CR-SUBMANIFOLDS OF A LORENTZIAN PARA-SASAKIAN MANIFOLD ENDOWED WITH A QUARTER SYMMETRIC METRIC CONNECTION

Mobin Ahmad

Abstract

We define a quarter symmetric metric connection in a Lorentzian para-Sasakian manifold and study CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection. Moreover, we also obtain integrability conditions of the distributions on CR-submanifolds.

1. Introduction

A. Bejancu introduced the notion of CR-submanifolds of a Kaehler manifold in [3]. Later, CR-submanifolds of Sasakian manifold were studied by M. Kobayashi in [9]. K. Motsumoto introduced the idea of Lorentzian paraSasakian structure and studied its several properties in [10]. B. Prasad in [12], S. Prasad and R. H. Ojha in [13] studied submanifolds of a Lorentzian para-Sasakian manifolds. U. C. De and Anup Kumar Sengupta studied CRsubmanifolds of a Lorentzian para-Sasakian manifold in [7]. In this paper we study CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection.

Let ∇ be a linear connection in an n-dimensional differentiable manifold \bar{M}. The torsion tensor T and the curvature tensor R of ∇ are given respectively by [4]

$$
\begin{aligned}
T(X, Y) & =\nabla_{X} Y-\nabla_{Y} X-[X, Y] \\
R(X, Y) Z & =\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
\end{aligned}
$$

The connection ∇ is symmetric if torsion tensor T vanishes, otherwise it is non-symmetric. The connection ∇ is a metric connection if there is a Riemannian metric g in \bar{M} such that $\nabla g=0$, otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if and only if it is the Levi-Civita connection.

[^0]In [8], S. Golab introduced the idea of quarter symmetric linear connection. A linear connection ∇ is said to be quarter symmetric connection if its torsion tensor T is of the form

$$
T(X, Y)=\eta(Y) \phi X-\eta(X) \phi Y
$$

where η is a 1-form. In [2], the author, J. B. Jun and A. Haseeb studied some properties of hypersurfaces of an almost r-paracontact Riemannian manifold with quarter symmetric metric connection. In [1], the author, C. Ozgur and A. Haseeb studied properties of hypersurfaces of an almost r-paracontact Riemannian manifold with quarter symmetric non-metric connection.

Motivated by the studies of authors in [5], [6], and [11] in this paper we study CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric metric connection. We discuss integrability of distributions on CR-submanifolds with a quarter symmetric metric connection. We also consider parallel distributions on CR-submanifolds.

This paper is organized as follows: In Section 2, we give a brief introduction of Lorentzian para-Sasakian manifold. In Section 3, we study CR-submanifolds of an LP-Sasakian manifold with quarter symmetric metric connection. We find the necessary conditions that the induced connection on a CR-submanifold of an LP-Sasakian manifold is also a quarter symmetric metric connection. We also discuss the integrability conditions of distributions on CR-submanifolds.

2. LP-Sasakian manifold

Let \bar{M} be a $(2 n+1)$-dimensional almost contact metric manifold with a metric tensor g, a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1-form η which satisfy

$$
\begin{gather*}
\phi^{2} X=X+\eta(X) \xi, \eta(\xi)=-1 \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.2}\\
g(X, \xi)=\eta(X) \tag{2.3}\\
g(\phi X, Y)=g(X, \phi Y)=\psi(X, Y) \tag{2.4}
\end{gather*}
$$

for all vector fields X, Y tangent to \bar{M}. Such a manifold is termed as Lorentzian para-contact manifold and the structure (ϕ, η, ξ, g) a Lorentzian para-contact structure [10].

Also in a Lorentzian para-contact structure the following relations hold:

$$
\phi \xi=0, \eta(\phi X)=0, \operatorname{rank}(\phi)=n-1
$$

A Lorentzian para-contact manifold \bar{M} is called Lorentzian para-Sasakian (LP-Sasakian) manifold if [10].

$$
\begin{gather*}
\left(\overline{\bar{\nabla}}_{X} \phi\right)(Y)=g(X, Y) \xi+\eta(Y) X+2 \eta(X) \eta(Y) \xi \tag{2.5}\\
\overline{\bar{\nabla}}_{X} \xi=\phi X \tag{2.6}
\end{gather*}
$$

for all vector fields X, Y tangent to \bar{M}, where $\overline{\bar{\nabla}}$ is the Riemannian connection with respect to g.

3. CR-submanifolds of an LP-Sasakian manifold

Definition 3.1. An m-dimensional Riemannian submanifold M of a Lorentzian para-Sasakian manifold \bar{M} is called a CR-submanifold if ξ is tangent to M and there exists on M a pair of distributions $\left(D, D^{\perp}\right)$ such that
(i) $T M$ orthogonally decomposes as $D \oplus D^{\perp}$,
(ii) the distribution D_{x} is invariant under ϕ, that is, $\phi D_{x} \subset D_{x}$ for each $x \in M$.
(iii) the distribution D^{\perp} is anti invariant under ϕ, that is, $\phi D_{x}^{\perp}(M) \subset$ $T_{x}^{\perp}(M)$ where $T_{x} M$ and $T_{x}^{\perp} M$ are tangent and normal spaces of M at $x \in M$.

The distribution D (resp. D^{\perp}) is called the horizontal (resp. vertical) distribution. The pair $\left(D, D^{\perp}\right)$ is called ξ-horizontal (resp. ξ-vertical) if $\xi_{x} \in$ D_{x} (resp. $\xi_{x} \in D_{x}^{\perp}$) for $x \in M$.

Any vector X tangent to M is given by

$$
\begin{equation*}
X=P X+Q X \tag{3.1}
\end{equation*}
$$

where $P X$ and $Q X$ belong to the distribution D and D^{\perp} respectively. For any vector field N normal to M, we put

$$
\begin{equation*}
\phi N=B N+C N, \tag{3.2}
\end{equation*}
$$

where $B N$ (resp. $C N$) denotes the tangential (resp. normal) component of ϕN.

We remark that owing to the existence of the 1 -form η, we can define a quarter symmetric metric connection $\bar{\nabla}$ as

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi \tag{3.3}
\end{equation*}
$$

such that $\bar{\nabla}_{X} g=0$ for any $X, Y \in T M$.
Inserting (3.3) in (2.5), we have

$$
\begin{align*}
& \left(\bar{\nabla}_{X} \phi\right) Y=0 \tag{3.4}\\
& \bar{\nabla}_{X} \xi=2 \phi X \tag{3.5}
\end{align*}
$$

We denote by g the metric tensor of \bar{M} as well as that induced on M. Let $\bar{\nabla}$ be the quarter symmetric metric connection on \bar{M} and ∇ be the induced connection on M with respect to unit normal N. Then

Theorem 3.2. (i) If M is ξ-horizontal, $X, Y \in D$ and D is parallel with respect to ∇, then the connection induced on a $C R$-submanifold of an LPSasakian manifold with a quarter symmetric metric connection is also a quarter symmetric metric connection.
(ii) If M is ξ-vertical, $X, Y \in D^{\perp}$ and D^{\perp} is parallel with respect to ∇, then the connection induced on a CR-submanifold of an LP-Sasakian manifold
with a quarter symmetric metric connection is also a quarter symmetric metric connection.
(iii) The Gauss formula with respect to the quarter symmetric metric connection is of the form $\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y)$.
Proof. Let ∇ be the induced connection with respect to unit normal N on a CR-submanifold of an LP-Sasakian manifold from quarter symmetric metric connection $\bar{\nabla}$. Then

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+m(X, Y) \tag{3.6}
\end{equation*}
$$

where m is a tensor field of type $(0,2)$ on the CR-submanifolds M. If $\dot{\nabla}$ is the induced connection on CR-submanifold from Riemannian connection $\overline{\bar{\nabla}}$, then

$$
\begin{equation*}
\overline{\bar{\nabla}}_{X} Y=\dot{\nabla}_{X} Y+h(X, Y) \tag{3.7}
\end{equation*}
$$

where h is a second fundamental form. By the definition of quarter symmetric metric connection

$$
\bar{\nabla}_{X} Y=\overline{\bar{\nabla}}_{X} Y+\eta(Y) \phi X-g(\phi X, Y) \xi
$$

Now, using above equations we have

$$
\nabla_{X} Y+m(X, Y)=\dot{\nabla}_{X} Y+h(X, Y)+\eta(Y) \phi X-g(\phi X, Y) \xi
$$

Using (3.1) the above equation can be written as

$$
\begin{align*}
& P \nabla_{X} Y+Q \nabla_{X} Y+m(X, Y) \\
= & P \dot{\nabla}_{X} Y+Q \dot{\nabla}_{X} Y+h(X, Y)+\eta(Y) \phi P X+\eta(Y) \phi Q X \tag{3.8}\\
& -g(\phi X, Y) P \xi-g(\phi X, Y) Q \xi .
\end{align*}
$$

Comparing tangential and normal components from both sides, we get

$$
\begin{equation*}
h(X, Y)=m(X, Y) \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
P \nabla_{X} Y=P \dot{\nabla}_{X} Y+\eta(Y) \phi P X-g(\phi X, Y) P \xi \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
Q \nabla_{X} Y=Q \dot{\nabla}_{X} Y+\eta(Y) \phi Q X-g(\phi X, Y) Q \xi \tag{3.11}
\end{equation*}
$$

Using (3.9), the Gauss formula for a $C R$-submanifold of an $L P$-Sasakian manifold with quarter symmetric metric connection is

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{3.12}
\end{equation*}
$$

This proves (iii). In view of (3.10), if M is ξ-horizontal, $X, Y \in D$ and D is parallel with respect to ∇, then the connection induced on a $C R$-submanifold of an $L P$-Sasakian manifold with a quarter symmetric metric connection is also a quarter symmetric metric connection.

Similarly, using (3.11), if M is ξ-vertical, $X, Y \in D^{\perp}$ and D^{\perp} is parallel with respect to ∇, then the connection induced on a $C R$-submanifold of an $L P$-Sasakian manifold with a quarter symmetric metric connection is also a quarter symmetric metric connection.

Weingarten formula is given by

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla \stackrel{\perp}{X}^{\perp} N+\eta(N) \phi X \tag{3.13}
\end{equation*}
$$

for any $X, Y \in T M, N \in T^{\perp} M$, where h (resp. A_{N}) is the second fundamental form (resp. tensor) of M in M and ∇^{\perp} denotes the operator of the normal connection. Moreover, we have

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) . \tag{3.14}
\end{equation*}
$$

Integrability of distributions

Lemma 3.3. Let M be a CR-submanifold of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then

$$
\begin{gather*}
P \nabla_{X} \phi P Y-P A_{\phi Q Y} X=\phi P \nabla_{X} Y, \tag{3.15}\\
Q \nabla_{X} \phi P Y-Q A_{\phi Q Y} X=B h(X, Y), \tag{3.16}\\
h(X, \phi P Y)+\nabla_{X}^{\perp} \phi Q Y=\phi Q \nabla_{X} Y+C h(X, Y) \tag{3.17}
\end{gather*}
$$

for all $X, Y \in T M$.
Proof. By virtue of (3.1), (3.2), (3.4), (3.12), and (3.13), we can easily get

$$
\begin{aligned}
& P \nabla_{X} \phi P Y+Q \nabla_{X} \phi P Y+h(X, \phi P Y)-P A_{\phi Q Y} X-Q A_{\phi Q Y} X+\nabla_{X}^{\perp} \phi Q Y \\
= & \phi P \nabla_{X} Y+\phi Q \nabla_{X} Y+B h(X, Y)+C h(X, Y) .
\end{aligned}
$$

Equations (3.15)-(3.17) follows by equating horizontal, vertical and normal components.

Lemma 3.4. Let M be a ξ-vertical CR-submanifold of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then

$$
\phi P[Y, Z]=A_{\phi Y} Z-A_{\phi Z} Y
$$

for any $Y, Z \in D^{\perp}$.
Proof. By virtue of (3.4), (3.12) and (3.13) we have for $Y, Z \in D^{\perp}$

$$
-A_{\phi Z} Y+\nabla_{Y}^{\frac{1}{Y}} \phi Z=\phi\left(\nabla_{Y} Z+h(Y, Z)\right) .
$$

Using (3.17), we get

$$
\phi P \nabla_{Y} Z=-A_{\phi Z} Y-B h(Y, Z) .
$$

Interchanging Y and Z, we have

$$
\phi P \nabla_{Z} Y=-A_{\phi Y} Z-B h(Z, Y)
$$

On subtracting above two equations, we have

$$
\phi P[Y, Z]=A_{\phi Y} Z-A_{\phi Z} Y .
$$

Thus we have:

Theorem 3.5. Let M be a CR-submanifold of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then the distribution D^{\perp} is integrable if and only if

$$
A_{\phi Z} Y=A_{\phi Y} Z
$$

for all $Y, Z \in D^{\perp}$.
Proposition 3.6. Let M be a ξ-vertical $C R$-submanifold of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then

$$
\begin{equation*}
\phi C h(X, Y)=C h(\phi X, Y)=C h(X, \phi Y) \tag{3.18}
\end{equation*}
$$

for any $X, Y \in D$.
Proof. From (3.16), we have for $X, Y \in D$

$$
\begin{equation*}
Q \nabla_{X} \phi Y=B h(X, Y) \tag{3.19}
\end{equation*}
$$

Replacing X by ϕX, we have

$$
\begin{equation*}
Q \nabla_{\phi X} \phi Y=B h(\phi X, Y) \tag{3.20}
\end{equation*}
$$

Using (3.19) and (2.1), we get

$$
\begin{equation*}
Q \nabla_{X} Y=g(\phi X, Y) Q \xi+B h(\phi X, Y) \tag{3.21}
\end{equation*}
$$

Adding (3.20) and (3.21), we have

$$
\left(Q \nabla_{X} Y+Q \nabla_{\phi X} \phi Y\right) \in D
$$

Replacing X by ϕX and Y by ϕY in (3.17), we have

$$
\begin{equation*}
-h(\phi X, Y)=\phi Q\left(\nabla_{\phi X} \phi Y\right)+C h(\phi X, \phi Y) \tag{3.22}
\end{equation*}
$$

Also interchanging X and Y in (3.17), we have

$$
\begin{equation*}
h(\phi X, Y)=\phi Q\left(\nabla_{Y} X\right)+C h(X, Y) \tag{3.23}
\end{equation*}
$$

Adding (3.22), (3.23) and using (2.1) and $\left(Q \nabla_{X} Y+Q \nabla_{\phi X} \phi Y\right) \in D$, we get

$$
C h(\phi X, Y)=C h(X, \phi Y)
$$

Again from (3.19) and (2.1), we have

$$
Q \nabla_{X} Y=g(X, \phi Y) Q \xi+2 \eta(X) \eta(Y) Q \xi+B h(X, \phi Y)
$$

Using above equation in (3.17), we get

$$
C h(\phi X, Y)=\phi C h(X, Y)
$$

which completes the proposition.
Theorem 3.7. Let M be a ξ-vertical $C R$-submanifold of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then the distribution D is integrable if and only if $h(X, \phi Y)=h(Y, \phi X)$ for any $Y, Z \in D$.

Proof. From (3.17), we get

$$
h(X, \phi Y)=\phi Q \nabla_{X} Y+C h(X, Y)
$$

which gives

$$
\phi Q[X, Y]=h(X, \phi Y)-h(Y, \phi X)
$$

Thus D is integrable if and only if $h(X, \phi Y)=h(Y, \phi X)$.
Proposition 3.8. Let M be a ξ-vertical CR-submanifold of a Lorentzian paraSasakian manifold \bar{M} with quarter symmetric metric connection. Then the distribution D^{\perp} is parallel with respect to the connection ∇ on M, if and only if, $A_{N} X \in D^{\perp}$ for each $X \in D^{\perp}$ and $N \in T M^{\perp}$.

Proof. Let $Y, X \in D^{\perp}$. Then using (3.12) and (3.13), we have

$$
-A_{\phi Y} X+\nabla_{X}^{\perp} \phi Y=\phi\left(\nabla_{X} Y+h(X, Y)\right)
$$

Taking inner product with $Z \in D$, we have

$$
-g\left(A_{\phi Y} X, Z\right)=g\left(\nabla_{X} Y, \phi Z\right)
$$

Therefore, $\nabla_{X} Y=0$ if and only if $A_{\phi Y} X \in D^{\perp}$ for all $X \in D^{\perp}$. From which our assertion follows.

Definition 3.9. A CR-submanifold M of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection is said to be totally geodesic if $h(X, Y)=$ 0 for $X \in D$ and $Y \in D^{\perp}$.

It follows immediately that a CR-submanifold is mixed totally geodesic if and only if $A_{N} X \in D$ for each $X \in D$ and $N \in T^{\perp} M$.

Let $X \in D$ and $Y \in \phi D^{\perp}$. For a mixed totally geodesic ξ-horizontal CRsubmanifold M of an LP-Sasakian manifold \bar{M} with quarter symmetric metric connection. Then from (3.4) we have

$$
\left(\bar{\nabla}_{X} \phi\right) N=0
$$

Since $\bar{\nabla}_{X} \phi N=\left(\bar{\nabla}_{X} \phi\right) N+\phi\left(\bar{\nabla}_{X} N\right)$ so that $\bar{\nabla}_{X} \phi N=\phi\left(\bar{\nabla}_{X} N\right)$. Using (3.12) and (3.13) in above equation, we have

$$
\nabla_{X}(\phi N)=-\phi A_{N} X+\phi \nabla_{X}^{\perp} N
$$

as $\phi A_{N} X \in D$, so $\nabla_{X} \phi N \in D$ if and only if $\phi \nabla \frac{1}{X} N=0$.
Thus we have the following theorem.
Theorem 3.10. Let M be a mixed totally ξ-horizontal CR-submanifold of an $L P-S a s a k i a n ~ m a n i f o l d ~ \bar{M}$ with quarter symmetric metric connection. Then the normal section $N \in \phi D^{\perp}$ is D-parallel if and only if $\nabla_{X}(\phi N) \in D$ for $X \in D$.

References

[1] M. Ahmad, A. Hasseb, and C. Ozgur, Hypersurfaces of an almost r-paracontact Riemannian manifold endowed with a quarter symmetric non-metric connection, Kyungpook Math. J. 49 (2009), no. 3, 533-543.
[2] M. Ahmad, J. B. Jun, and A. Haseeb, Hypersurfaces of almost r-paracontact Riemannian manifold endowed with a quarter symmetric metric connection, Bull. Korean Math. Soc. 46 (2009), no. 3, 477-487.
[3] A. Bejancu, CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135-142.
[4] , Geometry of CR-submanifolds, D. Reidel Pub. Co. 1986.
[5] Lovejoy S. K. Das, M. Ahmad, and J. P. Ojha, CR-submanifolds of LP-Sasakian manifold with semi-symmetric non-metric connection, communicated.
[6] Lovejoy S. K. Das and M. Ahmad, CR-submanifolds of a Lorentzian para-Sasakian manifold endowed with a quarter symmetric non-metric connection, Math. Sci. Res. J. 13 (2009), no. 7, 161-169.
[7] U. C. De and Anup Kumar Sengupta, CR-submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malays. Math. Sci. Soc. (2) 23 (2000), no. 2, 99-106.
[8] S. Golab, On semi-symmetric and quarter symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249-254.
[9] M. Kobayashi, CR submanifolds of a Sasakian manifold, Tensor (N.S.) 35 (1981), no. 3, 297-307.
[10] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
[11] C. Özgür, M. Ahmad, A. Hasseb, CR-submanifolds of a Lorentzian para-Sasakian manifold with a semi-symmetric metric connection, Hacet. J. Math. Stat. 39 (2010), no. 4, 489-496.
[12] B. Prasad, Semi-invariant submanifolds of a Lorentzian para-Sasakian manifold, Bull. Malaysian Math. Soc. (2) 21 (1998), no. 1, 21-26.
[13] S. Prasad and R. H. Ojha, Lorentzian para-contact submanifolds, Publ. Math. Debrecen 44 (1994), no. 3-4, 215-223.

Department of Mathematics
Faculty of Applied Sciences
Integral University
Kursi Road, Lucknow - 226026, India
E-mail address: mobinahmad@rediffmail.com

[^0]: Received November 5, 2009.
 2010 Mathematics Subject Classification. 53D12, 53C05.
 Key words and phrases. CR-submanifolds, Lorentzian para-Sasakian manifold, quarter symmetric metric connection, integrability conditions of the distributions.

