• Title/Summary/Keyword: metric connection

Search Result 154, Processing Time 0.02 seconds

ON GENERALIZED FINSLER STRUCTURES WITH A VANISHING hυ-TORSION

  • Ichijyo, Yoshihiro;Lee, Il-Yong;Park, Hong-Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.369-378
    • /
    • 2004
  • A canonical Finsler connection Nr is defined by a generalized Finsler structure called a (G, N)-structure, where G is a generalized Finsler metric and N is a nonlinear connection given in a differentiable manifold, respectively. If NT is linear, then the(G, N)-structure has a linearity in a sense and is called Berwaldian. In the present paper, we discuss what it means that NT is with a vanishing hv-torsion: ${P^{i}}\;_{jk}\;=\;0$ and introduce the notion of a stronger type for linearity of a (G, N)-structure. For important examples, we finally investigate the cases of a Finsler manifold and a Rizza manifold.

ALMOST EINSTEIN MANIFOLDS WITH CIRCULANT STRUCTURES

  • Dokuzova, Iva
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1441-1456
    • /
    • 2017
  • We consider a 3-dimensional Riemannian manifold M with a circulant metric g and a circulant structure q satisfying $q^3=id$. The structure q is compatible with g such that an isometry is induced in any tangent space of M. We introduce three classes of such manifolds. Two of them are determined by special properties of the curvature tensor. The third class is composed by manifolds whose structure q is parallel with respect to the Levi-Civita connection of g. We obtain some curvature properties of these manifolds (M, g, q) and give some explicit examples of such manifolds.

ON A HYPERSURFACE OF THE FIRST APPROXIMATE MATSUMOTO SPACE

  • Lee, Il-Yong;Jun, Dong-Gum
    • East Asian mathematical journal
    • /
    • v.17 no.2
    • /
    • pp.325-337
    • /
    • 2001
  • We consider the special hypersurface of the first approximate Matsumoto metric with $b_i(x)={\partial}_ib$ being the gradient of a scalar function b(x). In this paper, we consider the hypersurface of the first approximate Matsumoto space with the same equation b(x)=constant. We are devoted to finding the condition for this hypersurface to be a hyperplane of the first or second kind. We show that this hypersurface is not a hyper-plane of third kind.

  • PDF

ON COMPLEX FINSLER SPACES WITH RANDERS METRIC

  • Aldea, Nicoleta;Munteanu, Gheorghe
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.949-966
    • /
    • 2009
  • In this paper we introduce in study a new class of complex Finsler spaces, namely the complex Randers spaces, for which the fundamental metric tensor and the Chern-Finsler connection are determined. A special approach is devoted to $K{\ddot{a}}ahler$-Randers metrics. Using the length arc parametrization for the extremal curves of the Euler-Lagrange equations we obtain a complex nonlinear connections of Lorentz type in a complex Randers space.

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

A Study of IP QoS(Quality of Service) Metric Sizing Based on the Connection and Transmission Quality (접속품질과 전송품질을 기반으로 한 IP QoS(Quality of Service) 측정 메트릭스 정립)

  • Noh, SiChoon;Kim, Jeom goo
    • Convergence Security Journal
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • IP QoS is not required to overcome the limitations of the existing Best Effort Service to connect to the explosion of the Internet traffic revenue. To IP QoS requirements of next-generation communication network, Metric Sizing Methodology is very important. However, IP networks have been developed with a focus gender flexibility and scalability than the QoS. Therefore, it is necessary to secure the quality measures for different existing IP technology to apply QoS in IP networks. When establishing the connection quality and transmission quality, based on the IP QoS(Quality of Service) objective data quality metrics can be obtained by analyzing the communication quality hindrance. Understanding the communication quality level may evaluate quality sensitive area and quality hindrance. Establish effective quality metrics can be expected to promote effective and customer satisfaction through improved quality, improved call quality for this issue.

YAMABE SOLITONS ON KENMOTSU MANIFOLDS

  • Hui, Shyamal Kumar;Mandal, Yadab Chandra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.321-331
    • /
    • 2019
  • The present paper deals with a study of infinitesimal CL-transformations on Kenmotsu manifolds, whose metric is Yamabe soliton and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Among others, we find a necessary and sufficient condition of a Yamabe soliton on Kenmotsu manifold with respect to CL-connection to be Yamabe soliton on Kenmotsu manifold with respect to Levi-Civita connection. We found the necessary and sufficient condition for the Yamabe soliton structure to be invariant under Schouten-Van Kampen connection. Finally, we constructed an example of steady Yamabe soliton on 3-dimensional Kenmotsu manifolds with respect to Schouten-Van Kampen connection.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 SATISFYING 𝔏ξ∇ = 0 IN A NONFLAT COMPLEX SPACE FORM

  • AHN, SEONG-SOO;LEE, SEONG-BAEK;LEE, AN-AYE
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.133-143
    • /
    • 2001
  • In this paper, we characterize some semi-invariant submanifolds of codimension 3 with almost contact metric structure (${\phi}$, ${\xi}$, g) satisfying 𝔏ξ∇ = 0 in a nonflat complex space form, where ${\nabla}$ denotes the Riemannian connection induced on the submanifold, and 𝔏ξ is the operator of the Lie derivative with respect to the structure vector field ${\xi}$.

  • PDF

EINSTEIN HALF LIGHTLIKE SUBMANIFOLDS OF CODIMENSION 2

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • In this paper we study the geometry of Einstein half light like submanifolds M of a Lorentz manifold ($\bar{M}$(c), $\bar{g}$) of constant curvature c, equipped with an integrable screen distribution on M such that the induced connection ${\nabla}$ is a metric connection and the operator $A_u$ is a screen shape operator.

  • PDF