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HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE

KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC

NON-METRIC CONNECTION

Dae Ho Jin

Abstract. In this paper, we study half lightlike submanifolds of an in-
definite Kaehler manifold with a semi-symmetric non-metric connection.
First, we characterize the geometry of two types of half lightlike sub-
manifolds of such an indefinite Kaehler manifold. Next, we investigate
the geometry of half lightlike submanifolds of an indefinite complex space
form with a semi-symmetric non-metric connection.

1. Introduction

Ageshe-Chafle introduced the notion of semi-symmetric non-metric connec-
tion on a semi-Riemannian manifold in their papers [1, 2] as follow:

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is called a
semi-symmetric non-metric connection if ∇̄ and its torsion tensor T̄ satisfy

(∇̄X̄ ḡ)(Ȳ , Z̄) = −θ(Ȳ )ḡ(X̄, Z̄)− θ(Z̄)ḡ(X̄, Ȳ ),(1.1)

T̄ (X̄, Ȳ ) = θ(Ȳ )X̄ − θ(X̄)Ȳ ,(1.2)

where θ is a 1-form associated with a smooth unit vector field ζ, called the
characteristic vector field on M̄ , defined by θ(X̄) = ḡ(X̄, ζ). From now and in
the sequel, we denote by X̄, Ȳ and Z̄ the smooth vector fields on M̄ .

Denote by ˜∇ the Levi-Civita connection of a semi-Riemannian manifold
(M̄, ḡ) with respect to ḡ. It is known [12] that a linear connection ∇̄ on M̄ is

a semi-symmetric non-metric connection if and only if ∇̄ satisfies

(1.3) ∇̄X̄ Ȳ = ˜∇X̄ Ȳ + θ(Ȳ )X̄.

A submanifold M of a semi-Riemannian manifold, of codimension 2, is called
a lightlike submanifold if Rad(TM) 6= {0}, where Rad(TM) denotes the radical
distribution of M defined by Rad(TM) = TM ∩TM⊥ with TM and TM⊥ the
tangent and normal bundle of M , respectively. In this case, we say that M is
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(1) half lightlike submanifold if rank{Rad(TM)} = 1,
(2) coisotropic submanifold if rank{Rad(TM)} = 2.

Half lightlike submanifold [5] is a special case of r-lightlike submanifolds [4].
Its geometry is more general than that of lightlike hypersurfaces or coisotropic
submanifolds. Recently several authors studied lightlike submanifolds of a man-
ifold with a semi-symmetric non-metric connection ([7]∼[13], [15]).

In this paper, we study half lightlike submanifoldsM of an indefinite Kaehler
manifold M̄ with a semi-symmetric non-metric connection ∇̄ given by (1.3).
First, we characterize the geometry of two types of half lightlike submanifolds,
named by recurrent and Lie recurrent, of such an indefinite Kaehler manifold.
Next, we investigate the geometry of half lightlike submanifolds of an indefinite
complex space form with a semi-symmetric non-metric connection.

2. Half lightlike submanifolds

Let M̄ = (M̄, ḡ, J) be an indefinite Kaeler manifold, where ḡ is a semi-
Riemannian metric and J is an indefinite almost complex structure satisfying

(2.1) J2 = −I, ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ ), (˜∇X̄J)Ȳ = 0,

where ˜∇ is the Levi-Civita connection with respect to the metric ḡ.
Let (M, g) be a half lightlike submanifold of M̄ . As rank(Rad(TM)) =

1, there exist two complementary non-degenerate distributions S(TM) and
S(TM⊥) of Rad(TM) in TM and TM⊥, respectively, which are called screen

distribution and co-screen distribution of M , such that

TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth sections
of any vector bundle E over M . Also denote by (2.1)i the i-th equation of the
three equations in (2.1). We use same notations for any others. In the following,
we choose L ∈ Γ(S(TM⊥)) as a unit spacelike vector field without loss of
generality. Consider the orthogonal complementary distribution S(TM)⊥ to
S(TM) in TM̄ . Certainly, Rad(TM) and S(TM⊥) are vector subbundles of
S(TM)⊥. As the co-screen distribution S(TM⊥) is non-degenerate, we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥.
For any null section ξ of Rad(TM), there exist a uniquely defined lightlike
vector bundle ltr(TM) and a null vector field N of ltr(TM) satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = ḡ(N,L) = 0, ∀X ∈ Γ(S(TM)).

We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike trans-

versal vector field, lightlike transversal vector bundle and transversal vector
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bundle of M with respect to S(TM) respectively [5]. TM̄ is decomposed as
follow:

TM̄ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

In the sequel, let X, Y, Z and W be the smooth vector fields on M unless
otherwise specified. Let ∇̄ be a semi-symmetric non-metric connection of M̄
and P the projection morphism of TM on S(TM). Then the local Gauss and
Weingarten formulas of M and S(TM) are given respectively by

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L,(2.2)

∇̄XN = −A
N
X + τ(X)N + ρ(X)L,(2.3)

∇̄XL = −A
L
X + λ(X)N ;(2.4)

∇XPY = ∇∗
XPY + C(X,PY )ξ,(2.5)

∇Xξ = −A∗
ξX − σ(X)ξ,(2.6)

where∇ and∇∗ are linear connections onM and S(TM) respectively, B andD
are the local second fundamental forms of M , C is the local second fundamental

form on S(TM). A
N

and A
L
are the shape operators on M , A∗

ξ is the shape

operator of S(TM) and τ, ρ, λ and σ are 1-forms on M .
For a half lightlike submanifoldM of an indefinite almost Hermitian manifold

M̄ , it is known [6] that J(Rad(TM)), J(ltr(TM)) and J(S(TM⊥)) are vector
subbundles of S(TM) with mutually trivial intersections, of rank 1. Therefore,

J(Rad(TM))⊕ J(ltr(TM))⊕orth J(S(TM⊥))

is a vector subbundle of S(TM), of rank 3. Then there exist two non-degenerate
almost complex distribution Ho and H on M with respect to J such that

S(TM) = J(Rad(TM))⊕ J(ltr(TM))⊕orth J(S(TM⊥)⊕orth Ho,

H = {Rad(TM)⊕orth J(Rad(TM))} ⊕orth Ho.

In this case, the decomposition form of TM is reduced to

(2.7) TM = H ⊕ J(ltr(TM))⊕orth J(S(TM⊥)).

Consider two null and one spacelike vector fields {U, V } and W such that

(2.8) U = −JN, V = −Jξ, W = −JL.

Denote by S the projection morphism of TM on H with respect to the decom-
position (2.7). Any vector field X on M is expressed as follows

X = SX + u(X)U + w(X)W,

where u, v and w are 1-forms locally defined on M by

(2.9) u(X) = g(X, V ), v(X) = g(X, U), w(X) = g(X,W ).

Using (2.8), the action JX of X by J is expressed as follow:

(2.10) JX = FX + u(X)N + w(X)L,
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where F is a tensor field of type (1, 1) globally defined on M by F = J ◦ S.
Applying J to (2.10) and using (2.1) and (2.8), we have

(2.11) F 2X = −X + u(X)U + w(X)W.

As u(U) = w(W ) = 1, FU = FW = 0 and u ◦F = w ◦F = 0, the set
(F, u, w, U, W ) defines a so-called (f, g, u, v, λ)-structure such that λ = 0 on
M . In this case, F is called the structure tensor field of M .

Denote by R̄, R and R∗ the curvature tensors of the semi-symmetric non-
metric connection ∇̄ on M̄ , and the induced linear connections ∇ and ∇∗ on
M and S(TM) respectively. Using the Gauss-Weingarten formulas, we obtain
two Gauss equations for M and S(TM) respectively:

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(2.12)

+ D(X,Z)A
L
Y −D(Y, Z)A

L
X

+ {(∇XB)(Y, Z)− (∇Y B)(X,Z)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z)

+ λ(X)D(Y, Z)− λ(Y )D(X,Z) +B(T (X,Y ), Z)}N,

+ {(∇XD)(Y, Z)− (∇Y D)(X,Z)

+ ρ(X)B(Y, Z)− ρ(Y )B(X,Z) +D(T (X,Y ), Z)}L,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗
ξY − C(Y, PZ)A∗

ξX(2.13)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− σ(X)C(Y, PZ)

+ σ(Y )C(X,PZ) + C(T (X,Y ), PZ)}ξ,

where T is the torsion tensor with respect to the induced connection ∇ on M .
The induced Ricci type tensor R(0, 2) of M is defined by

(2.14) R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y }.

In general, R(0, 2) is not symmetric. R(0, 2) is called the induced Ricci tensor

of M and denote it by Ric if it is symmetric. It is known that, for any half
lightlike submanifold M of a semi-Riemannian manifold (M̄, ḡ) with a semi-
symmetric non-metric connection, R(0, 2) is symmetric if and only if the 1-form
τ is closed, i.e., dτ = 0 on M [10, 13].

3. Semi-symmetric non-metric connections

Let (M̄, ḡ) be an indefinite Kaehler manifold with a semi-symmetric non-

metric connection ∇̄ given by (1.3). Replacing the Levi-Civita connection ∇̃
by the semi-symmetric non-metric connection ∇̄, the equation (2.1)3 reduces

(3.1) (∇̄X̄J)Ȳ = θ(JȲ )X̄ − θ(Ȳ )JX̄.

Also, using (1.1), (1.2) and (2.2), we see that

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y )(3.2)

− θ(Y )g(X,Z)− θ(Z)g(X,Y ).
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T (X,Y ) = θ(Y )X − θ(X)Y,(3.3)

and B and D are symmetric on TM , where η is a 1-form on TM such that

η(X) = ḡ(X,N).

From the facts that B(X,Y ) = ḡ(∇̄XY, ξ) and D(X,Y ) = ḡ(∇̄XY, L), we
show that B and D are independent of the choice of S(TM) and satisfy

(3.4) B(X, ξ) = 0, D(X, ξ) = −λ(X).

From (2.2), (2.6) and (3.4), we obtain

(3.5) ∇̄Xξ = −A∗
ξX − σ(X)ξ − λ(X)L.

Definition. A half lightlike submanifold M of a semi-Riemannian manifold is
called irrotational [14] if ∇̄Xξ ∈ Γ(TM) for all X ∈ Γ(TM), i.e., λ = 0.

Now we set a = θ(N), b = θ(ξ) and e = θ(L). Then the three local second
fundamental forms B, D and C are related to their shape operators by

B(X,Y ) = g(A∗
ξX,Y ) + bg(X,Y ), ḡ(A∗

ξX,N) = 0,(3.6)

D(X,Y ) = g(A
L
X,Y ) + eg(X,Y )− λ(X)η(Y ),(3.7)

ḡ(A
L
X,N) = ρ(X)− eη(X),

C(X,PY ) = g(A
N
X,PY ) + ag(X,PY ) + η(X)θ(PY ),(3.8)

ḡ(A
N
X,N) = −aη(X), σ(X) = τ(X)− bη(X).

Replacing X by ξ to (3.6)1 and using (3.4)1, we have

(3.9) A∗
ξξ = 0.

Applying ∇̄X to (2.8) and (2.10) and using (2.2)∼(2.4), (2.8), (2.10), (3.1)
and (3.5), we have

B(X,U) = u(A
N
X) + au(X) = C(X,V )− θ(V )η(X),

D(X,U) = w(A
N
X) + aw(X) = C(X,W )− θ(W )η(X),(3.10)

D(X,V ) = B(X,W ),

∇XU = F (A
N
X) + τ(X)U + ρ(X)W + aFX + θ(U)X,(3.11)

∇XV = F (A∗
ξX)− σ(X)V − λ(X)W + bFX + θ(V )X,(3.12)

∇XW = F (A
L
X) + λ(X)U + eFX + θ(W )X,(3.13)

(∇XF )Y = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W(3.14)

+ θ(JY )X − θ(Y )FX.

Theorem 3.1. Let M be a half lightlike submanifold of an indefinite Kaehler

manifold M̄ with a semi-symmetric non-metric connection. If V is parallel

with respect to ∇, then M is irrotational, τ = 0 and R(0, 2) is symmetric.

Proof. If V is parallel with respect ∇, then, from (3.12), we have

F (A∗
ξX)− σ(X)V − λ(X)W + bFX + θ(V )X = 0.
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Taking the scalar product with V , U , W and N to this by turns, we have

(3.15) θ(V ) = 0, τ = 0, λ = 0, B(X,U) = 0.

As λ = 0, M is irrotational. As τ = 0, dτ = 0 and R(0, 2) is symmetric. �

Theorem 3.2. Let M be a half lightlike submanifold of an indefinite Kaehler

manifold M̄ with a semi-symmetric non-metric connection. If W is parallel

with respect to ∇, then M is irrotational, i.e., λ = 0, and ρ = 0.

Proof. If W is parallel with respect to ∇, then, from (3.13), we have

(3.16) F (A
L
X) + λ(X)U + eFX + θ(W )X = 0.

Taking the scalar product with W , U , V and N to this by turns, we have

(3.17) θ(W ) = 0, ρ = 0, λ = 0, D(X,U) = 0.

As λ = 0, M is irrotational. And ρ = 0. �

Theorem 3.3. Let M be a half lightlike submanifold of an indefinite Kaehler

manifold M̄ with a semi-symmetric non-metric connection. If U is parallel

with respect to ∇, then ρ = 0, τ = 0 and R(0, 2) is symmetric.

Proof. If U is parallel with respect to ∇, then, from (3.11), we have

(3.18) F (A
N
X) + τ(X)U + ρ(X)W + aFX + θ(U)X = 0.

Taking the scalar product with U , V , W and N to this by turns, we have

(3.19) θ(U) = 0, τ = 0, ρ = 0, C(X,U) = 0.

As τ = 0, dτ = 0 and R(0, 2) is a symmetric induced Ricci tensor of M . �

4. Recurrent and Lie recurrent half lightlike submanifolds

Definition. The structure tensor field F of M is said to be recurrent [11] if
there exists a 1-form ̟ on M such that

(∇XF )Y = ̟(X)FY.

A half lightlike submanifold M of an indefinite Kaehler manifold M̄ is called
recurrent if it admits a recurrent structure tensor field F .

Theorem 4.1. Let M be a recurrent half lightlike submanifold of an indefinite

Kaehler manifold M̄ with a semi-symmetric non-metric connection. Then:

(1) F is parallel with respect to the induced connection ∇ on M ,

(2) M is irrotational, i.e., λ = 0, and ρ = 0,
(3) H, J(ltr(TM)) and J(S(TM⊥)) are parallel distributions on M ,

(4) M is locally a product manifold C
U
×C

W
×M ♯, where C

U
is a null curve

tangent to J(ltr(TM)), C
W

is a spacelike curve tangent to J(S(TM⊥)),
and M ♯ is a leaf of the distributions H.
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Proof. (1) From the above definition and (3.14), we get

̟(X)FY = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W(4.1)

+ θ(JY )X − θ(Y )FX.

Replacing Y by ξ and using (2.8), (3.4) and the fact that Fξ = −V , we get

(4.2) ̟(X)V = −λ(X)W + θ(V )X + bFX.

Taking the scalar product with N to this equation, we obtain

θ(V )η(X) + bv(X) = 0.

Taking X = V and then X = ξ to this equation, we have

(4.3) b = 0, θ(V ) = 0.

Taking the scalar product with U to (4.2), we get ̟ = 0. It follows that
∇XF = 0. Therefore, F is parallel with respect to the connection ∇.

(2) Taking the scalar product with W to (4.2) such that b = θ(V ) = ̟ = 0,
we obtain λ = 0. Therefore, M is irrotational.

Taking Y = U and Y = W to (4.1) such that ̟ = 0 by turns, we have

A
N
X = B(X,U)U +D(X,U)W − aX + θ(U)FX,(4.4)

A
L
X = B(X,W )U +D(X,W )W − eX + θ(W )FX.(4.5)

Taking the scalar product with N and U to (4.4) by turns, we get

(4.6) θ(U) = 0, C(X,U) = 0,

due to (3.8). Taking the scalar product with N and U to (4.5) by turns and
using (3.7) and the fact that λ = 0, we obtain

(4.7) ρ(X) = θ(W )v(X), D(X,U) = −θ(W )η(X).

Replacing X by ξ to (4.7)2 and using (3.4)2 and the fact that λ = 0, we obtain

θ(W ) = 0.

From this result and (4.7)1, we see that ρ = 0.
(3) In general, by using (3.2), (3.4), (3.6), (3.7), (3.12) and (3.13), we derive

g(∇Xξ, V ) = −B(X,V ) + bu(X),

g(∇Xξ,W ) = −B(X,W ) + bw(X),

g(∇XV, V ) = θ(V )u(X),(4.8)

g(∇XV,W ) = −λ(X) + θ(V )w(X),

g(∇XZ, V ) = B(X,FZ) + θ(Z)u(X),

g(∇XZ,W ) = D(X,FZ) + θ(Z)w(X),

for any X ∈ Γ(TM) and Z ∈ Γ(Ho).
Taking the scalar product with V and W to (4.1) by turns, we have

B(X,Y ) = u(Y )u(A
N
X) + w(Y )u(A

L
X) + θ(JY )u(X),

D(X,Y ) = u(Y )w(A
N
X) + w(Y )w(A

L
X) + θ(JY )w(X).
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Taking Y = V and Y = FZ, Z ∈ Γ(Do) to these equations by turns and using
the facts that b = 0, u(FZ) = w(FZ) = 0 and FZ = JZ, we have

B(X,V ) = bu(X) = 0, B(X,FZ) = −θ(Z)u(X),(4.9)

D(X,V ) = B(X,W ) = bw(X) = 0, D(X,FZ) = −θ(Z)w(X).(4.10)

Using (4.3), (4.9), (4.10) and the fact that λ = 0, (4.8) is equivalent to

∇XY ∈ Γ(H), ∀X ∈ Γ(TM), ∀Y ∈ Γ(H).

It follows that H is a parallel distribution on M .
Applying F to (4.4) and (4.5) and using the fact: θ(U) = θ(W ) = 0, we get

F (A
N
X) = −aFX, F (A

L
X) = −eFX.

Using these results and the facts that ρ = λ = 0 and θ(U) = θ(W ) = 0, the
equations (3.11) and (3.13) reduce to

∇XU = τ(X)U, ∇XU ∈ Γ(J(ltr(TM))),(4.11)

∇XW = 0, ∇XW ∈ Γ(J(S(TM⊥))).(4.12)

Thus J(ltr(TM)) and J(S(TM⊥)) are also parallel distributions on M .
(4) As H , J(ltr(TM)) and J(S(TM⊥)) are parallel distributions and satis-

fied (2.7), by the decomposition theorem of de Rham [3], M is locally a product
manifold C

U
× C

W
×M ♯, where C

U
is a null curve tangent to J(ltr(TM)), C

W

is a spacelike curve tangent to J(S(TM⊥)), and M ♯ is a leaf of H . �

Definition. The structure tensor field F of M is said to be Lie recurrent [11]
if there exists a 1-form ϑ on M such that

(L
X
F )Y = ϑ(X)FY,

where L
X

denotes the Lie derivative on M with respect to X , that is,

(L
X
F )Y = [X,FY ]− F [X,Y ].

The structure tensor field F is called Lie parallel if L
X
F = 0. A half lightlike

submanifold M of an indefinite Kaehler manifold M̄ is called Lie recurrent if
it admits a Lie recurrent structure tensor field F .

Theorem 4.2. Let M be a Lie recurrent half lightlike submanifold of an indef-

inite Kaehler manifold with a semi-symmetric non-metric connection. Then:

(1) F is Lie parallel,

(2) the 1-form τ is satisfied τ = 0,
(3) R(0, 2) is a symmetric induced Ricci tensor of M .

Proof. (1) Using the above definition, (2.10), (3.3) and (3.14), we get

ϑ(X)FY = u(Y )A
N
X + w(Y )A

L
X −B(X,Y )U −D(X,Y )W(4.13)

+ {au(Y ) + ew(Y )}X −∇FY X + F∇Y X.

Taking Y = ξ to (4.13) and using (3.4) and the fact that Fξ = −V , we have

(4.14) −ϑ(X)V = λ(X)W +∇V X + F∇ξX.



HALF LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD 127

Taking the scalar product with V and W to (4.14) by turns, we have

(4.15) u(∇V X) = 0, w(∇V X) = −λ(X).

Replacing Y by V to (4.13) and using the fact that FV = ξ, we have

(4.16) ϑ(X)ξ = −B(X,V )U −D(X,V )W −∇ξX + F∇V X.

Applying F to this equation and using (2.11) and (4.15), we obtain

ϑ(X)V = λ(X)W +∇V X + F∇ξX.

Comparing this equation with (4.14), we get ϑ = 0. Thus F is Lie parallel.
(2) Taking the scalar product with N to (4.13), we obtain

(4.17) w(Y )ρ(X)− ḡ(∇FY X,N) + ḡ(F∇Y X,N) = 0.

Replacing X by ξ to (4.17) and using (2.6), (2.8) and (2.10), we have

g(A∗
ξX,U) = σ(FX) + w(X)ρ(ξ).

From this equation, (3.6), (3.8)3 and the fact that v(X) = η(FX), we have

B(X,U)− w(X)ρ(ξ) = τ(FX).

Taking X = U and X = W to this by turns and using (3.10)1, 3, we get

(4.18) C(U, V ) = B(U,U) = 0, D(U, V ) = B(U,W ) = ρ(ξ).

Taking the scalar product with W to (4.16), we have

D(X,V ) = −g(∇ξX,W ).

Replacing X by U to this equation and using (3.11), we get

D(U, V ) = −ρ(ξ).

From this result and (4.18)2, we obtain

ρ(ξ) = 0, D(U, V ) = 0,(4.19)

B(X,U) = τ(FX).(4.20)

Replacing X by W to (4.13) and using (3.10)3 and (3.13), we have

u(Y )A
N
W + w(Y )A

L
W −A

L
Y

− F (A
L
FY )− λ(FY )U + u(Y ){aW − eU} = 0.

Taking the scalar product with N to this and using (3.7) and (3.8)2, we have

D(FY,U) = w(Y )ρ(W )− ρ(Y ).

Replacing Y by V to this equation and using (3.4)2, we obtain

−λ(U) = D(ξ, U) = −ρ(V ).

On the other hand, replacing X by U to (4.15)2 and using (3.11), we get

ρ(V ) = −λ(U).

Comparing the last two equations, we obtain ρ(V ) = 0 and λ(U) = 0.
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Taking the scalar product with V to (4.16), we obtain

B(X,V ) + g(∇ξX,V ) = 0.

Replacing X by W to this equation and using (3.13), we have

B(V,W ) = −λ(ξ).

Replacing X by ξ to (4.15)2 and using (2.6) and (3.6), we get

B(V,W ) = λ(ξ).

Comparing the last two equations, we obtain λ(ξ) = 0. Therefore, we get

(4.21) ρ(V ) = 0, λ(U) = 0, λ(ξ) = 0.

Replacing X by V to (4.17) and using (2.11), (3.12) and (4.21)1, we have

g(A∗
ξFY,U) + σ(Y ) = 0.

Using this equation, (3.6) and (3.8)3, we obtain

B(FY,U) = −τ(Y ).

Taking Y = U and Y = W by turns and using FU = FW = 0, we obtain

(4.22) τ(U) = 0, τ(W ) = 0.

Replacing X by U to (4.13) and using (2.11), (3.6), and (3.10)1, 2, we get

u(Y )A
N
U + w(Y )A

L
U − F (A

N
FY )−A

N
Y

−τ(FY )U − ρ(FY )W + w(Y ){eU − aW} = 0.

Taking the scalar product with V to this equation and using (3.7), (3.8), (4.18)
and (4.19), we get

B(X,U) = − τ(FX).

Comparing this with (4.20), we obtain τ(FX) = 0. Replacing X by FY to this
and using (3.6) and (4.22), we have τ = 0.

(3) As τ = 0, we see that dτ = 0 and R(0, 2) is symmetric. �

5. Indefinite complex space forms

An indefinite complex space form, denoted by M̄(c), is a connected indefinite
Kaehler manifold of a constant holomorphic sectional curvature c such that

R̄(X̄, Ȳ )Z̄ =
c

4
{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + ḡ(JȲ , Z̄)JX̄(5.1)

− ḡ(JX̄, Z̄)JȲ + 2ḡ(X̄, JȲ )JZ̄}.

Comparing the tangential, lightlike transversal and co-screen components of
the two equations (2.12) and (5.1), and using (2.10) and (3.3), we get

R(X,Y )Z = B(Y, Z)A
N
X −B(X,Z)A

N
Y(5.2)

+ D(Y, Z)A
L
X −D(X,Z)A

L
Y

+
c

4
{g(Y, Z)X − g(X,Z)Y + ḡ(JY, Z)FX
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− ḡ(JX,Z)FY + 2ḡ(X, JY )FZ},

(∇XB)(Y, Z)− (∇Y B)(X,Z)(5.3)

+ {τ(X)− θ(X)}B(Y, Z)− {τ(Y )− θ(Y )}B(X,Z)

+ λ(X)D(Y, Z)− λ(Y )D(X,Z)

=
c

4
{u(X)g(FY,Z)− u(Y )g(FX,Z) + 2u(Z)ḡ(X, JY )},

(∇XD)(Y, Z)− (∇Y D)(X,Z)(5.4)

+ ρ(X)B(Y, Z)− ρ(Y )B(X,Z)− θ(X)D(Y, Z) + θ(Y )D(X,Z)

=
c

4
{w(X)g(FY,Z)− w(Y )g(FX,Z) + 2w(Z)ḡ(X, JY )}.

Taking the scalar product with N to (2.13) and then, substituting (5.2) into
the resulting equation and using (3.3), (3.7)2 and (3.8)2, we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)(5.5)

− {σ(X) + θ(X)}C(Y, PZ) + {σ(Y ) + θ(Y )}C(X,PZ)

+ a{η(X)B(Y, PZ)− η(Y )B(X,PZ)}

− {ρ(X)− eη(X)}D(Y, PZ)− {ρ(Y )− eη(Y )}D(X,PZ)}

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + v(X)g(FY, PZ)

− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Theorem 5.1. Let M be a half lightlike submanifold of an indefinite complex

space form M̄(c) with a semi-symmetric non-metric connection. Suppose that

one of the following conditions holds.

(1) M is recurrent.

(2) M is Lie recurrent.

(3) V is parallel with respect to the connection ∇ on M .

(4) W is parallel with respect to the connection ∇ on M .

Then c = 0, i.e., M̄(c) is flat. Moreover, in cases (1), (2) and (3), the induced

Ricci type tensor R(0, 2), defined by (2.14), is an induced Ricci tensor of M .

Proof. (1) As M is recurrent, by Theorem 4.1, we see that

(5.6) D(X,U) = 0.

Applying ∇Y to (4.6)2: C(Y, U) = 0 and using (4.11), we have

(∇XC)(Y, U) = 0.

Replacing PZ by U to (5.5) and using the last equations, we get

(5.7) a{η(X)B(Y, U)− η(Y )B(X,U)} =
c

2
{v(Y )η(X)− v(X)η(Y )}.

Taking X = ξ and Y = V and using (3.4)1 and (4.9)1, we have c = 0.
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As c = 0, taking Y = ξ to (5.7) and using (3.4)1, we obtain

(5.8) aB(X,U) = 0.

By directed calculations from (4.11), we obtain

R(X,Y )U = 2dτ(X,Y )U.

Comparing this equation with (5.2) such that Z = U and using (5.6), we have

2dτ(X,Y )U = B(Y, U)A
N
X −B(X,U)A

N
Y.

Substituting (4.4) into the right term of this and using (4.6)1, (5.6) and (5.8),
we get dτ = 0. Thus R(0, 2) is a symmetric induced Ricci tensor of M .

(2) As τ = 0, from (4.20) we obtain

(5.9) B(Y, U) = 0.

Applying ∇X to this equation and using (3.11), we have

(∇XB)(Y, U) = − B(Y, F (A
N
X))− ρ(X)B(Y,W )

− aB(FX, Y )− θ(U)B(X,Y ).

Substituting the last two equations into (5.3), we have

B(X,F (A
N
Y )−B(Y, F (A

N
X) + a{B(X,FY )−B(FX, Y )}

+ ρ(Y )B(X,W )− ρ(X)B(Y,W ) + λ(X)D(Y, U)− λ(Y )D(X,U)

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U to this equation and using (3.4)1, 2, (4.21)2, 3 and
(5.9), we get c = 0. Therefore, M̄(c) is flat.

From Theorem 4.2, we show that τ = 0 and R(0, 2) is symmetric.
(3) As V is parallel with respect to ∇, we holds (3.15) by Theorem 3.1:

θ(V ) = 0, τ = 0, λ = 0, B(X,U) = 0.

As B(X,U) = 0 and θ(V ) = 0, from (3.10)1 we obtain

C(X,V ) = 0.

Applying ∇X to C(Y, V ) = 0 and using the fact that ∇XV = 0, we have

(∇XC)(Y, V ) = 0.

Substituting the last two equations into (5.5) with PZ = V , we have

a{η(X)B(Y, V )− η(Y )B(X,V )}

− {ρ(X)− eη(X)}D(Y, V ) + {ρ(Y )− eη(Y )}D(X,V )}

=
c

4
{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U to this and using (3.4), (3.15)4 and the facts that
λ = 0 and D(U, V ) = 0 by (3.10)3 and (3.15)4, we get c = 0.

From Theorem 3.1, we show that τ = 0 and R(0, 2) is symmetric.
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(4) As W is parallel with respect to ∇, we holds (3.17) by Theorem 3.2:

θ(W ) = 0, ρ = 0, λ = 0, D(X,U) = 0.

As λ = θ(W ) = 0 and FW = 0, from (3.16), we have

F (A
L
X) = −eFX, F (A

L
W ) = 0.

Applying ∇X to D(Y, U) = 0 and using (3.11) and ρ = 0, we have

(∇XD)(Y, U) = −D(Y, F (A
N
X))− aD(FX, Y )− θ(U)B(X,Y ).

Substituting this equation into (5.4) such that Z = U and λ = 0, we have

D(X,F (A
N
Y )−D(Y, F (A

N
X) + a{D(X,FY )−D(FX, Y )}

=
c

4
{w(Y )η(X)− w(X)η(Y )}.

Taking X = ξ and Y = W to this equation and using (3.4)2, we get

D(W,F (A
N
ξ))− aD(V,W ) = −

c

4
.

By directed calculation from (2.10), (3.7)1, 2, (3.8)2 and (3.17), we see that

D(W,F (A
N
ξ)) = −g(A

N
ξ, F (A

L
W )) + aD(V,W ) = aD(V,W ).

From the last two equations, we see that c = 0. �

Definition. (1) A screen distribution S(TM) is said to be totally umbilical [5]
if there exists a smooth function γ on a coordinate neighborhood U such that

(5.10) C(X,PY ) = γg(X,PY ).

(2) A half lightlike submanifold M is said to be screen conformal [5] if there
exists a non-vanishing smooth function ϕ on U such that

(5.11) C(X,PY ) = ϕB(X,Y ).

Theorem 5.2. Let M be an irrotational half lightlike submanifold of an indef-

inite complex space form M̄(c) with a semi-symmetric non-metric connection.

If S(TM) is totally umbilical in M or M is screen conformal, then c = 0.

Proof. (1) As S(TM) is totally umbilical, from (3.10)1, 2 and (5.10), we have

B(X,U) = γu(X)− θ(V )η(X), D(X,U) = γw(X)− θ(W )η(X).

Replacing X by V to these two equations, we obtain

(5.12) B(V, U) = 0, D(V, U) = 0.

Applying ∇X to C(Y, PZ) = γg(Y, PZ) and using (3.2), we obtain

(∇XC)(Y, PZ) = (Xγ)g(Y, PZ)

+ γ{B(X,PZ)η(Y )− θ(Y )g(X,PZ)− θ(PZ)g(X,Y )}.

Substituting this equation and (5.10) into (5.5), we have

{Xγ − γσ(X)−
c

4
η(X)}g(Y, PZ)
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− {Y γ − γσ(Y )−
c

4
η(Y )}g(X,PZ)

+ (γ − a){B(X,PZ)η(Y )−B(Y, PZ)η(X)}

− {ρ(X)− eη(X)}D(Y, PZ) + {ρ(Y )− eη(Y )}D(X,PZ)}

=
c

4
{v(X)g(FY, PZ)− v(Y )g(FX,PZ) + 2v(PZ)ḡ(X, JY )}.

Replacing Y by ξ this equation and using (3.4) and λ = 0, we have

(γ − a)B(X,PY ) + {ρ(ξ)− e}D(X,PZ)

= {ξγ − γσ(ξ) −
c

4
}g(X,PY )−

c

4
{v(X)u(PY ) + 2u(X)v(PY )}.

Taking X = U, PY = V and alternately, taking X = V, PY = U to this and
using (5.12) and the facts that B and D are symmetric, we have

ξγ − γσ(ξ) −
3

4
c = 0, ξγ − γσ(ξ) −

2

4
c = 0.

From the two equations of the last relationship, we obtain c = 0.
(2) As M is screen conformal, using (3.10) and (5.11), we obtain

(5.13) B(X,µ) = −η(X)θ(V ), D(X,µ) = −θ(W )η(X),

where we set µ = U −ϕV . Replacing X by ξ to (5.13) and using (3.4), we have

(5.14) θ(V ) = 0, θ(W ) = λ(µ) = 0.

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this equation into (5.5) and using (5.3), we have

{Xϕ− 2ϕτ(X) + [a+ ϕb]η(X)}B(Y, PZ)

− {Y ϕ− 2ϕτ(Y ) + [a+ ϕb]η(Y )}B(X,PZ)

− {ρ(X)− eη(X) + ϕλ(X)}D(Y, PZ)

+ {ρ(Y )− eη(Y ) + ϕλ(Y )}D(X,PZ)

=
c

4
{η(X)g(Y, PZ)− η(Y )g(X,PZ) + [v(X)− ϕu(X)]g(FY, PZ)

− [v(Y )− ϕu(Y )]g(FX,PZ) + 2[v(PZ)− ϕu(PZ)]ḡ(X, JY )}.

Taking Y = ξ and PZ = µ and using (5.13) and (5.14), we have

c

2
{v(X)− 3ϕu(X)} = 0.

Replacing X by V to this equation, we obtain c = 0. �
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