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GENERIC LIGHTLIKE SUBMANIFOLDS OF AN

INDEFINITE TRANS-SASAKIAN MANIFOLD WITH

A QUARTER-SYMMETRIC METRIC CONNECTION

Dae Ho Jin

Abstract. The object of study in this paper is generic lightlike subman-
ifolds of an indefinite trans-Sasakian manifold with a quarter-symmetric
metric connection. We study the geometry of two types of generic light-
like submanifolds, which are called recurrent and Lie recurrent generic
lightlike submanifolds, of an indefinite trans-Sasakian manifold with a
quarter-symmetric metric connection.

1. Introduction

Yano-Imai [17] introduced the notion of quarter-symmetric metric connec-
tion on a Riemannian manifold. Recently, Jin [7, 10] studied the geometry of
lightlike hypersurfaces of an indefinite trans-Sasakian manifold with a quarter-
symmetric metric connection. We quote Jin’s definition in itself as follow:

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be a
quarter-symmetric metric connection if it is metric, i.e., ∇̄ḡ = 0 and its torsion
tensor T̄ , defined by T̄ (X̄, Ȳ ) = ∇̄X̄ Ȳ − ∇̄Ȳ X̄ − [X̄, Ȳ ], satisfies

(1.1) T̄ (X̄, Ȳ ) = θ(Ȳ )JX̄ − θ(X̄)JȲ ,

where J is a (1, 1)-type tensor field on M̄ and θ is a 1-form associated with a
smooth unit vector field ζ on M̄ by θ(X) = ḡ(X, ζ). Throughout this paper,
we denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ .

A lightlike submanifold M of an indefinite almost contact manifold M̄ is
called generic if there exists a screen distribution S(TM) of M such that

(1.2) J(S(TM)⊥) ⊂ S(TM),

where S(TM)⊥ is the orthogonal complement of S(TM) in the tangent bundle
TM̄ of M̄ , i.e., TM̄ = S(TM)⊕orth S(TM)⊥. The notion of generic lightlike
submanifolds was introduced by Jin-Lee [12] at 2011 and then, studied by
Duggal-Jin [5], Jin [6, 8] and Jin-Lee [14] and several authors. The geometry of
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generic lightlike submanifolds is an extension of that of lightlike hypersurface
and half lightlike submanifold of codimension 2, that is, the last two types of
lightlike submanifolds are examples of the generic lightlike submanifold. Much
of the theory of generic lightlike submanifolds will be immediately generalized
in a formal way to general lightlike submanifolds.

The notion of trans-Sasakian manifold, of type (α, β), was introduced by
Oubina [16]. If a trans-Sasakian manifold M̄ is semi-Riemannian, then M̄ is
called an indefinite trans-Sasakian manifold. Sasakian, Kenmotsu and cosym-
plectic manifolds are important kinds of trans-Sasakian manifold such that

α = 1, β = 0; α = 0, β = 1; α = β = 0, respectively.

The object of study of this paper is generic lightlike submanifolds of an in-
definite trans-Sasakian manifold M̄ ≡ (M̄, J, ζ, θ, ḡ) with a quarter-symmetric
metric connection subject such that the tensor field J and the 1-form θ, defined
by (1.1), are identical with the structure tensor field J and the structure 1-form
θ of the indefinite trans-Sasakian structure (J, θ, ζ, ḡ) on M̄ , respectively.

Remark 1.1. Denote by ˜∇ the Levi-Civita connection of M̄ with respect to the
semi-Riemannian metric ḡ. It is known [9] that a linear connection ∇̄ on M̄ is

a quarter-symmetric metric connection if and only if ∇̄ satisfies

(1.3) ∇̄X̄ Ȳ = ˜∇X̄ Ȳ − θ(X̄)JȲ .

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefinite

trans-Sasakian manifold if there exist (1) a structure set {J, ζ, θ, ḡ}, where J
is a (1, 1)-type tensor field, ζ is a vector field and θ is a 1-form such that

J2X̄ = −X̄ + θ(X̄)ζ, θ(ζ) = 1, θ(X̄) = ǫ ḡ(X̄, ζ),(2.1)

θ ◦ J = 0, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− ǫ θ(X̄)θ(Ȳ ),

(2) two smooth functions α and β, and a Levi-Civita connection ˜∇ such that

(˜∇X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − ǫ θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − ǫ θ(Ȳ )JX̄},
where ǫ denotes ǫ = 1 or −1 according as ζ is spacelike or timelike respectively.
{J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure of type (α, β).

In the entire discussion of this article, we shall assume that the vector field
ζ is a spacelike one, i.e., ǫ = 1, without loss of generality.

By directed calculation from (1.3), we see that (˜∇X̄J)Ȳ = (∇̄X̄J)Ȳ . Thus,

replacing the Levi-Civita connection ˜∇ by the quarter-symmetric metric con-
nection ∇̄ defined by (1.3), the last equation is reformed to

(2.2) (∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − θ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − θ(Ȳ )JX̄}.
Replacing Y by ζ to (2.2) and using Jζ = 0 and θ(∇̄Xζ) = 0, we obtain

(2.3) ∇̄X̄ζ = −αJX̄ + β(X̄ − θ(X̄)ζ).
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Let (M, g) be an m-dimensional lightlike submanifold of an indefinite trans-
Sasakian manifold (M̄, ḡ) of dimension (m+ n). Then the radical distribution
Rad(TM) = TM ∩ TM⊥ of M is a subbundle of the tangent bundle TM and
the normal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). In general, there
exist two complementary non-degenerate distributions S(TM) and S(TM⊥)
of Rad(TM) in TM and TM⊥ respectively, which are called the screen distri-

bution and the co-screen distribution of M , such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sections
of a vector bundle E over M . Also denote by (2.1)i the i-th equation of (2.1).
We use the same notations for any others. Let X, Y, Z and W be the vector
fields on M , unless otherwise specified. We use the following range of indices:

i, j, k, . . . , ∈ {1, . . . , r}, a, b, c, . . . , ∈ {r + 1, . . . , n}.
Let tr(TM) and ltr(TM) be complementary vector bundles to TM in TM̄|M

and TM⊥ in S(TM)⊥ respectively and let {N1, . . . , Nr} be a lightlike basis
of ltr(TM)|U , where U is a coordinate neighborhood of M , such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0,

where {ξ1, . . . , ξr} is a lightlike basis of Rad(TM)|U . Then we have

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

We say that a lightlike submanifold (M, g, S(TM), S(TM⊥)) of M̄ is

(1) r-lightlike submanifold if 1 ≤ r < min{m, n};
(2) co-isotropic submanifold if 1 ≤ r = n < m;
(3) isotropic submanifold if 1 ≤ r = m < n;
(4) totally lightlike submanifold if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows:

S(TM⊥) = {0}, S(TM) = {0}, S(TM) = S(TM⊥) = {0}
respectively. The geometry of r-lightlike submanifolds is more general than
that of the other three types. For this reason, we consider only r-lightlike
submanifolds M , with following local quasi-orthonormal field of frames of M̄ :

{ξ1, . . . , ξr , N1, . . . , Nr , Fr+1, . . . , Fm , Er+1, . . . , En},
where {Fr+1, . . . , Fm} and {Er+1, . . . , En} are orthonormal bases of S(TM)
and S(TM⊥), respectively. Denote ǫa = ḡ(Ea, Ea). Then ǫaδab = ḡ(Ea, Eb).

Let P be the projection morphism of TM on S(TM). Then the local Gauss-
Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +

r
∑

i=1

hℓ
i(X,Y )Ni +

n
∑

a=r+1

hs
a(X,Y )Ea,(2.4)
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∇̄XNi = −A
Ni
X +

r
∑

j=1

τij(X)Nj +

n
∑

a=r+1

ρia(X)Ea,(2.5)

∇̄XEa = −A
Ea

X +

r
∑

i=1

φai(X)Ni +

n
∑

b=r+1

σab(X)Eb;(2.6)

∇XPY = ∇∗
XPY +

r
∑

i=1

h∗
i (X,PY )ξi,(2.7)

∇Xξi = −A∗
ξiX −

r
∑

j=1

τji(X)ξj ,(2.8)

where ∇ and ∇∗ are induced linear connections on M and S(TM) respectively,
hℓ
i and hs

a are called the local second fundamental forms on M , h∗
i are called

the local screen second fundamental forms on S(TM). A
Ni
, A

Ea
and A∗

ξi
are

linear operators on M , and τij , ρia, φai and σαβ are 1-forms on M .

3. Quarter-symmetric metric connection

Now we assume that ζ is tangent to M . Cǎlin [2] proved that if ζ is tangent

to M , then it belongs to S(TM) which we assume. For a generic M , from (1.2)
we show that J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are subbundles of
S(TM). Thus there exist two non-degenerate almost complex distributions Ho

and H with respect to J , i.e., J(Ho) = Ho and J(H) = H , such that

S(TM) = {J(Rad(TM))⊕ J(ltr(TM))} ⊕orth J(S(TM⊥))⊕orth Ho,

H = Rad(TM)⊕orth J(Rad(TM))⊕orth Ho.

In this case, the tangent bundle TM of M is decomposed as follow:

(3.1) TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)).

Consider local null vector fields Ui and Vi for each i, local non-null unit
vector fields Wa for each a, and their 1-forms ui, vi and wa defined by

Ui = −JNi, Vi = −Jξi, Wa = −JEa,(3.2)

ui(X) = g(X,Vi), vi(X) = g(X,Ui), wa(X) = ǫag(X,Wa).(3.3)

Denote by S the projection morphism of TM on H and by F the tensor field
of type (1, 1) globally defined on M by F = J ◦ S. Then JX is expressed as

(3.4) JX = FX +

r
∑

i=1

ui(X)Ni +

n
∑

a=r+1

wa(X)Ea.

Applying J to (3.4) and using (2.1)1 and (3.2), we have

(3.5) F 2X = −X + θ(X)ζ +

r
∑

i=1

ui(X)Ui +

n
∑

a=r+1

wa(X)Wa.

In the following, we say that F is the structure tensor field of M .
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Substituting (2.4) and (3.4) into (1.1) and then, comparing the tangent,
lightlike transversal and co-screen components of the left-right terms, we get

T (X,Y ) = θ(Y )FX − θ(X)FY,(3.6)

hℓ
i(X,Y )− hℓ

i(Y,X) = θ(Y )ui(X)− θ(X)ui(Y ),(3.7)

hs
a(X,Y )− hs

a(Y,X) = θ(Y )wa(X)− θ(X)wa(Y ),(3.8)

where T is the torsion tensor with respect to the connection ∇. Note that,
from (3.7) and (3.8), we see that hℓ

i and hs
a are not symmetric.

From the facts that hℓ
i(X,Y ) = ḡ(∇̄XY, ξi) and ǫah

s
a(X,Y ) = ḡ(∇̄XY,Ea),

we know that hℓ
i and hs

a are independent of the choice of S(TM). The local
second fundamental forms are related to their shape operators by

hℓ
i(X,Y ) = g(A∗

ξiX,Y )−
r

∑

k=1

hℓ
k(X, ξi)ηk(Y ),(3.9)

ǫah
s
a(X,Y ) = g(A

Ea
X,Y )−

r
∑

k=1

φak(X)ηk(Y ),(3.10)

h∗
i (X,PY ) = g(A

Ni
X,PY ),(3.11)

where ηks are 1-forms such that ηk(X) = ḡ(X,Nk). Applying ∇̄X to g(ξi, ξj) =
0, ḡ(ξi, Ea) = 0, ḡ(Ni, Nj) = 0, ḡ(Ni, Ea) = 0 and ḡ(Ea, Eb) = ǫδab, we obtain

hℓ
i(X, ξj) + hℓ

j(X, ξi) = 0, hs
a(X, ξi) = −ǫaφai(X),

ηj(ANi
X) + ηi(ANj

X) = 0, ḡ(A
Ea

X,Ni) = ǫaρia(X),(3.12)

ǫbσab + ǫaσba = 0 and hℓ
i(X, ξi) = 0, hℓ

i(ξj , ξk) = 0.

By directed calculations from (2.3), (2.4), (2.5), (3.4) and (3.11), we have

∇Xζ = −αFX + β(X − θ(X)ζ),(3.13)

hℓ
i(X, ζ) = −αui(X), hs

a(X, ζ) = −αwa(X),(3.14)

h∗
i (X, ζ) = −αvi(X) + βηi(X).(3.15)

Applying ∇̄X to (3.2), (3.3) and (3.4) by turns and using (2.2), (2.4)∼ (2.8),
(3.2)∼ (3.4) and (3.9)∼ (3.11), we have

hℓ
j(X,Ui) = h∗

i (X,Vj), ǫah
∗
i (X,Wa) = hs

a(X,Ui),

hℓ
j(X,Vi) = hℓ

i(X,Vj), ǫah
ℓ
i(X,Wa) = hs

a(X,Vi),(3.16)

ǫbh
s
b(X,Wa) = ǫah

s
a(X,Wb),

∇XUi = F (A
Ni
X) +

r
∑

j=1

τij(X)Uj +
n
∑

a=r+1

ρia(X)Wa(3.17)

−{αηi(X) + βvi(X)}ζ,

∇XVi = F (A∗
ξiX)−

r
∑

j=1

τji(X)Vj +
r

∑

j=1

hℓ
j(X, ξi)Uj(3.18)
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−
n
∑

a=r+1

ǫaφai(X)Wa − βui(X)ζ,

∇XWa = F (A
Ea

X) +
r

∑

i=1

φai(X)Ui +
n
∑

b=r+1

σab(X)Wb(3.19)

− ǫaβwa(X)ζ,

(∇XF )(Y ) =

r
∑

i=1

ui(Y )A
Ni
X +

n
∑

a=r+1

wa(Y )A
Ea

X(3.20)

−
r

∑

i=1

hℓ
i(X,Y )Ui −

n
∑

a=r+1

hs
a(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX},

(∇Xui)(Y ) = −
r

∑

j=1

uj(Y )τji(X)−
n
∑

a=r+1

wa(Y )φai(X)(3.21)

− βθ(Y )ui(X)− hℓ
i(X,FY ),

(∇Xvi)(Y ) =

r
∑

j=1

vj(Y )τij(X) +

n
∑

a=r+1

ǫawa(Y )ρia(X)(3.22)

−
r

∑

j=r+1

uj(Y )ηj(ANi
X)− g(A

Ni
X,FY )

− θ(Y ){αηi(X) + βvi(X)}.

4. Recurrent and Lie recurrent submanifolds

Definition. We say that a lightlike submanifold M of M̄ is called

(1) irrotational [15] if ∇̄Xξi ∈ Γ(TM) for all i ∈ {1, . . . , r},
(2) solenoidal [13] if A

Wa
and A

Ni
are S(TM)-valued,

(3) statical [13] if M is both irrotational and solenoidal.

Remark 4.1. From (2.4) and (3.12)2, the item (1) is equivalent to

(4.1) hℓ
j(X, ξi) = 0, hs

a(X, ξi) = φai(X) = 0.

By using (3.12)4, the item (2) is equivalent to

(4.2) ηj(ANi
X) = 0, ρia(X) = ηi(AEa

X) = 0.

Denote by λij , µia, νia, κab and χij the 1-forms on M such that

λij(X) = hℓ
i(X,Uj) = h∗

j (X,Vi), κab(X) = ǫah
s
a(X,Wb),

µia(X) = hℓ
i(X,Wa) = ǫah

s
a(X,Vi), χij(X) = hℓ

i(X,Vj),(4.3)

νai(X) = h∗
i (X,Wa) = ǫah

s
a(X,Ui).
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Definition. The structure tensor field F of M is said to be recurrent [11] if
there exists a 1-form ̟ on M such that

(∇XF )Y = ̟(X)FY.

A lightlike submanifold M of an indefinite trans-Sasakian manifold M̄ is called
recurrent if it admits a recurrent structure tensor field F .

Theorem 4.2. Let M be a recurrent generic lightlike submanifold of an indef-

inite trans-Sasakian manifold M̄ with a quarter-symmetric metric connection.

Then the following statements are satisfied:

(1) F is parallel with respect to the induced connection ∇ on M ,

(2) M̄ is an indefinite cosymplectic manifold, i.e., α = β = 0,
(3) M is statical,

(4) J(ltr(TM)), J(S(TM⊥)) and H are parallel distributions on M ,

(5) M is locally a product manifold Mr × Mn−r × M ♯, where Mr,Mn−r

and M ♯ are leaves of J(ltr(TM)), J(S(TM⊥)) and H, respectively.

Proof. (1) From the above definition and (3.20), we obtain

̟(X)FY =

r
∑

i=1

ui(Y )A
Ni
X +

n
∑

a=r+1

wa(Y )A
Ea

X(4.4)

−
r

∑

i=1

hℓ
i(X,Y )Ui −

n
∑

a=r+1

hs
a(X,Y )Wa

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX}.
Replacing Y by ξj to this and using the fact that Fξj = −Vj , we get

(4.5) ̟(X)Vj =

r
∑

k=1

hℓ
k(X, ξj)Uk +

n
∑

b=r+1

hs
b(X, ξj)Wb − βuj(X)ζ.

Taking the scalar product with Uj , ζ, Vi and Wa by turns, we obtain

̟ = 0, β = 0, hℓ
i(X, ξj) = 0, hs

a(X, ξj) = φaj(X) = 0,

respectively. As ̟ = 0, F is parallel with respect to the connection ∇.
(2) Taking the scalar product with Uj to (4.4) with ̟ = β = 0, we get

(4.6)

r
∑

i=1

ui(Y )g(A
Ni
X,Uj) +

n
∑

a=r+1

wa(Y )g(A
Ea

X,Uj)− αθ(Y )vj(X) = 0.

Replacing Y by ζ to this equation, we have αvj(X) = 0. It follows that α = 0.
As α = β = 0, M̄ is an indefinite cosymplectic manifold.

(3) As hℓ
i(X, ξj) = 0 and hs

a(X, ξj) = 0, M is irrotational by (4.1). Also, M
is solenoidal. In fact, taking the scalar product with Nj to (4.4), we have

r
∑

i=1

ui(Y )ḡ(A
Ni
X,Nj) +

n
∑

a=r+1

wa(Y )ḡ(A
Ea

X,Nj) = 0.
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Taking Y = Ui and Y = Wa by turns, we get (4.2). Thus M is statical.
(4) Taking Y = Uk and Y = Wb to (4.6) by turns, we obtain

(4.7) h∗
i (X,Uj) = ḡ(A

Ni
X,Uj) = 0, νai(X) = ḡ(A

Ea
X,Ui) = 0.

Taking the scalar product with Vj and Wb to (4.4) by turns, we have

hℓ
i(X,Y ) =

r
∑

j=1

λij(X)uj(Y ) +
n
∑

a=r+1

µia(X)wa(Y ),(4.8)

ǫah
s
a(X,Y ) =

n
∑

b=r+1

κba(X)wb(Y ),

due to (3.10), (3.11) and (4.3). Replacing Y by Vj to (4.8)1, 2, we have

(4.9) χij(X) = hℓ
i(X,Vj) = 0, µia(X) = hs

a(X,Vi) = 0.

Taking Y = Uj and Y = Wb to (4.4) and using (4.3), (4.7)2 and (4.9)2, we get

(4.10) A
Ni
X =

r
∑

j=1

λji(X)Uj , A
Ea

X =
n
∑

b=r+1

ǫbκba(X)Wb.

Using (3.9), (4.1), (4.9)2 and the non-degenerateness of S(TM), (4.8)1 reduces

(4.11) A∗
ξiX =

r
∑

j=1

λij(X)Vj .

Applying F to (4.10)1, 2, we have F (A
Ni
X) = 0 and F (A

Ea
X) = 0. Substi-

tuting these results into (3.17) and (3.19), we obtain

(4.12) ∇XUi =

r
∑

j=1

τij(X)Uj , ∇XWa =

n
∑

b=r+1

σab(X)Wb.

It follow that J(ltr(TM)) and J(S(TM⊥)) are parallel distributions onM with
respect to the induced connection ∇ on M , that is,

∇XUi ∈ Γ(J(ltr(TM))), ∇XWa ∈ Γ(J(S(TM⊥))).

Applying F to (4.11), we get F (A∗
ξi
X) =

∑r
j=1 λij(X)ξj . Thus we have

(4.13) ∇XVi =

r
∑

j=1

{λij(X)ξj − τji(X)Vj}.

Taking Y ∈ Γ(H) to (4.4) and then, taking the scalar product with Uj and Wb

to the resulting equation by turns, we obtain

(4.14) hℓ
i(X,Y ) = 0, hs

a(X,Y ) = 0, ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

By directed calculations from (4.9), (4.12)2, (4.13) and (4.14), we obtain
g(∇XY, Vi) = 0 and g(∇XY,Wa) = 0 for all X ∈ Γ(TM) and Y ∈ Γ(H). Thus

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).
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Thus H is also a parallel distribution on M with respect to ∇.
(5) As J(ltr(TM)), J(S(TM⊥)) and H are parallel distributions and satis-

fied the decomposition form (3.1), by the decomposition theorem of de Rham
[3], M is locally a product manifold Mr ×Mn−r ×M ♯, where Mr, Mn−r and
M ♯ are leaves of J(ltr(TM)), J(S(TM⊥)) and H , respectively. �

Definition. The structure tensor field F of M is said to be Lie recurrent [11]
if there exists a 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X . The structure
tensor field F is called Lie parallel if L

X
F = 0. A lightlike submanifold M is

called Lie recurrent if it admits a Lie recurrent structure tensor field F .

Theorem 4.3. Let M be a Lie recurrent generic lightlike submanifold of an

indefinite trans-Sasakian manifold M̄ with a quarter-symmetric metric connec-

tion. Then the following statements are satisfied:

(1) F is Lie parallel,

(2) α = 0 and dθ = 0. Thus M̄ is not an indefinite Sasakian manifold,

(3) h∗
i is never symmetric on S(TM),

(4) τij and ρia are satisfied τij ◦ F = 0 and ρia ◦ F = 0. Moreover,

τij(X) =

r
∑

k=1

uk(X)g(A
Nk

Vj , Ni)− βδijθ(X).

Proof. (1) As (L
X
F )Y = [X,FY ]− F [X,Y ], using (3.6) and (3.20), we get

ϑ(X)FY = −∇FY X + F∇Y X − θ(Y ){X − θ(X)ζ}(4.15)

+

r
∑

i=1

ui(Y )A
Ni
X +

n
∑

a=r+1

wa(Y )A
Ea

X

−
r

∑

i=1

{hℓ
i(X,Y )− θ(Y )ui(X)}Ui

−
n
∑

a=r+1

{hs
a(X,Y )− θ(Y )wa(X)}Wa

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX},

by (3.5). Replacing Y by ξj and then, Y by Vj to (4.15) by turns, we have

−ϑ(X)Vj = ∇Vj
X + F∇ξjX + βuj(X)ζ(4.16)

−
r

∑

i=1

hℓ
i(X, ξj)Ui −

n
∑

a=r+1

hs
a(X, ξj)Wa,

ϑ(X)ξj = −∇ξjX + F∇Vj
X + αuj(X)ζ(4.17)
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−
r

∑

i=1

hℓ
i(X,Vj)Ui −

n
∑

a=r+1

hs
a(X,Vj)Wa,

respectively. Taking the scalar product with Uj to (4.16) and then, taking the
scalar product with Nj to (4.17), we obtain respectively

−ϑ(X) = g(∇Vj
X,Uj)− ḡ(∇ξjX,Nj),

ϑ(X) = g(∇Vj
X,Uj)− ḡ(∇ξjX,Nj).

Comparing these two equations, we get ϑ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with ζ to (4.17) satisfying ϑ = 0, we have

g(∇ξjX, ζ) = αuj(X).

Replacing X by Uj to this equation and using (3.17), we obtain α = 0.
Applying ∇̄X̄ to θ(Ȳ ) = ḡ(Ȳ , ζ) and using (1.1) and (2.3), we obtain

dθ(X̄, Ȳ ) = αḡ(X̄, JȲ ),

due to the fact that ∇̄ is metric. As α = 0, we see that dθ = 0.
(3) Replacing X by Ui to (4.15) and using (3.2), (3.3), (3.5), (3.7), (3.8),

(3.11), (3.15), (3.16)1, 2 and (3.17), we obtain

r
∑

k=1

uk(Y )A
Nk

Ui +

n
∑

a=r+1

wa(Y )A
Ea

Ui − θ(Y )Ui + βηi(Y )ζ(4.18)

− A
Ni
Y − F (A

Ni
FY )−

r
∑

j=1

τij(FY )Uj −
n
∑

a=r+1

ρia(FY )Wa = 0.

Taking Y = ζ to (4.18) and then, taking the scalar product with PX , we
get h∗

i (ζ, PX) = −vi(PX). Assume that h∗
i is symmetric on S(TM). Taking

X = PX to (3.15), we obtain h∗
i (ζ, PX) = 0. It follows that vi(PX) = 0. It is

a contradiction to vi(Vi) = 1. Thus h∗
i is never symmetric on S(TM).

(4) Taking the scalar product with Ni to (4.16) such that X = Wa and using
(3.8), (3.10), (3.12)4 and (3.19), we get hs

a(Ui, Vj) = ρia(ξj). On the other hand,
taking the scalar product with Wa to (4.17) such that X = Ui and using (3.17),
we have hs

a(Ui, Vj) = −ρia(ξj). Thus ρia(ξj) = 0 and hs
a(Ui, Vj) = 0.

Taking the scalar product with Ui to (4.16) such that X = Wa and using
(3.10), (3.12)2, 4 and (3.19), we get ǫaρia(Vj) = φaj(Ui). On the other hand,
taking the scalar product with Wa to (4.16) such that X = Ui and using (3.12)2
and (3.17), we get ǫaρia(Vj) = −φaj(Ui). Thus ρia(Vj) = 0 and φaj(Ui) = 0.

Taking the scalar product with Vi to (4.16) such that X = Wa and using
(3.7), (3.8), (3.12)2, (3.16)4 and (3.19), we get φai(Vj) = −φaj(Vi). On the
other hand, taking the scalar product with Wa to (4.16) such that X = Vi and
using (3.12)2 and (3.18), we have φai(Vj) = φaj(Vi). Thus φai(Vj) = 0.

Taking the scalar product with Wa to (4.16) such that X = ξi and using
(2.8), (3.9) and (3.12)2, we get h

ℓ
i(Vj ,Wa) = φai(ξj). On the other hand, taking

the scalar product with Vi to (4.17) such that X = Wa and using (3.7) and



GENERIC LIGHTLIKE SUBMANIFOLDS OF A TRANS-SASAKIAN MANIFOLD 1013

(3.19), we have hℓ
i(Vj ,Wa) = −φai(ξj). Thus φai(ξj) = 0 and hℓ

i(Vj ,Wa) = 0.
Summarizing the above results, we obtain

ρia(ξj) = 0, ρia(Vj) = 0, φai(Uj) = 0, φai(Vj) = 0, φai(ξj) = 0,(4.19)

hs
a(Ui, Vj) = hℓ

j(Ui,Wa) = 0, hℓ
i(Vj ,Wa) = hs

a(Vj , Vi) = 0.

Taking the scalar product with Ni to (4.15) and using (3.12)4, we have

− ḡ(∇FY X,Ni) + ḡ(∇Y X,Ui)− θ(Y ){ηi(X) + βvi(X)}(4.20)

+

r
∑

k=1

uk(Y )ḡ(A
Nk

X,Ni) +

n
∑

a=r+1

ǫawa(Y )ρia(X) = 0.

Replacing X by Vj to (4.20) and using (3.9), (3.18) and (4.19)2, we have

(4.21) hℓ
j(FX,Ui) + τij(X) + βδijθ(X) =

r
∑

k=1

uk(X)ḡ(A
Nk

Vj , Ni).

Replacing X by ξj to (4.20) and using (2.8), (3.9) and (4.19)1, we have

(4.22) hℓ
j(X,Ui) + δijθ(X) =

r
∑

k=1

uk(X)ḡ(A
Nk

ξj , Ni) + τij(FX).

Taking X = Uk to (4.22), we have

(4.23) h∗
i (Uk, Vj) = hℓ

j(Uk, Ui) = ḡ(A
Nk

ξj , Ni).

On the other hand, taking the scalar product with Vj to (4.18) and using (3.11),
(3.12)3, (3.16)1, (4.19)6 and (4.23), we get

hℓ
j(X,Ui) + δijθ(X) = −

r
∑

k=1

uk(X)ḡ(A
Nk

ξj , Ni)− τij(FX).

Comparing this equation with (4.22), we obtain

τij(FX) +

r
∑

k=1

uk(X)ḡ(A
Nk

ξj , Ni) = 0.

Replacing X by Uh to this equation, we have ḡ(A
Nk

ξj , Ni) = 0. Therefore,

(4.24) τij(FX) = 0, hℓ
j(X,Ui) + δijθ(X) = 0.

Taking X = FY to (4.24)2, we get hℓ
j(FX,Ui) = 0. Thus (4.21) is reduced to

(4.25) τij(X) =
r

∑

k=1

uk(X)ḡ(A
Nk

Vj , Ni)− βδijθ(X).

Replacing Y by Wb to (4.18), we have A
Ea

Ui = A
Ni
Wa. Taking the scalar

product with Uj and using (3.8), (3.10), (3.11) and (3.16)2, we have

(4.26) h∗
i (Wa, Uj) = ǫah

s
a(Ui, Uj) = ǫah

s
a(Uj , Ui) = h∗

i (Uj ,Wa).
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Taking the scalar product with Wa to (4.18), we have

ǫaρia(FY ) = −h∗
i (Y,Wa)

+

r
∑

k=1

uk(Y )h∗
k(Ui,Wa) +

n
∑

b=r+1

ǫbwb(Y )hs
b(Ui,Wa).

Taking the scalar product with Ui to (4.15) and then, taking X = Wa and
using (3.8), (3.10), (3.11), (3.12)4, (3.16)2, (3.19) and (4.26), we obtain

ǫaρia(FY ) = h∗
i (Y,Wa)

−
r

∑

k=1

uk(Y )h∗
k(Ui,Wa)−

n
∑

b=r+1

ǫbwb(Y )hs
b(Ui,Wa).

Comparing the last two equations, we obtain ρia(FY ) = 0. �

Remark 4.4. Replacing X by ξj to (3.9) and using (3.12)7, we have

hℓ
i(ξj , X) = g(A∗

ξiξj , X).

Taking Y = ξj to (3.7), we obtain hℓ
i(X, ξj) = hℓ

i(ξj , X). From this and (3.12)1,
we see that hℓ

i(ξj , X) are skew-symmetric with respect to i and j. It follow that
A∗

ξi
ξj = −A∗

ξj
ξi, i.e., A

∗
ξi
ξj are skew-symmetric with respect to i and j.

In caseM is Lie recurrent, taking Y = Uj to (4.18), we haveANi
Uj = A

Nj
Ui.

Thus A
Ni
Uj are symmetric with respect to i and j. Therefore, we get

hℓ
i(ξj , F (A

Nj
Ui)) = g(A∗

ξiξj , F (A
Nj

Ui)) = 0,(4.27)

hℓ
i(ξj ,Wa) = ǫah

s
a(ξj , Vi) = ǫah

s
a(Vi, ξj) = −φji(Vi) = 0,(4.28)

due to (4.19)4. Taking X = Ui (3.7) and using (4.24)2, we obtain

(4.29) hℓ
j(Ui, X) = 0.

5. Indefinite generalized Sasakian space forms

Alegre and his collaborators [1] introduced generalized Sasakian space form.
Jin [6] extended this notion as follow: An indefinite trans-Sasakian manifold M̄
is called indefinite generalized Sasakian space form and denoted by M̄(f1, f2, f3)
if there exist three smooth functions f1, f2 and f3 on M̄ such that

R̄(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ }(5.1)

+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}
+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ},
where the symbol R̄ is the curvature tensor of M̄(f1, f2, f3).

Sasakian space form, Kenmotsu space form and cosymplectic space form are
important kinds of generalized Sasakian space forms such that

f1 = c+3
4 , f2 = f3 = c−1

4 ; f1 = c−3
4 , f2 = f3 =

c+1
4 ; f1 = f2 = f3 = c

4
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respectively, where c is a constant J-sectional curvature of each space forms.
Denote by R̄, R and R∗ the curvature tensors of the quart-symmetric metric

connection ∇̄ on M̄ , and the induced connection ∇ and ∇∗ on M and S(TM)
respectively. Using the Gauss -Weingarten formulas for M and S(TM), we
obtain the Gauss equations for M and S(TM), respectively:

R̄(X,Y )Z = R(X,Y )Z(5.2)

+

r
∑

i=1

{hℓ
i(X,Z)A

Ni
Y − hℓ

i(Y, Z)A
Ni
X}

+
n
∑

a=r+1

{hs
a(X,Z)A

Ea
Y − hs

a(Y, Z)A
Ea

X}

+

r
∑

i=1

{(∇Xhℓ
i)(Y, Z)− (∇Y h

ℓ
i)(X,Z)

+
r

∑

j=1

[τji(X)hℓ
j(Y, Z)− τji(Y )hℓ

j(X,Z)]

+
n
∑

a=r+1

[φai(X)hs
a(Y, Z)− φai(Y )hs

a(X,Z)]

− θ(X)hℓ
i(FY,Z) + θ(Y )hℓ

i(FX,Z)}Ni

+
n
∑

a=r+1

{(∇Xhs
a)(Y, Z)− (∇Y h

s
a)(X,Z)

+

r
∑

i=1

[ρia(X)hℓ
i(Y, Z)− ρia(Y )hs

a(X,Z)]

+
n
∑

b=r+1

[σba(X)hs
b(Y, Z)− σba(Y )hs

b(X,Z)]

− θ(X)hs
a(FY,Z) + θ(Y )hs

a(FX,Z)}Ea,

R(X, Y )PZ = R∗(X, Y )PZ(5.3)

+

r
∑

i=1

{h∗
i (X, PZ)A∗

ξiY − h∗
i (Y, PZ)A∗

ξiX}

+

r
∑

i=1

{(∇Xh∗
i )(Y, PZ)− (∇Y h

∗
i )(X, PZ)

+

r
∑

j=1

[h∗
j (X, PZ)τij(Y )− h∗

j (Y, PZ)τij(X)]

− θ(X)h∗
i (FY,Z) + θ(Y )h∗

i (FX,Z)}ξi.
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Comparing the tangential and lightlike transversal components of the two
equations (5.1) and (5.2), and using (3.4), we get

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(5.4)

+ f2{ḡ(X, JZ)FY − ḡ(Y, JZ)FX + 2ḡ(X, JY )FZ}
+ f3{θ(X)θ(Z)Y − θ(Y )θ(Z)X

+ ḡ(X,Z)θ(Y )ζ − ḡ(Y, Z)θ(X)ζ}

+

r
∑

i=1

{hℓ
i(Y, Z)A

Ni
X − hℓ

i(X,Z)A
Ni
Y }

+

n
∑

a=r+1

{hs
a(Y, Z)A

Ea
X − hs

a(X,Z)A
Ea

Y },

(∇Xhℓ
i)(Y, Z)− (∇Y h

ℓ
i)(X,Z)(5.5)

+

r
∑

j=1

{τji(X)hℓ
j(Y, Z)− τji(Y )hℓ

j(X,Z)}

+

n
∑

a=r+1

{φai(X)hs
a(Y, Z)− φai(Y )hs

a(X,Z)}

− θ(X)hℓ
i(FY,Z) + θ(Y )hℓ

i(FX,Z)

= f2{ui(Y )ḡ(X, JZ)− ui(X)ḡ(Y, JZ) + 2ui(Z)ḡ(X, JY )}.
Taking the scalar product with Ni to (5.3), we have

ḡ(R(X,Y )PZ, Ni) = (∇Xh∗
i )(Y, PZ)− (∇Y h

∗
i )(X, PZ)

+

r
∑

j=1

{τij(Y )h∗
j (X, PZ)− τij(X)h∗

j (Y, PZ)}

− θ(X)h∗
i (FY,Z) + θ(Y )h∗

i (FX,Z).

Substituting (5.4) into the last equation and using (3.12)4, we obtain

(∇Xh∗
i )(Y, PZ)− (∇Y h

∗
i )(X, PZ)(5.6)

+

r
∑

j=1

{τij(Y )h∗
j (X, PZ)− τij(X)h∗

j (Y, PZ)}

+

n
∑

a=r+1

ǫa{ρia(Y )hs
a(X, PZ)− ρia(X)hs

a(Y, PZ)}

+

r
∑

j=1

{hℓ
j(X, PZ)ηi(ANj

Y )− hℓ
j(Y, PZ)ηi(ANj

X)}

− θ(X)h∗
i (FY,Z) + θ(Y )h∗

i (FX,Z)

= f1{g(Y, PZ)ηi(X)− g(X,PZ)ηi(Y )}
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+ f2{vi(Y )ḡ(X, JPZ)− vi(X)ḡ(Y, JPZ) + 2vi(PZ)ḡ(X, JY )}
+ f3{θ(X)ηi(Y )− θ(Y )ηi(X)}θ(PZ).

Theorem 5.1. Let M be a generic lightlike submanifold of an indefinite gen-

eralized Sasakian space form M̄(f1, f2, f3) with a quarter-symmetric metric

connection. Then the following properties are satisfied

(1) α is a constant,

(2) αβ = 0,
(3) f1 − f2 = α2 − β2 and f1 − f3 = (α2 − β2) + α− ζβ.

Proof. Applying ∇X to (3.16)1: hℓ
j(Y, Ui) = h∗

i (Y, Vj) and using (2.1), (3.2),
(3.3), (3.4), (3.9), (3.11), (3.16)1, (3.17) and (3.18), we have

(∇Xhℓ
j)(Y, Ui) = (∇Xh∗

i )(Y, Vj)

−
r

∑

k=1

{τkj(X)hℓ
k(Y, Ui) + τik(X)h∗

k(Y, Vj)}

−
n
∑

a=r+1

{φaj(X)hs
a(Y, Ui) + ǫaρia(X)hs

a(Y, Vj)}

+
r

∑

k=1

{h∗
i (Y, Uk)h

ℓ
k(X, ξj) + h∗

i (X,Uk)h
ℓ
k(Y, ξj)}

− g(A∗
ξjX,F (A

Ni
Y ))− g(A∗

ξjY, F (A
Ni
X))

−
r

∑

k=1

hℓ
j(X,Vk)ηk(ANi

Y )− α2 uj(Y )ηi(X)

− β2 uj(X)ηi(Y ) + αβ{uj(X)vi(Y )− uj(Y )vi(X)}.

Substituting this into (5.5) such that replace i by j and take Z = Ui, we have

(∇Xh∗
i )(Y, Vj)− (∇Y h

∗
i )(X,Vj)

−
r

∑

k=1

{τik(X)h∗
k(Y, Vj)− τik(Y )h∗

k(X,Vj)}

−
n
∑

a=r+1

ǫa{hs
a(Y, Vj)ρia(X)− hs

a(X,Vj)ρia(Y )}

−
r

∑

k=1

{hℓ
k(Y, Vj)ηi(ANk

X)− hℓ
k(X,Vj)ηi(ANk

Y )}

− θ(X)h∗
i (FY, Vj) + θ(Y )h∗

i (FX, Vj)}
+ (α2 − β2){uj(X)ηi(Y )− uj(Y )ηi(X)}
+ 2αβ{uj(X)vi(Y )− uj(Y )vi(X)}

= f2{uj(Y )ηi(X)− uj(X)ηi(Y ) + 2δij ḡ(X, JY )}.
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Comparing this with (5.6) such that PZ = Vj and using (3.16), we obtain

{f1 − f2 − (α2 − β2)}[uj(Y )ηi(X)− uj(X)ηi(Y )]

= 2αβ{uj(Y )vi(X)− uj(X)vi(Y )}.
Taking X = ξi and Y = Uj , and X = Vi and Y = Uj by turns, we have

f1 − f2 = α2 − β2, αβ = 0.

Applying ∇̄X to ηi(Y ) = ḡ(Y,Ni) and using (2.5), we have

(∇Xηi)Y = −g(A
Ni
X,Y ) +

r
∑

j=1

τij(X)ηj(Y ).

Applying ∇Y to (3.16)3 and using (3.13) and (3.22), we have

(∇Xh∗
i )(Y, ζ) = −(Xα)vi(Y ) + (Xβ)ηi(Y )

+ α2θ(Y )ηi(X) + β2θ(X)ηi(Y )

+ α{g(A
Ni
X,FY ) + g(A

Ni
Y, FX)−

r
∑

j=1

vj(Y )τij(X)

−
n
∑

a=r+1

ǫawa(Y )ρia(X)−
r

∑

j=1

uj(Y )ηi(ANj
X)}

− β{g(A
Ni
X,Y ) + g(A

Ni
Y,X)−

r
∑

j=1

τij(X)ηj(Y )}.

Substituting this and (3.16) into (5.6) such that PZ = ζ, we get

{Xβ + [f1 − f3 − (α2 − β2)− α]θ(X)}ηi(Y )

− {Y β + [f1 − f3 − (α2 − β2)− α]θ(Y )}ηi(X)

= (Xα)vi(Y )− (Y α)vi(X).

Taking X = ζ and Y = ξi, and taking X = Uk and Y = Vi by turns, we get

f1 − f3 = (α2 − β2) + α− ζβ, Uiα = 0, ∀ i.
Applying ∇X to hℓ

i(Y, ζ) = −αui(Y ) and using (3.21) and (3.13), we get

(∇Xhℓ
i)(Y, ζ) = −(Xα)ui(Y ) + α{

r
∑

j=1

uj(Y )τji(X) +

n
∑

a=r+1

wa(Y )φai(X)

+ hℓ
i(X,FY ) + hℓ

i(Y, FX)}.
Substituting this and (3.16) into (5.5) such that Z = ζ, we obtain

(Xα)ui(Y ) = (Y α)ui(X).

Replacing Y by Ui to this equation, we obtain Xα = 0 for all X ∈ Γ(TM).
Thus α is a constant. This completes the proof of the theorem. �

We say that M̄ (resp. M) is flat if R̄ = 0 (resp. R = 0).
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Theorem 5.2. Let M be a recurrent generic lightlike submanifold of an indef-

inite generalized Sasakian space form M̄(f1, f2, f3) with a quarter-symmetric

metric connection. Then M̄(f1, f2, f3) is flat.

Proof. As M is recurrent, by Theorem 4.2, we get (4.10), (4.11), (4.12) and the
results: α = β = 0 and ρia = 0. As α = β = 0, f1 = f2 = f3 by Theorem 5.1.
Taking the scalar product with Nj , Uj and Wa to (4.10)1 by turns, we get

ηj(ANi
X) = 0, h∗

i (X,Uj) = 0, hs
a(X,Ui) = h∗

i (X,Wa) = 0.

Applying ∇X to h∗
i (Y, Uj) = 0 and using (4.12)1, we obtain

(∇Xh∗
i )(Y, Uj) = 0.

Taking PZ = Uj to (5.6) and using the last two equations, we have

f1{vj(Y )ηi(X)− vj(X)ηi(Y )}+ f2{vi(Y )ηj(X)− vi(X)ηj(Y )} = 0.

Taking X = ξi and Y = Vj to this equation, we have f1 = 0. It follows that
f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat. �

Theorem 5.3. Let M be a generic lightlike submanifold of M̄(f1, f2, f3) with a

quarter-symmetric metric connection. If M is Lie recurrent, then M̄(f1, f2, f3)
is a space form with an indefinite β-Kenmotsu structure such that

f1 = −β2, f2 = 0, f3 = ζβ.

Proof. Applying ∇X to (4.24)2: h
ℓ
i(Y, Uj) = −δijθ(Y ), we have

(∇Xhℓ
i)(Y, Uj) = −δij{X(θ(Y ))− θ(∇XY )} − hℓ

i(Y,∇XUj).

Using this equation, (3.6), (3.14)1, (3.17), (4.24)2 and the facts that α = 0,
dθ = 0 and θ(FX) = 0, we have

(∇Xhℓ
i)(Y, Uj)− (∇Y h

ℓ
i)(X,Uj)

= hℓ
i(X,F (A

Nj
Y ))− τji(Y )θ(X) +

n
∑

a=r+1

ρja(Y )hℓ
i(X,Wa)

− hℓ
i(Y, F (A

Nj
X)) + τji(X)θ(Y )−

n
∑

a=r+1

ρja(X)hℓ
i(Y,Wa).

Replacing Z by Uj to (5.5) and using (4.24)2 and θ(FX) = 0, we obtain

hℓ
i(X,F (A

Nj
Y ))− hℓ

i(Y, F (A
Nj

X))

+

n
∑

a=r+1

{ρja(Y )hℓ
i(X,Wa)− ρja(X)hℓ

i(Y,Wa)}

+

n
∑

a=r+1

{φai(X)hs
a(Y, Uj)− φai(Y )hs

a(X,Uj)}

= f2{ui(Y )ηj(X)− ui(X)ηj(Y ) + 2δij ḡ(X, JY )}.
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Taking Y = Ui and X = ξj to this equation and using (4.19), (4.27), (4.28)
and (4.29), we have f2 = 0. As f2 = 0, we have f1 = −β2 and f3 = ζβ. �

Theorem 5.4. Let M be a generic lightlike submanifold of an indefinite trans-

Sasakian manifold M̄ with a quarter-symmetric metric connection. If Uis are

parallel with respect to ∇, then τij = 0, M̄ is an indefinite cosymplectic mani-

fold and M is solenoidal. Moreover, if M̄ = M̄(f1, f2, f3), then it is flat.

Proof. If Ui is parallel with respect to ∇, then, taking the scalar product with
ζ, Vj , Wa, Uj and Nj to (3.17) such that ∇XUi = 0 by turns, we get

(5.7) α = β = 0, τij = 0, ρia = 0, ηj(ANi
X) = 0, h∗

i (X,Uj) = 0,

respectively. As α = β = 0, M̄ is an indefinite cosymplectic manifold. As
ρia = 0 and ηj(ANi

X) = 0, M is solenoidal.

As α = β = 0, f1 = f2 = f3 by Theorem 5.1. Applying ∇Y to (5.7)5 and
using (5.7)5 and the fact that ∇XUi = 0, we obtain

(∇Xh∗
i )(Y, Uj) = 0.

Substituting this equation and (5.7) into (5.6) with PZ = Uj , we have

f1{vj(Y )ηi(X)− vj(X)ηi(Y )}+ f2{vi(Y )ηj(X)− vi(X)ηj(Y )} = 0.

Taking X = ξi and Y = Vj to this equation, we obtain f1 = 0. Therefore,
f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat. �

Theorem 5.5. Let M be a generic lightlike submanifold of an indefinite trans-

Sasakian manifold M̄ with a quarter-symmetric metric connection. If Vis are

parallel with respect to ∇, then τij = 0, α = −1 and β = 0, i.e., M̄ is an

indefinite Sasakian manifold, and φai = hℓ
i(X, ξj) = 0, i.e., M is irrotational.

Moreover, if M̄ = M̄(f1, f2, f3), then M̄(f1, f2, f3) is a space form with an

indefinite Sasakian structure of the curvature functions

f1 = f3 = 2
3 , f2 = − 1

3 .

Proof. If Vi is parallel with respect to ∇, then, taking the scalar product with
ζ, Uj , Vj , Wa and Nj to (3.18) with ∇XVi = 0 by turns, we get respectively

(5.8) β = 0, τji = 0, hℓ
j(X, ξi) = 0, φai = 0, hℓ

i(X,Uj) = 0

and we have F (A∗
ξi
X) = 0. As hℓ

j(X, ξi) = 0 and φai = 0, M is irrotational.

Replacing Y by ξj and Uj to (3.7) by turns and using (5.8)3, 5, we have

(5.9) hℓ
i(ξj , X) = 0, hℓ

i(Uj , X) = δijθ(X).

Taking X = Ui to (3.14)1 and using (5.9)2, we get

−α = −αui(Ui) = hℓ
i(Ui, ζ) = θ(ζ) = 1.

As α = −1 and β = 0, M̄ is an indefinite Sasakian manifold.
Applying ∇X to (5.8)5 and using (3.4), (3.14)1, (3.17) and (5.8)3, we have

(∇Xhℓ
i)(Y, Uj) = hℓ

i(Y, Vk)g(ANj
X,Nk)
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−
n
∑

a=r+1

ρja(X)hℓ
i(Y,Wa)− ui(Y )ηj(X).

Substituting the last two equations into (5.5) with Z = Uj , we obtain

hℓ
i(Y, Vk)g(ANj

X,Nk)− hℓ
i(X,Vk)g(ANj

Y,Nk)

+ ui(X)ηj(Y )− ui(Y )ηj(X)

+

n
∑

a=r+1

{ρja(Y )hℓ
i(X,Wa)− ρja(X)hℓ

i(Y,Wa)}

= f2{ui(Y )ηj(X)− ui(X)ηj(Y ) + 2δij ḡ(X, JY )}.
Taking X = ξj and Y = Ui to this and using (5.9), we obtain 3f2 = −1. As
f2 = − 1

3 , we have f1 = f3 = 2
3 by Theorem 5.1. �

Definition. A screen distribution S(TM) is called totally umbilical [4] in M
if there exist smooth functions γi such that A

Ni
X = γiPX , or equivalently,

h∗
i (X,PY ) = γig(X,Y ).

In case γi = 0 for all i, we say that S(TM) is totally geodesic in M .

Theorem 5.6. Let M be a generic lightlike submanifold of M̄(f1, f2, f3) with

a quarter-symmetric metric connection. If S(TM) is totally umbilical in M ,

then M̄(f1, f2, f3) is flat and S(TM) is totally geodesic.

Proof. Assume that S(TM) is totally umbilical. Then (3.17) is reduced to
γiθ(X) = −αvi(X) + βηi(X) for all i. Replacing X by Vi, ξi and ζ to this
equation by turns, we have α = β = γi = 0. As γi = 0, S(TM) is totally
geodesic. As α = 0, f1 = f2 = f3 by Theorem 5.1. Taking PZ = Uk to
(5.6) with h∗

i = 0 and using the facts that hs
a(X,Uk) = h∗

k(X,Wa) = 0 and
hℓ
j(X,Uk) = h∗

k(X,Vj) = 0, we get

f1{vk(Y )ηi(X)− vk(X)ηi(Y )}+ f2{vi(Y )ηk(X)− vi(X)ηk(Y )} = 0.

Taking X = ξi and Y = Vk to this equation, we get f1 = 0. Thus f1 = f2 =
f3 = 0 and M̄(f1, f2, f3) is flat. �
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