GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Abstract

The object of study in this paper is generic lightlike submanifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection. We study the geometry of two types of generic lightlike submanifolds, which are called recurrent and Lie recurrent generic lightlike submanifolds, of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection.

1. Introduction

Yano-Imai [17] introduced the notion of quarter-symmetric metric connection on a Riemannian manifold. Recently, Jin [7, 10] studied the geometry of lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a quartersymmetric metric connection. We quote Jin's definition in itself as follow:

A linear connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be a quarter-symmetric metric connection if it is metric, i.e., $\bar{\nabla} \bar{g}=0$ and its torsion tensor \bar{T}, defined by $\bar{T}(\bar{X}, \bar{Y})=\bar{\nabla}_{\bar{X}} \bar{Y}-\bar{\nabla}_{\bar{Y}} \bar{X}-[\bar{X}, \bar{Y}]$, satisfies

$$
\begin{equation*}
\bar{T}(\bar{X}, \bar{Y})=\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y} \tag{1.1}
\end{equation*}
$$

where J is a $(1,1)$-type tensor field on \bar{M} and θ is a 1-form associated with a smooth unit vector field ζ on \bar{M} by $\theta(X)=\bar{g}(X, \zeta)$. Throughout this paper, we denote by \bar{X}, \bar{Y} and \bar{Z} the smooth vector fields on \bar{M}.

A lightlike submanifold M of an indefinite almost contact manifold \bar{M} is called generic if there exists a screen distribution $S(T M)$ of M such that

$$
\begin{equation*}
J\left(S(T M)^{\perp}\right) \subset S(T M) \tag{1.2}
\end{equation*}
$$

where $S(T M)^{\perp}$ is the orthogonal complement of $S(T M)$ in the tangent bundle $T \bar{M}$ of \bar{M}, i.e., $T \bar{M}=S(T M) \oplus_{\text {orth }} S(T M)^{\perp}$. The notion of generic lightlike submanifolds was introduced by Jin-Lee [12] at 2011 and then, studied by Duggal-Jin [5], Jin [6, 8] and Jin-Lee [14] and several authors. The geometry of

[^0]generic lightlike submanifolds is an extension of that of lightlike hypersurface and half lightlike submanifold of codimension 2, that is, the last two types of lightlike submanifolds are examples of the generic lightlike submanifold. Much of the theory of generic lightlike submanifolds will be immediately generalized in a formal way to general lightlike submanifolds.

The notion of trans-Sasakian manifold, of type (α, β), was introduced by Oubina [16]. If a trans-Sasakian manifold \bar{M} is semi-Riemannian, then \bar{M} is called an indefinite trans-Sasakian manifold. Sasakian, Kenmotsu and cosymplectic manifolds are important kinds of trans-Sasakian manifold such that

$$
\alpha=1, \quad \beta=0 ; \quad \alpha=0, \quad \beta=1 ; \quad \alpha=\beta=0, \quad \text { respectively }
$$

The object of study of this paper is generic lightlike submanifolds of an indefinite trans-Sasakian manifold $\bar{M} \equiv(\bar{M}, J, \zeta, \theta, \bar{g})$ with a quarter-symmetric metric connection subject such that the tensor field J and the 1-form θ, defined by (1.1), are identical with the structure tensor field J and the structure 1-form θ of the indefinite trans-Sasakian structure $(J, \theta, \zeta, \bar{g})$ on \bar{M}, respectively.

Remark 1.1. Denote by $\widetilde{\nabla}$ the Levi-Civita connection of \bar{M} with respect to the semi-Riemannian metric \bar{g}. It is known [9] that a linear connection $\bar{\nabla}$ on \bar{M} is a quarter-symmetric metric connection if and only if $\bar{\nabla}$ satisfies

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \bar{Y}=\widetilde{\nabla}_{\bar{X}} \bar{Y}-\theta(\bar{X}) J \bar{Y} \tag{1.3}
\end{equation*}
$$

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite trans-Sasakian manifold if there exist (1) a structure set $\{J, \zeta, \theta, \bar{g}\}$, where J is a (1,1)-type tensor field, ζ is a vector field and θ is a 1 -form such that

$$
\begin{gather*}
J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \quad \theta(\zeta)=1, \quad \theta(\bar{X})=\epsilon \bar{g}(\bar{X}, \zeta), \tag{2.1}\\
\theta \circ J=0, \quad \bar{g}(J \bar{X}, \quad J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\epsilon \theta(\bar{X}) \theta(\bar{Y}),
\end{gather*}
$$

(2) two smooth functions α and β, and a Levi-Civita connection $\widetilde{\nabla}$ such that

$$
\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) J \bar{X}\}
$$

where ϵ denotes $\epsilon=1$ or -1 according as ζ is spacelike or timelike respectively. $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).

In the entire discussion of this article, we shall assume that the vector field ζ is a spacelike one, i.e., $\epsilon=1$, without loss of generality.

By directed calculation from (1.3), we see that $\left(\widetilde{\nabla}_{\bar{X}} J\right) \bar{Y}=\left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y}$. Thus, replacing the Levi-Civita connection $\widetilde{\nabla}$ by the quarter-symmetric metric connection $\bar{\nabla}$ defined by (1.3), the last equation is reformed to

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\theta(\bar{Y}) J \bar{X}\} \tag{2.2}
\end{equation*}
$$

Replacing Y by ζ to (2.2) and using $J \zeta=0$ and $\theta\left(\bar{\nabla}_{X} \zeta\right)=0$, we obtain

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \zeta=-\alpha J \bar{X}+\beta(\bar{X}-\theta(\bar{X}) \zeta) . \tag{2.3}
\end{equation*}
$$

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite transSasakian manifold (\bar{M}, \bar{g}) of dimension $(m+n)$. Then the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ of M is a subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank $r(1 \leq r \leq \min \{m, n\})$. In general, there exist two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$ respectively, which are called the screen distribution and the co-screen distribution of M, such that

$$
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{o r t h} S\left(T M^{\perp}\right)
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Also denote by $(2.1)_{i}$ the i-th equation of (2.1). We use the same notations for any others. Let X, Y, Z and W be the vector fields on M, unless otherwise specified. We use the following range of indices:

$$
i, j, k, \ldots, \quad \in\{1, \ldots, r\}, \quad a, b, c, \ldots, \quad \in\{r+1, \ldots, n\} .
$$

Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary vector bundles to $T M$ in $T \bar{M}_{\mid M}$ and $T M^{\perp}$ in $S(T M)^{\perp}$ respectively and let $\left\{N_{1}, \ldots, N_{r}\right\}$ be a lightlike basis of $\operatorname{ltr}(T M)_{\mid \mathcal{U}}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ is a lightlike basis of $\operatorname{Rad}(T M)_{\mid \mathcal{A}}$. Then we have

$$
\begin{aligned}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{aligned}
$$

We say that a lightlike submanifold ($M, g, S(T M), S\left(T M^{\perp}\right)$) of \bar{M} is
(1) r-lightlike submanifold if $1 \leq r<\min \{m, n\}$;
(2) co-isotropic submanifold if $1 \leq r=n<m$;
(3) isotropic submanifold if $1 \leq r=m<n$;
(4) totally lightlike submanifold if $1 \leq r=m=n$.

The above three classes $(2) \sim(4)$ are particular cases of the class (1) as follows:

$$
S\left(T M^{\perp}\right)=\{0\}, \quad S(T M)=\{0\}, \quad S(T M)=S\left(T M^{\perp}\right)=\{0\}
$$

respectively. The geometry of r-lightlike submanifolds is more general than that of the other three types. For this reason, we consider only r-lightlike submanifolds M, with following local quasi-orthonormal field of frames of \bar{M} :

$$
\left\{\xi_{1}, \ldots, \xi_{r}, N_{1}, \ldots, N_{r}, F_{r+1}, \ldots, F_{m}, E_{r+1}, \ldots, E_{n}\right\}
$$

where $\left\{F_{r+1}, \ldots, F_{m}\right\}$ and $\left\{E_{r+1}, \ldots, E_{n}\right\}$ are orthonormal bases of $S(T M)$ and $S\left(T M^{\perp}\right)$, respectively. Denote $\epsilon_{a}=\bar{g}\left(E_{a}, E_{a}\right)$. Then $\epsilon_{a} \delta_{a b}=\bar{g}\left(E_{a}, E_{b}\right)$.

Let P be the projection morphism of $T M$ on $S(T M)$. Then the local GaussWeingarten formulas of M and $S(T M)$ are given respectively by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) E_{a} \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
\bar{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \tau_{i j}(X) N_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) E_{a} \tag{2.5}\\
\bar{\nabla}_{X} E_{a}=-A_{E_{a}} X+\sum_{i=1}^{r} \phi_{a i}(X) N_{i}+\sum_{b=r+1}^{n} \sigma_{a b}(X) E_{b} \tag{2.6}\\
\nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i} \tag{2.7}\\
\nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X-\sum_{j=1}^{r} \tau_{j i}(X) \xi_{j} \tag{2.8}
\end{gather*}
$$

where ∇ and ∇^{*} are induced linear connections on M and $S(T M)$ respectively, h_{i}^{ℓ} and h_{a}^{s} are called the local second fundamental forms on M, h_{i}^{*} are called the local screen second fundamental forms on $S(T M) . A_{N_{i}}, A_{E_{a}}$ and $A_{\xi_{i}}^{*}$ are linear operators on M, and $\tau_{i j}, \rho_{i a}, \phi_{a i}$ and $\sigma_{\alpha \beta}$ are 1-forms on M.

3. Quarter-symmetric metric connection

Now we assume that ζ is tangent to M. Cǎlin [2] proved that if ζ is tangent to M, then it belongs to $S(T M)$ which we assume. For a generic M, from (1.2) we show that $J(\operatorname{Rad}(T M)), J(l \operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are subbundles of $S(T M)$. Thus there exist two non-degenerate almost complex distributions H_{o} and H with respect to J, i.e., $J\left(H_{o}\right)=H_{o}$ and $J(H)=H$, such that

$$
\begin{gathered}
S(T M)=\{J(\operatorname{Rad}(T M)) \oplus J(l \operatorname{tr}(T M))\} \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }} H_{o}, \\
H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o} .
\end{gathered}
$$

In this case, the tangent bundle $T M$ of M is decomposed as follow:

$$
\begin{equation*}
T M=H \oplus J(l t r(T M)) \oplus_{o r t h} J\left(S\left(T M^{\perp}\right)\right) \tag{3.1}
\end{equation*}
$$

Consider local null vector fields U_{i} and V_{i} for each i, local non-null unit vector fields W_{a} for each a, and their 1-forms u_{i}, v_{i} and w_{a} defined by
(3.2) $\quad U_{i}=-J N_{i}, \quad V_{i}=-J \xi_{i}, \quad W_{a}=-J E_{a}$,

$$
\begin{equation*}
u_{i}(X)=g\left(X, V_{i}\right), \quad v_{i}(X)=g\left(X, U_{i}\right), \quad w_{a}(X)=\epsilon_{a} g\left(X, W_{a}\right) \tag{3.3}
\end{equation*}
$$

Denote by S the projection morphism of $T M$ on H and by F the tensor field of type $(1,1)$ globally defined on M by $F=J \circ S$. Then $J X$ is expressed as

$$
\begin{equation*}
J X=F X+\sum_{i=1}^{r} u_{i}(X) N_{i}+\sum_{a=r+1}^{n} w_{a}(X) E_{a} \tag{3.4}
\end{equation*}
$$

Applying J to (3.4) and using (2.1) ${ }_{1}$ and (3.2), we have

$$
\begin{equation*}
F^{2} X=-X+\theta(X) \zeta+\sum_{i=1}^{r} u_{i}(X) U_{i}+\sum_{a=r+1}^{n} w_{a}(X) W_{a} \tag{3.5}
\end{equation*}
$$

In the following, we say that F is the structure tensor field of M.

Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent, lightlike transversal and co-screen components of the left-right terms, we get

$$
\begin{align*}
& \quad T(X, Y)=\theta(Y) F X-\theta(X) F Y \tag{3.6}\\
& h_{i}^{\ell}(X, Y)-h_{i}^{\ell}(Y, X)=\theta(Y) u_{i}(X)-\theta(X) u_{i}(Y) \tag{3.7}\\
& h_{a}^{s}(X, Y)-h_{a}^{s}(Y, X)=\theta(Y) w_{a}(X)-\theta(X) w_{a}(Y) \tag{3.8}
\end{align*}
$$

where T is the torsion tensor with respect to the connection ∇. Note that, from (3.7) and (3.8), we see that h_{i}^{ℓ} and h_{a}^{s} are not symmetric.

From the facts that $h_{i}^{\ell}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi_{i}\right)$ and $\epsilon_{a} h_{a}^{s}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, E_{a}\right)$, we know that h_{i}^{ℓ} and h_{a}^{s} are independent of the choice of $S(T M)$. The local second fundamental forms are related to their shape operators by

$$
\begin{align*}
& h_{i}^{\ell}(X, Y)=g\left(A_{\xi_{i}}^{*} X, Y\right)-\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{i}\right) \eta_{k}(Y), \tag{3.9}\\
& \epsilon_{a} h_{a}^{s}(X, Y)=g\left(A_{E_{a}} X, Y\right)-\sum_{k=1}^{r} \phi_{a k}(X) \eta_{k}(Y), \tag{3.10}\\
& h_{i}^{*}(X, P Y)=g\left(A_{N_{i}} X, P Y\right), \tag{3.11}
\end{align*}
$$

where $\eta_{k} s$ are 1-forms such that $\eta_{k}(X)=\bar{g}\left(X, N_{k}\right)$. Applying $\bar{\nabla}_{X}$ to $g\left(\xi_{i}, \xi_{j}\right)=$ $0, \bar{g}\left(\xi_{i}, E_{a}\right)=0, \bar{g}\left(N_{i}, N_{j}\right)=0, \bar{g}\left(N_{i}, E_{a}\right)=0$ and $\bar{g}\left(E_{a}, E_{b}\right)=\epsilon \delta_{a b}$, we obtain

$$
\begin{aligned}
& h_{i}^{\ell}\left(X, \xi_{j}\right)+h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{s}\left(X, \xi_{i}\right)=-\epsilon_{a} \phi_{a i}(X), \\
& \eta_{j}\left(A_{N_{i}} X\right)+\eta_{i}\left(A_{N_{j}} X\right)=0, \quad \bar{g}\left(A_{E_{a}} X, N_{i}\right)=\epsilon_{a} \rho_{i a}(X), \\
& \epsilon_{b} \sigma_{a b}+\epsilon_{a} \sigma_{b a}=0 \quad \text { and } \quad h_{i}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{i}^{\ell}\left(\xi_{j}, \xi_{k}\right)=0 .
\end{aligned}
$$

By directed calculations from (2.3), (2.4), (2.5), (3.4) and (3.11), we have

$$
\begin{align*}
& \nabla_{X} \zeta=-\alpha F X+\beta(X-\theta(X) \zeta) \tag{3.13}\\
& h_{i}^{\ell}(X, \zeta)=-\alpha u_{i}(X), \quad h_{a}^{s}(X, \zeta)=-\alpha w_{a}(X), \tag{3.14}\\
& h_{i}^{*}(X, \zeta)=-\alpha v_{i}(X)+\beta \eta_{i}(X) \tag{3.15}
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to (3.2), (3.3) and (3.4) by turns and using (2.2), (2.4) $\sim(2.8)$, (3.2) $\sim(3.4)$ and $(3.9) \sim(3.11)$, we have

$$
\begin{align*}
& h_{j}^{\ell}\left(X, U_{i}\right)=h_{i}^{*}\left(X, V_{j}\right), \quad \epsilon_{a} h_{i}^{*}\left(X, W_{a}\right)=h_{a}^{s}\left(X, U_{i}\right), \\
& h_{j}^{\ell}\left(X, V_{i}\right)=h_{i}^{\ell}\left(X, V_{j}\right), \quad \epsilon_{a} h_{i}^{\ell}\left(X, W_{a}\right)=h_{a}^{s}\left(X, V_{i}\right), \tag{3.16}\\
& \epsilon_{b} h_{b}^{s}\left(X, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(X, W_{b}\right),
\end{align*}
$$

$$
\begin{gather*}
\nabla_{X} U_{i}=F\left(A_{N_{i}} X\right)+\sum_{j=1}^{r} \tau_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) W_{a} \tag{3.17}\\
-\left\{\alpha \eta_{i}(X)+\beta v_{i}(X)\right\} \zeta,
\end{gather*}
$$

$$
\begin{equation*}
\nabla_{X} V_{i}=F\left(A_{\xi_{i}}^{*} X\right)-\sum_{j=1}^{r} \tau_{j i}(X) V_{j}+\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) U_{j} \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
-\sum_{a=r+1}^{n} \epsilon_{a} \phi_{a i}(X) W_{a}-\beta u_{i}(X) \zeta \tag{3.19}
\end{equation*}
$$

$$
\begin{align*}
\left(\nabla_{X} u_{i}\right)(Y)= & -\sum_{j=1}^{r} u_{j}(Y) \tau_{j i}(X)-\sum_{a=r+1}^{n} w_{a}(Y) \phi_{a i}(X) \tag{3.21}\\
& -\beta \theta(Y) u_{i}(X)-h_{i}^{\ell}(X, F Y)
\end{align*}
$$

(3.22) $\left(\nabla_{X} v_{i}\right)(Y)=\sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)+\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X)$

$$
\begin{aligned}
& -\sum_{j=r+1}^{r} u_{j}(Y) \eta_{j}\left(A_{N_{i}} X\right)-g\left(A_{N_{i}} X, F Y\right) \\
& -\theta(Y)\left\{\alpha \eta_{i}(X)+\beta v_{i}(X)\right\}
\end{aligned}
$$

4. Recurrent and Lie recurrent submanifolds

Definition. We say that a lightlike submanifold M of \bar{M} is called
(1) irrotational [15] if $\bar{\nabla}_{X} \xi_{i} \in \Gamma(T M)$ for all $i \in\{1, \ldots, r\}$,
(2) solenoidal [13] if $A_{W_{a}}$ and $A_{N_{i}}$ are $S(T M)$-valued,
(3) statical [13] if M is both irrotational and solenoidal.

Remark 4.1. From (2.4) and (3.12) ${ }_{2}$, the item (1) is equivalent to

$$
\begin{equation*}
h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{s}\left(X, \xi_{i}\right)=\phi_{a i}(X)=0 \tag{4.1}
\end{equation*}
$$

By using (3.12) ${ }_{4}$, the item (2) is equivalent to

$$
\begin{equation*}
\eta_{j}\left(A_{N_{i}} X\right)=0, \quad \rho_{i a}(X)=\eta_{i}\left(A_{E_{a}} X\right)=0 \tag{4.2}
\end{equation*}
$$

Denote by $\lambda_{i j}, \mu_{i a}, \nu_{i a}, \kappa_{a b}$ and $\chi_{i j}$ the 1-forms on M such that

$$
\begin{array}{ll}
\lambda_{i j}(X)=h_{i}^{\ell}\left(X, U_{j}\right)=h_{j}^{*}\left(X, V_{i}\right), & \kappa_{a b}(X)=\epsilon_{a} h_{a}^{s}\left(X, W_{b}\right), \\
\mu_{i a}(X)=h_{i}^{\ell}\left(X, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(X, V_{i}\right), & \chi_{i j}(X)=h_{i}^{\ell}\left(X, V_{j}\right), \tag{4.3}\\
\nu_{a i}(X)=h_{i}^{*}\left(X, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(X, U_{i}\right) . &
\end{array}
$$

Definition. The structure tensor field F of M is said to be recurrent [11] if there exists a 1 -form ϖ on M such that

$$
\left(\nabla_{X} F\right) Y=\varpi(X) F Y
$$

A lightlike submanifold M of an indefinite trans-Sasakian manifold \bar{M} is called recurrent if it admits a recurrent structure tensor field F.

Theorem 4.2. Let M be a recurrent generic lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M} with a quarter-symmetric metric connection. Then the following statements are satisfied:
(1) F is parallel with respect to the induced connection ∇ on M,
(2) \bar{M} is an indefinite cosymplectic manifold, i.e., $\alpha=\beta=0$,
(3) M is statical,
(4) $J(l \operatorname{tr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H are parallel distributions on M,
(5) M is locally a product manifold $M_{r} \times M_{n-r} \times M^{\sharp}$, where M_{r}, M_{n-r} and M^{\sharp} are leaves of $J(\operatorname{ltr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H, respectively.

Proof. (1) From the above definition and (3.20), we obtain

$$
\begin{align*}
\varpi(X) F Y= & \sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \tag{4.4}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a} \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}
\end{align*}
$$

Replacing Y by ξ_{j} to this and using the fact that $F \xi_{j}=-V_{j}$, we get

$$
\begin{equation*}
\varpi(X) V_{j}=\sum_{k=1}^{r} h_{k}^{\ell}\left(X, \xi_{j}\right) U_{k}+\sum_{b=r+1}^{n} h_{b}^{s}\left(X, \xi_{j}\right) W_{b}-\beta u_{j}(X) \zeta . \tag{4.5}
\end{equation*}
$$

Taking the scalar product with U_{j}, ζ, V_{i} and W_{a} by turns, we obtain

$$
\varpi=0, \quad \beta=0, \quad h_{i}^{\ell}\left(X, \xi_{j}\right)=0, \quad h_{a}^{s}\left(X, \xi_{j}\right)=\phi_{a j}(X)=0
$$

respectively. As $\varpi=0, F$ is parallel with respect to the connection ∇.
(2) Taking the scalar product with U_{j} to (4.4) with $\varpi=\beta=0$, we get

$$
\begin{equation*}
\sum_{i=1}^{r} u_{i}(Y) g\left(A_{N_{i}} X, U_{j}\right)+\sum_{a=r+1}^{n} w_{a}(Y) g\left(A_{E_{a}} X, U_{j}\right)-\alpha \theta(Y) v_{j}(X)=0 \tag{4.6}
\end{equation*}
$$

Replacing Y by ζ to this equation, we have $\alpha v_{j}(X)=0$. It follows that $\alpha=0$. As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold.
(3) As $h_{i}^{\ell}\left(X, \xi_{j}\right)=0$ and $h_{a}^{s}\left(X, \xi_{j}\right)=0, M$ is irrotational by (4.1). Also, M is solenoidal. In fact, taking the scalar product with N_{j} to (4.4), we have

$$
\sum_{i=1}^{r} u_{i}(Y) \bar{g}\left(A_{N_{i}} X, N_{j}\right)+\sum_{a=r+1}^{n} w_{a}(Y) \bar{g}\left(A_{E_{a}} X, N_{j}\right)=0 .
$$

Taking $Y=U_{i}$ and $Y=W_{a}$ by turns, we get (4.2). Thus M is statical.
(4) Taking $Y=U_{k}$ and $Y=W_{b}$ to (4.6) by turns, we obtain

$$
\begin{equation*}
h_{i}^{*}\left(X, U_{j}\right)=\bar{g}\left(A_{N_{i}} X, U_{j}\right)=0, \quad \nu_{a i}(X)=\bar{g}\left(A_{E_{a}} X, U_{i}\right)=0 . \tag{4.7}
\end{equation*}
$$

Taking the scalar product with V_{j} and W_{b} to (4.4) by turns, we have

$$
\begin{align*}
& h_{i}^{\ell}(X, Y)=\sum_{j=1}^{r} \lambda_{i j}(X) u_{j}(Y)+\sum_{a=r+1}^{n} \mu_{i a}(X) w_{a}(Y) \tag{4.8}\\
& \epsilon_{a} h_{a}^{s}(X, Y)=\sum_{b=r+1}^{n} \kappa_{b a}(X) w_{b}(Y)
\end{align*}
$$

due to (3.10), (3.11) and (4.3). Replacing Y by V_{j} to $(4.8)_{1,2}$, we have

$$
\begin{equation*}
\chi_{i j}(X)=h_{i}^{\ell}\left(X, V_{j}\right)=0, \quad \mu_{i a}(X)=h_{a}^{s}\left(X, V_{i}\right)=0 \tag{4.9}
\end{equation*}
$$

Taking $Y=U_{j}$ and $Y=W_{b}$ to (4.4) and using (4.3), (4.7) $)_{2}$ and (4.9) ${ }_{2}$, we get

$$
\begin{equation*}
A_{N_{i}} X=\sum_{j=1}^{r} \lambda_{j i}(X) U_{j}, \quad A_{E_{a}} X=\sum_{b=r+1}^{n} \epsilon_{b} \kappa_{b a}(X) W_{b} . \tag{4.10}
\end{equation*}
$$

Using (3.9), (4.1), (4.9) $)_{2}$ and the non-degenerateness of $S(T M),(4.8)_{1}$ reduces

$$
\begin{equation*}
A_{\xi_{i}}^{*} X=\sum_{j=1}^{r} \lambda_{i j}(X) V_{j} . \tag{4.11}
\end{equation*}
$$

Applying F to $(4.10)_{1,2}$, we have $F\left(A_{N_{i}} X\right)=0$ and $F\left(A_{E_{a}} X\right)=0$. Substituting these results into (3.17) and (3.19), we obtain

$$
\begin{equation*}
\nabla_{X} U_{i}=\sum_{j=1}^{r} \tau_{i j}(X) U_{j}, \quad \nabla_{X} W_{a}=\sum_{b=r+1}^{n} \sigma_{a b}(X) W_{b} \tag{4.12}
\end{equation*}
$$

It follow that $J(l \operatorname{tr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are parallel distributions on M with respect to the induced connection ∇ on M, that is,

$$
\nabla_{X} U_{i} \in \Gamma(J(\operatorname{ltr}(T M))), \quad \nabla_{X} W_{a} \in \Gamma\left(J\left(S\left(T M^{\perp}\right)\right)\right)
$$

Applying F to (4.11), we get $F\left(A_{\xi_{i}}^{*} X\right)=\sum_{j=1}^{r} \lambda_{i j}(X) \xi_{j}$. Thus we have

$$
\begin{equation*}
\nabla_{X} V_{i}=\sum_{j=1}^{r}\left\{\lambda_{i j}(X) \xi_{j}-\tau_{j i}(X) V_{j}\right\} \tag{4.13}
\end{equation*}
$$

Taking $Y \in \Gamma(H)$ to (4.4) and then, taking the scalar product with U_{j} and W_{b} to the resulting equation by turns, we obtain

$$
\begin{equation*}
h_{i}^{\ell}(X, Y)=0, \quad h_{a}^{s}(X, Y)=0, \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H) \tag{4.14}
\end{equation*}
$$

By directed calculations from (4.9), (4.12) 2 , (4.13) and (4.14), we obtain $g\left(\nabla_{X} Y, V_{i}\right)=0$ and $g\left(\nabla_{X} Y, W_{a}\right)=0$ for all $X \in \Gamma(T M)$ and $Y \in \Gamma(H)$. Thus

$$
\nabla_{X} Y \in \Gamma(H), \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H)
$$

Thus H is also a parallel distribution on M with respect to ∇.
(5) As $J(l \operatorname{tr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H are parallel distributions and satisfied the decomposition form (3.1), by the decomposition theorem of de Rham [3], M is locally a product manifold $M_{r} \times M_{n-r} \times M^{\sharp}$, where M_{r}, M_{n-r} and M^{\sharp} are leaves of $J(l \operatorname{tr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H, respectively.

Definition. The structure tensor field F of M is said to be Lie recurrent [11] if there exists a 1 -form ϑ on M such that

$$
\left(\mathcal{L}_{X} F\right) Y=\vartheta(X) F Y
$$

where \mathcal{L}_{X} denotes the Lie derivative on M with respect to X. The structure tensor field F is called Lie parallel if $\mathcal{L}_{X} F=0$. A lightlike submanifold M is called Lie recurrent if it admits a Lie recurrent structure tensor field F.

Theorem 4.3. Let M be a Lie recurrent generic lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M} with a quarter-symmetric metric connection. Then the following statements are satisfied:
(1) F is Lie parallel,
(2) $\alpha=0$ and $d \theta=0$. Thus \bar{M} is not an indefinite Sasakian manifold,
(3) h_{i}^{*} is never symmetric on $S(T M)$,
(4) $\tau_{i j}$ and $\rho_{i a}$ are satisfied $\tau_{i j} \circ F=0$ and $\rho_{i a} \circ F=0$. Moreover,

$$
\tau_{i j}(X)=\sum_{k=1}^{r} u_{k}(X) g\left(A_{N_{k}} V_{j}, N_{i}\right)-\beta \delta_{i j} \theta(X) .
$$

Proof. (1) As $\left(\mathcal{L}_{X} F\right) Y=[X, F Y]-F[X, Y]$, using (3.6) and (3.20), we get

$$
\begin{align*}
\vartheta(X) F Y= & -\nabla_{F Y} X+F \nabla_{Y} X-\theta(Y)\{X-\theta(X) \zeta\} \tag{4.15}\\
& +\sum_{i=1}^{r} u_{i}(Y) A_{N_{i}} X+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} X \\
& -\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Y)-\theta(Y) u_{i}(X)\right\} U_{i} \\
& -\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Y)-\theta(Y) w_{a}(X)\right\} W_{a} \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}
\end{align*}
$$

by (3.5). Replacing Y by ξ_{j} and then, Y by V_{j} to (4.15) by turns, we have

$$
\begin{align*}
-\vartheta(X) V_{j}= & \nabla_{V_{j}} X+F \nabla_{\xi_{j}} X+\beta u_{j}(X) \zeta \tag{4.16}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}\left(X, \xi_{j}\right) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}\left(X, \xi_{j}\right) W_{a}, \\
\vartheta(X) \xi_{j}= & -\nabla_{\xi_{j}} X+F \nabla_{V_{j}} X+\alpha u_{j}(X) \zeta \tag{4.17}
\end{align*}
$$

$$
-\sum_{i=1}^{r} h_{i}^{\ell}\left(X, V_{j}\right) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}\left(X, V_{j}\right) W_{a}
$$

respectively. Taking the scalar product with U_{j} to (4.16) and then, taking the scalar product with N_{j} to (4.17), we obtain respectively

$$
\begin{aligned}
-\vartheta(X) & =g\left(\nabla_{V_{j}} X, U_{j}\right)-\bar{g}\left(\nabla_{\xi_{j}} X, N_{j}\right) \\
\vartheta(X) & =g\left(\nabla_{V_{j}} X, U_{j}\right)-\bar{g}\left(\nabla_{\xi_{j}} X, N_{j}\right)
\end{aligned}
$$

Comparing these two equations, we get $\vartheta=0$. Thus F is Lie parallel.
(2) Taking the scalar product with ζ to (4.17) satisfying $\vartheta=0$, we have

$$
g\left(\nabla_{\xi_{j}} X, \zeta\right)=\alpha u_{j}(X)
$$

Replacing X by U_{j} to this equation and using (3.17), we obtain $\alpha=0$.
Applying $\bar{\nabla}_{\bar{X}}$ to $\theta(\bar{Y})=\bar{g}(\bar{Y}, \zeta)$ and using (1.1) and (2.3), we obtain

$$
d \theta(\bar{X}, \bar{Y})=\alpha \bar{g}(\bar{X}, J \bar{Y})
$$

due to the fact that $\bar{\nabla}$ is metric. As $\alpha=0$, we see that $d \theta=0$.
(3) Replacing X by U_{i} to (4.15) and using (3.2), (3.3), (3.5), (3.7), (3.8), (3.11), (3.15), (3.16) $)_{1,2}$ and (3.17), we obtain

$$
\begin{align*}
& \sum_{k=1}^{r} u_{k}(Y) A_{N_{k}} U_{i}+\sum_{a=r+1}^{n} w_{a}(Y) A_{E_{a}} U_{i}-\theta(Y) U_{i}+\beta \eta_{i}(Y) \zeta \tag{4.18}\\
& -A_{N_{i}} Y-F\left(A_{N_{i}} F Y\right)-\sum_{j=1}^{r} \tau_{i j}(F Y) U_{j}-\sum_{a=r+1}^{n} \rho_{i a}(F Y) W_{a}=0
\end{align*}
$$

Taking $Y=\zeta$ to (4.18) and then, taking the scalar product with $P X$, we get $h_{i}^{*}(\zeta, P X)=-v_{i}(P X)$. Assume that h_{i}^{*} is symmetric on $S(T M)$. Taking $X=P X$ to (3.15), we obtain $h_{i}^{*}(\zeta, P X)=0$. It follows that $v_{i}(P X)=0$. It is a contradiction to $v_{i}\left(V_{i}\right)=1$. Thus h_{i}^{*} is never symmetric on $S(T M)$.
(4) Taking the scalar product with N_{i} to (4.16) such that $X=W_{a}$ and using (3.8), (3.10), (3.12) $)_{4}$ and (3.19), we get $h_{a}^{s}\left(U_{i}, V_{j}\right)=\rho_{i a}\left(\xi_{j}\right)$. On the other hand, taking the scalar product with W_{a} to (4.17) such that $X=U_{i}$ and using (3.17), we have $h_{a}^{s}\left(U_{i}, V_{j}\right)=-\rho_{i a}\left(\xi_{j}\right)$. Thus $\rho_{i a}\left(\xi_{j}\right)=0$ and $h_{a}^{s}\left(U_{i}, V_{j}\right)=0$.

Taking the scalar product with U_{i} to (4.16) such that $X=W_{a}$ and using (3.10), (3.12) $)_{2,4}$ and (3.19), we get $\epsilon_{a} \rho_{i a}\left(V_{j}\right)=\phi_{a j}\left(U_{i}\right)$. On the other hand, taking the scalar product with W_{a} to (4.16) such that $X=U_{i}$ and using (3.12) $)_{2}$ and (3.17), we get $\epsilon_{a} \rho_{i a}\left(V_{j}\right)=-\phi_{a j}\left(U_{i}\right)$. Thus $\rho_{i a}\left(V_{j}\right)=0$ and $\phi_{a j}\left(U_{i}\right)=0$.

Taking the scalar product with V_{i} to (4.16) such that $X=W_{a}$ and using (3.7), (3.8), (3.12) $)_{2},(3.16)_{4}$ and (3.19), we get $\phi_{a i}\left(V_{j}\right)=-\phi_{a j}\left(V_{i}\right)$. On the other hand, taking the scalar product with W_{a} to (4.16) such that $X=V_{i}$ and using (3.12) $)_{2}$ and (3.18), we have $\phi_{a i}\left(V_{j}\right)=\phi_{a j}\left(V_{i}\right)$. Thus $\phi_{a i}\left(V_{j}\right)=0$.

Taking the scalar product with W_{a} to (4.16) such that $X=\xi_{i}$ and using (2.8), (3.9) and (3.12) $)_{2}$, we get $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=\phi_{a i}\left(\xi_{j}\right)$. On the other hand, taking the scalar product with V_{i} to (4.17) such that $X=W_{a}$ and using (3.7) and
(3.19), we have $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=-\phi_{a i}\left(\xi_{j}\right)$. Thus $\phi_{a i}\left(\xi_{j}\right)=0$ and $h_{i}^{\ell}\left(V_{j}, W_{a}\right)=0$. Summarizing the above results, we obtain

$$
\begin{align*}
& \rho_{i a}\left(\xi_{j}\right)=0, \rho_{i a}\left(V_{j}\right)=0, \phi_{a i}\left(U_{j}\right)=0, \phi_{a i}\left(V_{j}\right)=0, \phi_{a i}\left(\xi_{j}\right)=0, \tag{4.19}\\
& h_{a}^{s}\left(U_{i}, V_{j}\right)=h_{j}^{\ell}\left(U_{i}, W_{a}\right)=0, \quad h_{i}^{\ell}\left(V_{j}, W_{a}\right)=h_{a}^{s}\left(V_{j}, V_{i}\right)=0 .
\end{align*}
$$

Taking the scalar product with N_{i} to (4.15) and using (3.12) ${ }_{4}$, we have

$$
\begin{align*}
& -\bar{g}\left(\nabla_{F Y} X, N_{i}\right)+\bar{g}\left(\nabla_{Y} X, U_{i}\right)-\theta(Y)\left\{\eta_{i}(X)+\beta v_{i}(X)\right\} \tag{4.20}\\
& +\sum_{k=1}^{r} u_{k}(Y) \bar{g}\left(A_{N_{k}} X, N_{i}\right)+\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X)=0 .
\end{align*}
$$

Replacing X by V_{j} to (4.20) and using (3.9), (3.18) and (4.19) $)_{2}$, we have

$$
\begin{equation*}
h_{j}^{\ell}\left(F X, U_{i}\right)+\tau_{i j}(X)+\beta \delta_{i j} \theta(X)=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} V_{j}, N_{i}\right) . \tag{4.21}
\end{equation*}
$$

Replacing X by ξ_{j} to (4.20) and using (2.8), (3.9) and (4.19) ${ }_{1}$, we have

$$
\begin{equation*}
h_{j}^{\ell}\left(X, U_{i}\right)+\delta_{i j} \theta(X)=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)+\tau_{i j}(F X) . \tag{4.22}
\end{equation*}
$$

Taking $X=U_{k}$ to (4.22), we have

$$
\begin{equation*}
h_{i}^{*}\left(U_{k}, V_{j}\right)=h_{j}^{\ell}\left(U_{k}, U_{i}\right)=\bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right) . \tag{4.23}
\end{equation*}
$$

On the other hand, taking the scalar product with V_{j} to (4.18) and using (3.11), $(3.12)_{3},(3.16)_{1},(4.19)_{6}$ and (4.23), we get

$$
h_{j}^{\ell}\left(X, U_{i}\right)+\delta_{i j} \theta(X)=-\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)-\tau_{i j}(F X)
$$

Comparing this equation with (4.22), we obtain

$$
\tau_{i j}(F X)+\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)=0 .
$$

Replacing X by U_{h} to this equation, we have $\bar{g}\left(A_{N_{k}} \xi_{j}, N_{i}\right)=0$. Therefore,

$$
\begin{equation*}
\tau_{i j}(F X)=0, \quad h_{j}^{\ell}\left(X, U_{i}\right)+\delta_{i j} \theta(X)=0 \tag{4.24}
\end{equation*}
$$

Taking $X=F Y$ to $(4.24)_{2}$, we get $h_{j}^{\ell}\left(F X, U_{i}\right)=0$. Thus (4.21) is reduced to

$$
\begin{equation*}
\tau_{i j}(X)=\sum_{k=1}^{r} u_{k}(X) \bar{g}\left(A_{N_{k}} V_{j}, N_{i}\right)-\beta \delta_{i j} \theta(X) . \tag{4.25}
\end{equation*}
$$

Replacing Y by W_{b} to (4.18), we have $A_{E_{a}} U_{i}=A_{N_{i}} W_{a}$. Taking the scalar product with U_{j} and using (3.8), (3.10), (3.11) and (3.16) $)_{2}$, we have

$$
\begin{equation*}
h_{i}^{*}\left(W_{a}, U_{j}\right)=\epsilon_{a} h_{a}^{s}\left(U_{i}, U_{j}\right)=\epsilon_{a} h_{a}^{s}\left(U_{j}, U_{i}\right)=h_{i}^{*}\left(U_{j}, W_{a}\right) \tag{4.26}
\end{equation*}
$$

Taking the scalar product with W_{a} to (4.18), we have

$$
\begin{aligned}
\epsilon_{a} \rho_{i a}(F Y)= & -h_{i}^{*}\left(Y, W_{a}\right) \\
& +\sum_{k=1}^{r} u_{k}(Y) h_{k}^{*}\left(U_{i}, W_{a}\right)+\sum_{b=r+1}^{n} \epsilon_{b} w_{b}(Y) h_{b}^{s}\left(U_{i}, W_{a}\right) .
\end{aligned}
$$

Taking the scalar product with U_{i} to (4.15) and then, taking $X=W_{a}$ and using (3.8), (3.10), (3.11), (3.12) $)_{4},(3.16)_{2}$, (3.19) and (4.26), we obtain

$$
\begin{aligned}
\epsilon_{a} \rho_{i a}(F Y)= & h_{i}^{*}\left(Y, W_{a}\right) \\
& -\sum_{k=1}^{r} u_{k}(Y) h_{k}^{*}\left(U_{i}, W_{a}\right)-\sum_{b=r+1}^{n} \epsilon_{b} w_{b}(Y) h_{b}^{s}\left(U_{i}, W_{a}\right) .
\end{aligned}
$$

Comparing the last two equations, we obtain $\rho_{i a}(F Y)=0$.
Remark 4.4. Replacing X by ξ_{j} to (3.9) and using $(3.12)_{7}$, we have

$$
h_{i}^{\ell}\left(\xi_{j}, X\right)=g\left(A_{\xi_{i}}^{*} \xi_{j}, X\right)
$$

Taking $Y=\xi_{j}$ to (3.7), we obtain $h_{i}^{\ell}\left(X, \xi_{j}\right)=h_{i}^{\ell}\left(\xi_{j}, X\right)$. From this and (3.12) ${ }_{1}$, we see that $h_{i}^{\ell}\left(\xi_{j}, X\right)$ are skew-symmetric with respect to i and j. It follow that $A_{\xi_{i}}^{*} \xi_{j}=-A_{\xi_{j}}^{*} \xi_{i}$, i.e., $A_{\xi_{i}}^{*} \xi_{j}$ are skew-symmetric with respect to i and j.

In case M is Lie recurrent, taking $Y=U_{j}$ to (4.18), we have $A_{N_{i}} U_{j}=A_{N_{j}} U_{i}$. Thus $A_{N_{i}} U_{j}$ are symmetric with respect to i and j. Therefore, we get

$$
\begin{align*}
& h_{i}^{\ell}\left(\xi_{j}, F\left(A_{N_{j}} U_{i}\right)\right)=g\left(A_{\xi_{i}}^{*} \xi_{j}, F\left(A_{N_{j}} U_{i}\right)\right)=0, \tag{4.27}\\
& h_{i}^{\ell}\left(\xi_{j}, W_{a}\right)=\epsilon_{a} h_{a}^{s}\left(\xi_{j}, V_{i}\right)=\epsilon_{a} h_{a}^{s}\left(V_{i}, \xi_{j}\right)=-\phi_{j i}\left(V_{i}\right)=0 \tag{4.28}
\end{align*}
$$

due to (4.19) 4 . Taking $X=U_{i}(3.7)$ and using $(4.24)_{2}$, we obtain

$$
\begin{equation*}
h_{j}^{\ell}\left(U_{i}, X\right)=0 . \tag{4.29}
\end{equation*}
$$

5. Indefinite generalized Sasakian space forms

Alegre and his collaborators [1] introduced generalized Sasakian space form. Jin [6] extended this notion as follow: An indefinite trans-Sasakian manifold \bar{M} is called indefinite generalized Sasakian space form and denoted by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ if there exist three smooth functions f_{1}, f_{2} and f_{3} on \bar{M} such that

$$
\begin{align*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}= & f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \tag{5.1}\\
& +f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
& +f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \\
& +\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\}
\end{align*}
$$

where the symbol \bar{R} is the curvature tensor of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$.
Sasakian space form, Kenmotsu space form and cosymplectic space form are important kinds of generalized Sasakian space forms such that

$$
f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4} ; \quad f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4} ; \quad f_{1}=f_{2}=f_{3}=\frac{c}{4}
$$

respectively, where c is a constant J -sectional curvature of each space forms.
Denote by \bar{R}, R and R^{*} the curvature tensors of the quart-symmetric metric connection $\bar{\nabla}$ on \bar{M}, and the induced connection ∇ and ∇^{*} on M and $S(T M)$ respectively. Using the Gauss-Weingarten formulas for M and $S(T M)$, we obtain the Gauss equations for M and $S(T M)$, respectively:

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z \tag{5.2}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\} \\
& +\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Z) A_{E_{a}} Y-h_{a}^{s}(Y, Z) A_{E_{a}} X\right\} \\
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
& +\sum_{j=1}^{r}\left[\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right] \\
& +\sum_{a=r+1}^{n}\left[\phi_{a i}(X) h_{a}^{s}(Y, Z)-\phi_{a i}(Y) h_{a}^{s}(X, Z)\right] \\
& \left.-\theta(X) h_{i}^{\ell}(F Y, Z)+\theta(Y) h_{i}^{\ell}(F X, Z)\right\} N_{i} \\
& +\sum_{a=r+1}^{n}\left\{\left(\nabla_{X} h_{a}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{a}^{s}\right)(X, Z)\right. \\
& +\sum_{i=1}^{r}\left[\rho_{i a}(X) h_{i}^{\ell}(Y, Z)-\rho_{i a}(Y) h_{a}^{s}(X, Z)\right] \\
& +\sum_{b=r+1}^{n}\left[\sigma_{b a}(X) h_{b}^{s}(Y, Z)-\sigma_{b a}(Y) h_{b}^{s}(X, Z)\right] \\
& \left.-\theta(X) h_{a}^{s}(F Y, Z)+\theta(Y) h_{a}^{s}(F X, Z)\right\} E_{a},
\end{align*}
$$

$$
\begin{align*}
R(X, Y) P Z= & R^{*}(X, Y) P Z \tag{5.3}\\
& +\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Z) A_{\xi_{i}}^{*} Y-h_{i}^{*}(Y, P Z) A_{\xi_{i}}^{*} X\right\} \\
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z)\right. \\
& +\sum_{j=1}^{r}\left[h_{j}^{*}(X, P Z) \tau_{i j}(Y)-h_{j}^{*}(Y, P Z) \tau_{i j}(X)\right] \\
& \left.-\theta(X) h_{i}^{*}(F Y, Z)+\theta(Y) h_{i}^{*}(F X, Z)\right\} \xi_{i} .
\end{align*}
$$

Comparing the tangential and lightlike transversal components of the two equations (5.1) and (5.2), and using (3.4), we get
(5.4) $\quad R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}$
$+f_{2}\{\bar{g}(X, J Z) F Y-\bar{g}(Y, J Z) F X+2 \bar{g}(X, J Y) F Z\}$
$+f_{3}\{\theta(X) \theta(Z) Y-\theta(Y) \theta(Z) X$
$+\bar{g}(X, Z) \theta(Y) \zeta-\bar{g}(Y, Z) \theta(X) \zeta\}$
$+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(Y, Z) A_{N_{i}} X-h_{i}^{\ell}(X, Z) A_{N_{i}} Y\right\}$
$+\sum_{a=r+1}^{n}\left\{h_{a}^{s}(Y, Z) A_{E_{a}} X-h_{a}^{s}(X, Z) A_{E_{a}} Y\right\}$,
(5.5)

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z) \\
+ & \sum_{j=1}^{r}\left\{\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right\} \\
+ & \sum_{a=r+1}^{n}\left\{\phi_{a i}(X) h_{a}^{s}(Y, Z)-\phi_{a i}(Y) h_{a}^{s}(X, Z)\right\} \\
& -\theta(X) h_{i}^{\ell}(F Y, Z)+\theta(Y) h_{i}^{\ell}(F X, Z) \\
= & f_{2}\left\{u_{i}(Y) \bar{g}(X, J Z)-u_{i}(X) \bar{g}(Y, J Z)+2 u_{i}(Z) \bar{g}(X, J Y)\right\}
\end{aligned}
$$

Taking the scalar product with N_{i} to (5.3), we have

$$
\begin{aligned}
\bar{g}\left(R(X, Y) P Z, N_{i}\right)= & \left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z) \\
& +\sum_{j=1}^{r}\left\{\tau_{i j}(Y) h_{j}^{*}(X, P Z)-\tau_{i j}(X) h_{j}^{*}(Y, P Z)\right\} \\
& -\theta(X) h_{i}^{*}(F Y, Z)+\theta(Y) h_{i}^{*}(F X, Z)
\end{aligned}
$$

Substituting (5.4) into the last equation and using (3.12) 4 , we obtain

$$
\begin{align*}
& \left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z) \tag{5.6}\\
+ & \sum_{j=1}^{r}\left\{\tau_{i j}(Y) h_{j}^{*}(X, P Z)-\tau_{i j}(X) h_{j}^{*}(Y, P Z)\right\} \\
+ & \sum_{a=r+1}^{n} \epsilon_{a}\left\{\rho_{i a}(Y) h_{a}^{s}(X, P Z)-\rho_{i a}(X) h_{a}^{s}(Y, P Z)\right\} \\
& +\sum_{j=1}^{r}\left\{h_{j}^{\ell}(X, P Z) \eta_{i}\left(A_{N_{j}} Y\right)-h_{j}^{\ell}(Y, P Z) \eta_{i}\left(A_{N_{j}} X\right)\right\} \\
= & -\theta(X) h_{i}^{*}(F Y, Z)+\theta(Y) h_{i}^{*}(F X, Z) \\
& f_{1}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\}
\end{align*}
$$

GENERIC LIGHTLIKE SUBMANIFOLDS OF A TRANS-SASAKIAN MANIFOLD 1017

$$
\begin{aligned}
& +f_{2}\left\{v_{i}(Y) \bar{g}(X, J P Z)-v_{i}(X) \bar{g}(Y, J P Z)+2 v_{i}(P Z) \bar{g}(X, J Y)\right\} \\
& +f_{3}\left\{\theta(X) \eta_{i}(Y)-\theta(Y) \eta_{i}(X)\right\} \theta(P Z) .
\end{aligned}
$$

Theorem 5.1. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a quarter-symmetric metric connection. Then the following properties are satisfied
(1) α is a constant,
(2) $\alpha \beta=0$,
(3) $f_{1}-f_{2}=\alpha^{2}-\beta^{2}$ and $f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)+\alpha-\zeta \beta$.

Proof. Applying ∇_{X} to (3.16) $)_{1}: h_{j}^{\ell}\left(Y, U_{i}\right)=h_{i}^{*}\left(Y, V_{j}\right)$ and using (2.1), (3.2), (3.3), (3.4), (3.9), (3.11), (3.16) $)_{1}$, (3.17) and (3.18), we have

$$
\begin{aligned}
\left(\nabla_{X} h_{j}^{\ell}\right)\left(Y, U_{i}\right)= & \left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right) \\
& -\sum_{k=1}^{r}\left\{\tau_{k j}(X) h_{k}^{\ell}\left(Y, U_{i}\right)+\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)\right\} \\
& -\sum_{a=r+1}^{n}\left\{\phi_{a j}(X) h_{a}^{s}\left(Y, U_{i}\right)+\epsilon_{a} \rho_{i a}(X) h_{a}^{s}\left(Y, V_{j}\right)\right\} \\
& +\sum_{k=1}^{r}\left\{h_{i}^{*}\left(Y, U_{k}\right) h_{k}^{\ell}\left(X, \xi_{j}\right)+h_{i}^{*}\left(X, U_{k}\right) h_{k}^{\ell}\left(Y, \xi_{j}\right)\right\} \\
& -g\left(A_{\xi_{j}}^{*} X, F\left(A_{N_{i}} Y\right)\right)-g\left(A_{\xi_{j}}^{*} Y, F\left(A_{N_{i}} X\right)\right) \\
& -\sum_{k=1}^{r} h_{j}^{\ell}\left(X, V_{k}\right) \eta_{k}\left(A_{N_{i}} Y\right)-\alpha^{2} u_{j}(Y) \eta_{i}(X) \\
& -\beta^{2} u_{j}(X) \eta_{i}(Y)+\alpha \beta\left\{u_{j}(X) v_{i}(Y)-u_{j}(Y) v_{i}(X)\right\} .
\end{aligned}
$$

Substituting this into (5.5) such that replace i by j and take $Z=U_{i}$, we have

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)-\left(\nabla_{Y} h_{i}^{*}\right)\left(X, V_{j}\right) \\
- & \sum_{k=1}^{r}\left\{\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)-\tau_{i k}(Y) h_{k}^{*}\left(X, V_{j}\right)\right\} \\
- & \sum_{a=r+1}^{n} \epsilon_{a}\left\{h_{a}^{s}\left(Y, V_{j}\right) \rho_{i a}(X)-h_{a}^{s}\left(X, V_{j}\right) \rho_{i a}(Y)\right\} \\
& -\sum_{k=1}^{r}\left\{h_{k}^{\ell}\left(Y, V_{j}\right) \eta_{i}\left(A_{N_{k}} X\right)-h_{k}^{\ell}\left(X, V_{j}\right) \eta_{i}\left(A_{N_{k}} Y\right)\right\} \\
& \left.-\theta(X) h_{i}^{*}\left(F Y, V_{j}\right)+\theta(Y) h_{i}^{*}\left(F X, V_{j}\right)\right\} \\
& +\left(\alpha^{2}-\beta^{2}\right)\left\{u_{j}(X) \eta_{i}(Y)-u_{j}(Y) \eta_{i}(X)\right\} \\
& +2 \alpha \beta\left\{u_{j}(X) v_{i}(Y)-u_{j}(Y) v_{i}(X)\right\} \\
= & f_{2}\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\} .
\end{aligned}
$$

Comparing this with (5.6) such that $P Z=V_{j}$ and using (3.16), we obtain

$$
\begin{aligned}
& \left\{f_{1}-f_{2}-\left(\alpha^{2}-\beta^{2}\right)\right\}\left[u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right] \\
= & 2 \alpha \beta\left\{u_{j}(Y) v_{i}(X)-u_{j}(X) v_{i}(Y)\right\} .
\end{aligned}
$$

Taking $X=\xi_{i}$ and $Y=U_{j}$, and $X=V_{i}$ and $Y=U_{j}$ by turns, we have

$$
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0
$$

Applying $\bar{\nabla}_{X}$ to $\eta_{i}(Y)=\bar{g}\left(Y, N_{i}\right)$ and using (2.5), we have

$$
\left(\nabla_{X} \eta_{i}\right) Y=-g\left(A_{N_{i}} X, Y\right)+\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y)
$$

Applying ∇_{Y} to $(3.16)_{3}$ and using (3.13) and (3.22), we have

$$
\begin{aligned}
\left(\nabla_{X} h_{i}^{*}\right)(Y, \zeta)= & -(X \alpha) v_{i}(Y)+(X \beta) \eta_{i}(Y) \\
& +\alpha^{2} \theta(Y) \eta_{i}(X)+\beta^{2} \theta(X) \eta_{i}(Y) \\
& +\alpha\left\{g\left(A_{N_{i}} X, F Y\right)+g\left(A_{N_{i}} Y, F X\right)-\sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)\right. \\
& \left.-\sum_{a=r+1}^{n} \epsilon_{a} w_{a}(Y) \rho_{i a}(X)-\sum_{j=1}^{r} u_{j}(Y) \eta_{i}\left(A_{N_{j}} X\right)\right\} \\
& -\beta\left\{g\left(A_{N_{i}} X, Y\right)+g\left(A_{N_{i}} Y, X\right)-\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y)\right\}
\end{aligned}
$$

Substituting this and (3.16) into (5.6) such that $P Z=\zeta$, we get

$$
\begin{aligned}
& \left\{X \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha\right] \theta(X)\right\} \eta_{i}(Y) \\
& -\left\{Y \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha\right] \theta(Y)\right\} \eta_{i}(X) \\
= & (X \alpha) v_{i}(Y)-(Y \alpha) v_{i}(X) .
\end{aligned}
$$

Taking $X=\zeta$ and $Y=\xi_{i}$, and taking $X=U_{k}$ and $Y=V_{i}$ by turns, we get

$$
f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)+\alpha-\zeta \beta, \quad U_{i} \alpha=0, \quad \forall i
$$

Applying ∇_{X} to $h_{i}^{\ell}(Y, \zeta)=-\alpha u_{i}(Y)$ and using (3.21) and (3.13), we get

$$
\begin{gathered}
\left(\nabla_{X} h_{i}^{\ell}\right)(Y, \zeta)=-(X \alpha) u_{i}(Y)+\alpha\left\{\sum_{j=1}^{r} u_{j}(Y) \tau_{j i}(X)+\sum_{a=r+1}^{n} w_{a}(Y) \phi_{a i}(X)\right. \\
\left.+h_{i}^{\ell}(X, F Y)+h_{i}^{\ell}(Y, F X)\right\}
\end{gathered}
$$

Substituting this and (3.16) into (5.5) such that $Z=\zeta$, we obtain

$$
(X \alpha) u_{i}(Y)=(Y \alpha) u_{i}(X)
$$

Replacing Y by U_{i} to this equation, we obtain $X \alpha=0$ for all $X \in \Gamma(T M)$.
Thus α is a constant. This completes the proof of the theorem.
We say that \bar{M} (resp. M) is flat if $\bar{R}=0$ (resp. $R=0$).

Theorem 5.2. Let M be a recurrent generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a quarter-symmetric metric connection. Then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

Proof. As M is recurrent, by Theorem 4.2, we get (4.10), (4.11), (4.12) and the results: $\alpha=\beta=0$ and $\rho_{i a}=0$. As $\alpha=\beta=0, f_{1}=f_{2}=f_{3}$ by Theorem 5.1. Taking the scalar product with N_{j}, U_{j} and W_{a} to (4.10) ${ }_{1}$ by turns, we get

$$
\eta_{j}\left(A_{N_{i}} X\right)=0, \quad h_{i}^{*}\left(X, U_{j}\right)=0, \quad h_{a}^{s}\left(X, U_{i}\right)=h_{i}^{*}\left(X, W_{a}\right)=0 .
$$

Applying ∇_{X} to $h_{i}^{*}\left(Y, U_{j}\right)=0$ and using (4.12) $)_{1}$, we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Taking $P Z=U_{j}$ to (5.6) and using the last two equations, we have

$$
f_{1}\left\{v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right\}=0
$$

Taking $X=\xi_{i}$ and $Y=V_{j}$ to this equation, we have $f_{1}=0$. It follows that $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

Theorem 5.3. Let M be a generic lightlike submanifold of $\bar{M}\left(f_{1}, f_{\underline{2}}, f_{3}\right)$ with a quarter-symmetric metric connection. If M is Lie recurrent, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a space form with an indefinite β-Kenmotsu structure such that

$$
f_{1}=-\beta^{2}, \quad f_{2}=0, \quad f_{3}=\zeta \beta
$$

Proof. Applying ∇_{X} to $(4.24)_{2}: h_{i}^{\ell}\left(Y, U_{j}\right)=-\delta_{i j} \theta(Y)$, we have

$$
\left(\nabla_{X} h_{i}^{\ell}\right)\left(Y, U_{j}\right)=-\delta_{i j}\left\{X(\theta(Y))-\theta\left(\nabla_{X} Y\right)\right\}-h_{i}^{\ell}\left(Y, \nabla_{X} U_{j}\right) .
$$

Using this equation, $(3.6),(3.14)_{1},(3.17),(4.24)_{2}$ and the facts that $\alpha=0$, $d \theta=0$ and $\theta(F X)=0$, we have

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{\ell}\right)\left(Y, U_{j}\right)-\left(\nabla_{Y} h_{i}^{\ell}\right)\left(X, U_{j}\right) \\
= & h_{i}^{\ell}\left(X, F\left(A_{N_{j}} Y\right)\right)-\tau_{j i}(Y) \theta(X)+\sum_{a=r+1}^{n} \rho_{j a}(Y) h_{i}^{\ell}\left(X, W_{a}\right) \\
& -h_{i}^{\ell}\left(Y, F\left(A_{N_{j}} X\right)\right)+\tau_{j i}(X) \theta(Y)-\sum_{a=r+1}^{n} \rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right) .
\end{aligned}
$$

Replacing Z by U_{j} to (5.5) and using (4.24) $)_{2}$ and $\theta(F X)=0$, we obtain

$$
\begin{aligned}
& h_{i}^{\ell}\left(X, F\left(A_{N_{j}} Y\right)\right)-h_{i}^{\ell}\left(Y, F\left(A_{N_{j}} X\right)\right) \\
& +\sum_{a=r+1}^{n}\left\{\rho_{j a}(Y) h_{i}^{\ell}\left(X, W_{a}\right)-\rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)\right\} \\
& +\sum_{a=r+1}^{n}\left\{\phi_{a i}(X) h_{a}^{s}\left(Y, U_{j}\right)-\phi_{a i}(Y) h_{a}^{s}\left(X, U_{j}\right)\right\} \\
= & f_{2}\left\{u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\} .
\end{aligned}
$$

Taking $Y=U_{i}$ and $X=\xi_{j}$ to this equation and using (4.19), (4.27), (4.28) and (4.29), we have $f_{2}=0$. As $f_{2}=0$, we have $f_{1}=-\beta^{2}$ and $f_{3}=\zeta \beta$.

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a quarter-symmetric metric connection. If $U_{i} s$ are parallel with respect to ∇, then $\tau_{i j}=0, \bar{M}$ is an indefinite cosymplectic manifold and M is solenoidal. Moreover, if $\bar{M}=\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$, then it is flat.

Proof. If U_{i} is parallel with respect to ∇, then, taking the scalar product with $\zeta, V_{j}, W_{a}, U_{j}$ and N_{j} to (3.17) such that $\nabla_{X} U_{i}=0$ by turns, we get

$$
\begin{equation*}
\alpha=\beta=0, \quad \tau_{i j}=0, \quad \rho_{i a}=0, \quad \eta_{j}\left(A_{N_{i}} X\right)=0, \quad h_{i}^{*}\left(X, U_{j}\right)=0 \tag{5.7}
\end{equation*}
$$

respectively. As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold. As $\rho_{i a}=0$ and $\eta_{j}\left(A_{N_{i}} X\right)=0, M$ is solenoidal.

As $\alpha=\beta=0, f_{1}=f_{2}=f_{3}$ by Theorem 5.1. Applying ∇_{Y} to (5.7) $)_{5}$ and using $(5.7)_{5}$ and the fact that $\nabla_{X} U_{i}=0$, we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0
$$

Substituting this equation and (5.7) into (5.6) with $P Z=U_{j}$, we have

$$
f_{1}\left\{v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right\}=0
$$

Taking $X=\xi_{i}$ and $Y=V_{j}$ to this equation, we obtain $f_{1}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

Theorem 5.5. Let M be a generic lightlike submanifold of an indefinite transSasakian manifold \bar{M} with a quarter-symmetric metric connection. If $V_{i} s$ are parallel with respect to ∇, then $\tau_{i j}=0, \alpha=-1$ and $\beta=0$, i.e., \bar{M} is an indefinite Sasakian manifold, and $\phi_{a i}=h_{i}^{\ell}\left(X, \xi_{j}\right)=0$, i.e., M is irrotational. Moreover, if $\bar{M}=\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a space form with an indefinite Sasakian structure of the curvature functions

$$
f_{1}=f_{3}=\frac{2}{3}, \quad f_{2}=-\frac{1}{3} .
$$

Proof. If V_{i} is parallel with respect to ∇, then, taking the scalar product with $\zeta, U_{j}, V_{j}, W_{a}$ and N_{j} to (3.18) with $\nabla_{X} V_{i}=0$ by turns, we get respectively

$$
\begin{equation*}
\beta=0, \quad \tau_{j i}=0, \quad h_{j}^{\ell}\left(X, \xi_{i}\right)=0, \quad \phi_{a i}=0, \quad h_{i}^{\ell}\left(X, U_{j}\right)=0 \tag{5.8}
\end{equation*}
$$

and we have $F\left(A_{\xi_{i}}^{*} X\right)=0$. As $h_{j}^{\ell}\left(X, \xi_{i}\right)=0$ and $\phi_{a i}=0, M$ is irrotational. Replacing Y by ξ_{j} and U_{j} to (3.7) by turns and using (5.8) $)_{3,5}$, we have

$$
\begin{equation*}
h_{i}^{\ell}\left(\xi_{j}, X\right)=0, \quad h_{i}^{\ell}\left(U_{j}, X\right)=\delta_{i j} \theta(X) \tag{5.9}
\end{equation*}
$$

Taking $X=U_{i}$ to $(3.14)_{1}$ and using $(5.9)_{2}$, we get

$$
-\alpha=-\alpha u_{i}\left(U_{i}\right)=h_{i}^{\ell}\left(U_{i}, \zeta\right)=\theta(\zeta)=1
$$

As $\alpha=-1$ and $\beta=0, \bar{M}$ is an indefinite Sasakian manifold.
Applying ∇_{X} to $(5.8)_{5}$ and using $(3.4),(3.14)_{1},(3.17)$ and (5.8) $)_{3}$, we have

$$
\left(\nabla_{X} h_{i}^{\ell}\right)\left(Y, U_{j}\right)=h_{i}^{\ell}\left(Y, V_{k}\right) g\left(A_{N_{j}} X, N_{k}\right)
$$

$$
-\sum_{a=r+1}^{n} \rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)-u_{i}(Y) \eta_{j}(X) .
$$

Substituting the last two equations into (5.5) with $Z=U_{j}$, we obtain

$$
\begin{aligned}
& h_{i}^{\ell}\left(Y, V_{k}\right) g\left(A_{N_{j}} X, N_{k}\right)-h_{i}^{\ell}\left(X, V_{k}\right) g\left(A_{N_{j}} Y, N_{k}\right) \\
& +u_{i}(X) \eta_{j}(Y)-u_{i}(Y) \eta_{j}(X) \\
& +\sum_{a=r+1}^{n}\left\{\rho_{j a}(Y) h_{i}^{\ell}\left(X, W_{a}\right)-\rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)\right\} \\
= & f_{2}\left\{u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\} .
\end{aligned}
$$

Taking $X=\xi_{j}$ and $Y=U_{i}$ to this and using (5.9), we obtain $3 f_{2}=-1$. As $f_{2}=-\frac{1}{3}$, we have $f_{1}=f_{3}=\frac{2}{3}$ by Theorem 5.1.
Definition. A screen distribution $S(T M)$ is called totally umbilical [4] in M if there exist smooth functions γ_{i} such that $A_{N_{i}} X=\gamma_{i} P X$, or equivalently,

$$
h_{i}^{*}(X, P Y)=\gamma_{i} g(X, Y) .
$$

In case $\gamma_{i}=0$ for all i, we say that $S(T M)$ is totally geodesic in M.
Theorem 5.6. Let M be a generic lightlike submanifold of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a quarter-symmetric metric connection. If $S(T M)$ is totally umbilical in M, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat and $S(T M)$ is totally geodesic.

Proof. Assume that $S(T M)$ is totally umbilical. Then (3.17) is reduced to $\gamma_{i} \theta(X)=-\alpha v_{i}(X)+\beta \eta_{i}(X)$ for all i. Replacing X by V_{i}, ξ_{i} and ζ to this equation by turns, we have $\alpha=\beta=\gamma_{i}=0$. As $\gamma_{i}=0, S(T M)$ is totally geodesic. As $\alpha=0, f_{1}=f_{2}=f_{3}$ by Theorem 5.1. Taking $P Z=U_{k}$ to (5.6) with $h_{i}^{*}=0$ and using the facts that $h_{a}^{s}\left(X, U_{k}\right)=h_{k}^{*}\left(X, W_{a}\right)=0$ and $h_{j}^{\ell}\left(X, U_{k}\right)=h_{k}^{*}\left(X, V_{j}\right)=0$, we get

$$
f_{1}\left\{v_{k}(Y) \eta_{i}(X)-v_{k}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{k}(X)-v_{i}(X) \eta_{k}(Y)\right\}=0 .
$$

Taking $X=\xi_{i}$ and $Y=V_{k}$ to this equation, we get $f_{1}=0$. Thus $f_{1}=f_{2}=$ $f_{3}=0$ and $M\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

References

[1] P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157-183.
[2] C. Cǎlin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi (Romania, 1998).
[3] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344.
[4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[5] K. L. Duggal and D. H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Int. Electron. J. Geom. 5 (2012), no. 1, 108-119.
[6] D. H. Jin, Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc. 51 (2014), no. 6, 1711-1726.
[7] , Lightlike hypersurfaces of a trans-Sasakian manifold with a quarter-symmetric metric connection, Appl. Math. Sci. 9 (2015), no. 28, 1393-1406.
[8] \qquad , Generic lightlike submanifolds of an indefinite trans-Sasakian manifold of a quasi-constant curvature, Appl. Math. Sci. 9 (2015), no. 60, 2985-2997.
[9] \qquad , Geometry of lightlike hypersurface of an indefinite Kaehler manifold with a quarter-symmetric metric connection, Appl. Math. Sci. 10 (2016), no. 6, 289-299.
[10] \qquad , Geometry of lightlike hypersurface of an indefinite trans-Sasakian manifold with a quarter-symmetric metric connection, Appl. Math. Sci. 10 (2016), no. 13, 625-636.
[11] (2016), no. 7, 1919-1930.
[12] D. H. Jin and J. W. Lee, Generic lightlike submanifolds of an indefinite cosymplectic manifold, Math. Probl. Eng. 2011 (2011), Art ID 610986, 1-16.
[13] \qquad , A semi-Riemannian manifold of quasi-constant curvature admits lightlike submanifolds, Inter. J. Math. Anal. 9 (2015), no. 25, 1215-1229.
[14] , Generic lightlike submanifolds of an indefinite Kaehler manifold, Inter. J. Pure Appl. Math. 101 (2015), no. 4, 543-560.
[15] D. N. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic, 366, 1996.
[16] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
[17] K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor N.S. 38 (1982), 13-18.

Dae Ho Jin
Department of Mathematics
Dongguk University
Gyeonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received May 20, 2016.
 2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. quarter-symmetric metric connection, generic lightlike submanifold, indefinite trans-Sasakian structure.

