paracontact Riemannian manifolds, Tensor (N.S.) 48 (1989), no. 3, 245–251.
- [4] A. Bucki and A. Miernowski, Invariant hypersurfaces of an almost r-paracontact manifold, Demonstratio Math. 19 (1986), no. 1, 113–121.
- [5] B. Y. Chen, Geometry of Submanifolds, Pure and Applied Mathematics, No. 22. Marcel Dekker, Inc., New York, 1973.
- [6] S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249–254.
- [7] I. Mihai and K. Matsumoto, Submanifolds of an almost r-paracontact Riemannian manifold of P-Sasakian type, Tensor (N.S.) 48 (1989), no. 2, 136–142.
- [8] R. S. Mishra and S. N. Pandey, On quarter symmetric metric F-connections, Tensor (N.S.) 34 (1980), no. 1, 1–7.
- [9] S. C. Rastogi, On quarter symmetric metric connection, C. R. Acad. Bulgare Sci. 31 (1978), no. 7, 811–814.
- [10] _____, On quarter symmetric metric connections, Tensor (N.S.) 44 (1987), no. 2, 133-141.

Mobin Ahmad

DEPARTMENT OF MATHEMATICS

Integral University

Kursi-Road, Lucknow, 226026, India

 $E ext{-}mail\ address: mobinahmad@rediffmail.com}$

Jae-Bok Jun

DEPARTMENT OF MATHEMATICS

College of Natural Science

KOOKMIN UNIVERSITY

SEOUL 136-702, KOREA

 $E ext{-}mail\ address: jbjun@kookmin.ac.kr}$

${\tt HYPERSURFACES~OF~ALMOST~r\text{-}PARACONTACT~RIEMANNIAN~MANIFOLD} \quad 487$

ABDUL HASEEB
DEPARTMENT OF MATHEMATICS
INTEGRAL UNIVERSITY
KURSI-ROAD, LUCKNOW, 226026, INDIA
E-mail address: malik_haseeb@indiatimes.com