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ON COMPLEX FINSLER SPACES WITH RANDERS METRIC

Nicoleta Aldea and Gheorghe Munteanu

Abstract. In this paper we introduce in study a new class of complex
Finsler spaces, namely the complex Randers spaces, for which the funda-
mental metric tensor and the Chern-Finsler connection are determined. A
special approach is devoted to Kähler-Randers metrics. Using the length
arc parametrization for the extremal curves of the Euler-Lagrange equa-
tions we obtain a complex nonlinear connections of Lorentz type in a
complex Randers space.

1. Introduction

The real Randers metrics were first introduced by G. Randers in the con-
text of general relativity and they were applied to the theory of the electron
microscope by R. Ingarden [11]. The importance of real Randers spaces is
also pointed out in [6] and the obtained results are remarkable. Recently, it
was shown that the real Randers metrics are solutions to Zermelo’s navigation
problem ([8]) and the classification of real Randers metrics of constant flag
curvature was finally completed ([6, 8, 21, 13]).

As compared to the real case, in complex Finsler geometry there are not
so many known classes of complex Finsler metrics. Besides the significant
Kobayashi and Caratheodory metrics (see [1]), which quickened the study of
such Finsler geometry, we know two rather trivial classes of complex Finsler
metrics: the complex Finsler metrics which come from Hermitian metrics on the
base manifold (the purely Hermitian metrics in [15]), and the locally Minkowski
complex metrics. Therefore, any new class of complex Finsler spaces with some
meaning in both theory and applications is welcome.

In the present paper, we have three goals. The first goal is to introduce the
complex Randers metrics, i.e., complex metrics constructed from just two pieces
of familiar data: a purely Hermitian metric and a differential (1, 0)-form, both
globally defined on an underlying complex manifold. We show that the com-
plex Randers metric thus built is a complex Finsler metric (Theorem 2.1). We
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determine the fundamental metric tensor of a complex Randers space (Proposi-
tion 2.1), its inverse and determinant, (Proposition 2.3). Moreover, a complex
Randers metric also produces another invertible d-tensor, (Proposition 2.4). By
deformation of some purely Hermitian metrics we obtain examples of complex
Randers metric.

The second goal is to find the conditions such that a complex Randers space
is weakly Kähler or moreover, strongly Kähler. A special attention is devoted
to a class of complex Randers metrics with an additional assumption. We find a
necessary and sufficient condition that such a complex Randers metric should
be weakly Kähler (Proposition 3.1) and also some outcomes about strongly
Kähler-Randers metrics, (Propositions 3.2, 3.3). At the end of Section 3 our
results are applied to some examples, better illustrating the interest for this
work.

Our third goal is the study of the variational problem for the Lagrangian
of a complex Randers space. This approach is somewhat different than the
classical one known in complex Finsler spaces ([17, 15]). As in the real case,
[14], using the canonical parametrization for the extremal curves of the Euler-
Lagrange equations, we obtain the Lorentz equations of a complex Randers
space and from these a complex nonlinear connection of Lorentz type is deduced
(Proposition 4.3).

The study that we made in this paper often contains computational argu-
ments (cf. real case), some of which are presented in detail here while in other
cases we resumed to only sketching the essential ideas. In our view, the effort
to decipher these computations is rewarded by the fact that this paper offers a
new interesting class of complex Finsler spaces.

A first draft of this paper was presented at Nat. Sem. on Finsler, Lagrange
and Hamilton spaces, Braşov, Sept., 2006. A short outline of these results will
be found in the Seminar’s volume and some ideas were already cited by B. Chen
and Y. Shen in a recent work ([9]). The present paper completes and clarifies
better the idea of complex Randers space. Moreover, we hope that this class of
metrics will offer a geometrical model, especially for quantum physics theories.

In the following, let us briefly set the basic notions which are needed; for
more information see [1, 15].

Let M be a complex manifold, dimC M = n. The complexified of the real
tangent bundle TCM splits into the sum of holomorphic tangent bundle T ′M
and its conjugate T ′′M . The bundle T ′M is in its turn a complex manifold,
the local coordinates in a chart will be denoted by u = (zk, ηk) and these are
changed by the rules: z′k = z′k (z) , η′k = ∂z′k

∂zj ηj . The complexified tangent
bundle of T ′M is decomposed as TC(T ′M) = T ′(T ′M)⊕ T ′′(T ′M). A natural
local frame for T ′u(T ′M) is { ∂

∂zk , ∂
∂ηk }, which have changes by the rules obtained

with Jacobi matrix of above transformations. Note that the change rule of ∂
∂zk

contains the second order partial derivatives.
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Let V (T ′M) = kerπ∗ ⊂ T ′(T ′M) be the vertical bundle, spanned lo-
cally by { ∂

∂ηk }. A complex nonlinear connection, briefly (c.n.c.), determines
a supplementary complex subbundle to V (T ′M) in T ′(T ′M), i.e., T ′(T ′M) =
H(T ′M) ⊕ V (T ′M). It determines an adapted frame { δ

δzk = ∂
∂zk − N j

k
∂

∂ηj },
where N j

k(z, η) are the coefficients of the (c.n.c.), ([1], [2], [15]).
A continuous function F : T ′M → R+ is called complex Finsler metric on

M if it satisfies the conditions:
i) L := F 2 is smooth on T̃ ′M := T ′M\{0};
ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;
iii) F (z, λη) = |λ|F (z, η) for ∀λ ∈ C;
iv) the Hermitian matrix

(
gij̄(z, η)

)
, with gij̄ = ∂2L

∂ηi∂η̄j , called the funda-
mental metric tensor, is positive definite.

The pair (M,F ) is called a complex Finsler space. The iv)-th assumption
involves the strongly pseudoconvexity of the Finsler metric F on complex in-
dicatrix IF,z = {η ∈ T ′zM | F (z, η) < 1} .

Further, in a complex Finsler space a Hermitian connection of (1, 0)-type
has a special meaning, named in [1] the Chern-Finsler connection. In notations
from [15] it is DΓN = (Li

jk, 0, Ci
jk, 0), where

(1.1)
CF

N i
j= gm̄i ∂glm̄

∂zj
ηl ; Li

jk = gm̄i δgjm̄

δzk
=

∂N i
k

∂ηj
; Ci

jk = gm̄i ∂gjm̄

∂ηk
.

Now, let us recall that in [1]’s terminology, the complex Finsler space (M,F )
is strongly Kähler if and only if Li

jk − Li
kj = 0, Kähler if and only if (Li

jk −
Li

kj)η
j = 0 and weakly Kähler if and only if gil(L

i
jk − Li

kj)η
jηl = 0. In the

particular case of purely Hermitian metrics, that is gij = gij(z), those three
nuances of Kähler coincide ([18]).

For the vertical section L = ηk∂̇k, with ∂̇k := ∂̇
∂ηk , called the Liouville

complex field (or the vertical radial vector field in [1]), we consider its horizontal
lift χ := ηkδk, (δk := δ

δzk ).
According to [1, p. 108] and [15, p. 81], the holomorphic curvature of the

complex Finsler space (M, F ) in direction η is

(1.2) KF (z, η) =
2
L2

G(R(χ, χ̄)χ, χ̄),

and locally it has the following expression (see [3])

(1.3) KF (z, η) =
2
L2

Rj̄kη̄jηk, where Rj̄k = −glj̄δh̄

CF

(N l
k)η̄h.

More informations can be found in [1, 2, 3, 15, 18].
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2. Complex Randers spaces

Following the ideas from real case, [6, 8, 21, 13], we shall introduce a new
class of complex Finsler metrics. We consider z ∈ M and η ∈ T ′zM , η = ηi ∂

∂zi .
On M let
• a := aij̄(z)dzi ⊗ dz̄j be a purely Hermitian positive metric and
• b = bi(z)dzi be a differential (1, 0)-form.
By these objects we define the function F on T ′M

(2.1) F (z, η) := α(z, η) + |β(z, η)|,
where

α(z, η) : =
√

aij̄(z)ηiη̄j ;(2.2)

|β(z, η)| =
√

β(z, η)β(z, η) with β(z, η) = bi(z)ηi.

By analogy with the real case, we call the function from (2.1) the complex
Randers metric and the pair (M,α + |β|) a complex Randers space. Such a
metric is only quoted as an example of complex Finsler metric in [10, 20].

Our goal in the sequel is to find the circumstances in which the function
(2.1) is a complex Finsler metric. Some remarks are immediate. Due to the
presence of |β|, the complex Randers metric F := α+|β| is positive and smooth
on T ′M\{0}. The complex Randers metric is purely Hermitian if and only if
β vanishes identically.

Obviously, the function L := F 2 = (α+|β|)2 depends on z and η by means of
the real valued functions α := α(z, η) and |β| := |β(z, η)|. Moreover α and β are
homogeneous with respect to η, i.e., α(z, λη) = |λ|α(z, η), β(z, λη) = λβ(z, η)
for any λ ∈ C, thus L(z, λη) = λλ̄L(z, η) for any λ ∈ C, and so the homogeneity
property implies

∂α

∂ηi
ηi =

1
2
α ;

∂|β|
∂ηi

ηi =
1
2
|β| ; Lα = L|β| = 2F ; αLα + |β|L|β| = 2L;

αLαα + |β|Lα|β| = Lα ; αLα|β| + |β|L|β||β| = L|β|;

α2Lαα + 2α|β|Lα|β| + |β|2L|β||β| = 2L,

where Lα := ∂L
∂α , L|β| := ∂L

∂|β| , Lαα := ∂2L
∂α2 , etc.

The main issue that needs to be checked is the strongly pseudoconvexity of
the complex Randers function. First we shall determine the fundamental tensor
of the complex Randers space (M,α + |β|), i.e., gij̄ = ∂2(α + |β|)2 / ∂ηi∂η̄j .
For this, let us consider the settings

∂α

∂ηi
=

1
2α

li ;
∂|β|
∂ηi

=
β̄

2|β|bi;(2.3)

bi : = aj̄ibj̄ ; ||b||2 := aj̄ibibj̄ ; γ := L + α2(||b||2 − 1);

ηi : =
∂L

∂ηi
= Lα

∂α

∂ηi
+ L|β|

∂|β|
∂ηi

=
F

α
li +

F β̄

|β| bi,
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where li := aij̄ η̄
j and (aj̄i) is the Hermitian inverse of (aij̄) matrix.

Proposition 2.1. The fundamental metric tensor of the complex Randers met-
ric F := α + |β| is given by

(2.4) gij̄ =
F

α
hij̄ +

F

2|β|bibj̄ +
1

2L
ηiηj̄ ,

where hij̄ := aij̄ − 1
2α2 lilj̄ .

Proof. Indeed, from gij̄ = ∂ηi

∂η̄j = Lαα
∂α
∂η̄j

∂α
∂ηi + Lα|β|

(
∂|β|
∂η̄j

∂α
∂ηi + ∂α

∂η̄j

∂|β|
∂ηi

)
+

L|β||β|
∂|β|
∂η̄j

∂|β|
∂ηi + Lα

∂2α
∂ηi∂η̄j + L|β|

∂2|β|
∂ηi∂η̄j and (2.3), we deduce (2.4). ¤

The next goal is to find the formulas for the determinant and the inverse
of the fundamental tensor gij̄ . The solution is obtained by adapting Propo-
sition 11.2.1, p. 287 from [6] for an arbitrary non-singular Hermitian matrix
(Qij̄). The result is,

Proposition 2.2. Suppose:
• (Qij̄) is a non-singular n× n complex matrix with inverse (Qj̄i);
• Ci and Cı̄ := Ci, i = 1, . . . , n, are complex numbers;
• Ci := Qj̄iCj̄ and its conjugates; C2 := CiCi = C̄iCı̄; Hij̄ := Qij̄ ± CiCj̄.

Then
i) det(Hij̄) = (1± C2) det(Qij̄);
ii) Whenever 1± C2 6= 0, the matrix (Hij̄) is invertible and in this case its

inverse is H j̄i = Qj̄i ∓ 1
1±C2 CiC j̄ .

Proposition 2.3. For the complex Randers metric F := α + |β| we have

i) gj̄i =
α

F
aj̄i +

|β|(α||b||2 + |β|)
Lγ

ηiη̄j − α3

Fγ
bib̄j − α

Fγ

(
β̄ηib̄j + βbiη̄j

)
;

ii) det
(
gij̄

)
=

(
F

α

)n
γ

2α|β| det
(
aij̄

)
.

Proof. To prove the claims we apply the above Proposition in a recursive algo-
rithm in three steps. We write gij̄ from (2.4) in the form:

gij̄ =
F

α

(
aij̄ −

1
2α2

lilj̄ +
α

2|β|bibj̄ +
α

2LF
ηiηj̄

)
.

1) In the first step, we set Qij̄ := aij̄ and Ci := 1
α
√

2
li. By applying the

Proposition 2.2 we obtain Qj̄i = aj̄i, C2 = 1
2 , 1 − C2 = 1

2 and Ci = 1
α
√

2
ηi.

So, the matrix Hij̄ = aij̄ − 1
2α2 lilj̄ is invertible with H j̄i = aj̄i + 1

α2 ηiηj̄ and
det

(
aij̄ − 1

2α2 lilj̄
)

= 1
2 det

(
aij̄

)
.

2) Now, we consider Qij̄ := aij̄ − 1
2α2 lilj̄ and Ci :=

√
α

2|β|bi. By applying

the Proposition 2.2 we obtain this time:

Qj̄i = aj̄i +
1
α2

ηiη̄j ,
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C2 =
α

2|β|
(

aj̄i +
1
α2

ηiη̄j

)
bibj̄ =

α2||b||2 + |β|2
2α|β| ,

1 + C2 =
γ

2α|β| 6= 0

and

Ci =
√

α

2|β|
(

aj̄i +
1
α2

ηiη̄j

)
bj̄ =

√
α

2|β|
(

bi +
β̄

α2
ηi

)
.

It results that the inverse of Hij̄ = aij̄ − 1
2α2 lilj̄ + α

2|β|bibj̄ exists and it is

H j̄i = aj̄i + 1
α2 ηiη̄j − α2

γ

(
bi + β̄

α2 ηi
)(

b̄j + β
α2 η̄j

)
, and

det
(

aij̄ −
1

2α2
lilj̄ +

α

2|β|bibj̄

)
=

γ

2α|β| det
(

aij̄ −
1

2α2
lilj̄

)
=

γ

4α|β| det
(
aij̄

)
.

3) Finally we put Qij̄ := aij̄ − 1
2α2 lilj̄ + α

2|β|bibj̄ and Ci :=
√

α
2LF ηi. From

here, we obtain

Qj̄i = aj̄i +
1
α2

ηiη̄j − α2

γ

(
bi +

β̄

α2
ηi

)(
b̄j +

β

α2
η̄j

)
,

C2 =
α

2LF

[
aj̄i +

1
α2

ηiη̄j − α2

γ

(
bi +

β̄

α2
ηi

)(
b̄j +

β

α2
η̄j

)]
ηiηj̄ = 1,

1 + C2 = 2,

and

Ci =
√

α

2LF

[
aj̄i +

1
α2

ηiη̄j−α2

γ

(
bi +

β̄

α2
ηi

)(
b̄j +

β

α2
η̄j

)]
ηj̄ =

2F

α

√
α

2LF
ηi.

By Proposition 2.2 it results that the inverse of

Hij̄ = aij̄ −
1

2α2
lilj̄ +

α

2|β|bibj̄ +
α

2LF
ηiηj̄

is

H j̄i = aj̄i +
1
α2

ηiη̄j − α2

γ

(
bi +

β̄

α2
ηi

)(
b̄j +

β

α2
η̄j

)
− 1

αF
ηiη̄j

and

det
(

aij̄ −
1

2α2
lilj̄ +

α

2|β|bibj̄ +
α

2LF
ηiηj̄

)
= 2 det

(
aij̄ −

1
2α2

lilj̄ +
α

2|β|bibj̄

)

=
γ

2α|β| det
(
aij̄

)
.

But, gij̄ = F
α Hij̄ , with Hij̄ from 3). Thus, gj̄i = α

F H j̄i and det
(
gij̄

)
=(

F
α

)n
det

(
Hij̄

)
. From here, immediately results i) and ii). ¤

Having the formula for det
(
gij̄

)
, we can say that gij̄(z, η) is positive definite

if and only if γ > 0 at each nonzero η in T ′zM. So we have proved:

Theorem 2.1. A complex Randers metric with γ > 0 is a complex Finsler
metric.
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If the quadratic form h(z, η) := (aij̄ − bibj̄)ηiη̄j is positive definite, then
substituting ηiη̄j with bib̄j it follows that ||b||2(1− ||b||2) > 0, which says that
||b||2 ∈ (0, 1) and then γ > 0, since γ = 2α|β|+ |β|2 +α2||b||2. Equivalently the
positive definite of the quadratic form means that α2 > |β|2, or in other words
sup |β|

α < 1 for all (z, η) ∈ T ′M\{0}. The last assumption is required in [20]
and no other restrictive conditions are needful for a complex Randers metric
to be a complex Finsler metric.

Example 2.1. If α(z, η) = mc
√

γij̄(z)ηiη̄j and β(z, η) = e
mAi(z)ηi, where m,

c, e are real scalars, a model for complex electrodynamics is obtain.

Example 2.2. We consider α given by

(2.5) α2(z, η) :=
|η|2 + ε

(
|z|2|η|2 − |〈z, η〉|2

)

(1 + ε|z|2)2 ,

where |z|2 :=
∑n

k=1z
kzk, 〈z, η〉 :=

∑n
k=1z

kηk, |〈z, η〉|2 = 〈z, η〉〈z, η〉, defined

over the disk ∆n
r =

{
z ∈ Cn, |z| < r, r :=

√
1
|ε|

}
if ε < 0, on Cn if ε = 0 and

on the complex projective space Pn(C) if ε > 0. Note that α2(z, η) = aij̄(z)ηiη̄j

and thus determines purely Hermitian metrics which have special properties.
They are Kähler with constant holomorphic curvature Kα = 4ε. Particularly,
for ε = −1 we obtain the Bergman metric on the unit disk ∆n := ∆n

1 ; for ε = 0
the Euclidean metric on Cn, and for ε = 1 the Fubini-Study metric on Pn(C).

By deformation of (2.5) metrics, taking |β(z, η)| = |〈z,η〉|
1+ε|z|2 we obtain some

examples of complex Randers metrics:

(2.6) Fε :=

√
|η|2 + ε

(
|z|2|η|2 − |〈z, η〉|2

)

1 + ε|z|2 +
|〈z, η〉|

1 + ε|z|2 .

For example, F−1 is of negative holomorphic curvature KF−1 = −2αF−1
γ ,

γ := L−1 − α2(1− |z|2).
Further we show that the complex Randers metric F := α + |β| offers a

significant d-tensor with fairly many properties. Let us consider

(2.7) kij̄ :=
∂2F

∂ηi∂η̄j
=

1
2F

(
gij̄ −

∂F

∂ηi

∂F

∂η̄j

)
=

1
2F

(
gij̄ −

1
2L

ηiηj̄

)
.

We call (2.7) the complex angular metric tensor of the space. A direct
computation yields kij̄η

i = 1
4F ηj̄ , kij̄η

iη̄j = F
4 ,

∂kij̄

∂ηm ηm = − 1
2kij̄ . Moreover we

have:

Proposition 2.4. i) kij̄ =
1
2α

hij̄ +
1

4|β|bibj̄ ;

ii) (kij̄) is invertible and its inverse is

kj̄i = 2αaj̄i +
2(α||b||2 + 2|β|)

γ
ηiη̄j − 2α3

γ
bib̄j − 2α

γ

(
β̄ηib̄j + βbiη̄j

)
;
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iii) det
(
kij̄

)
=

γ

2(2α)n+1|β| det
(
aij̄

)
.

The proof is straightforward, applying Proposition 2.2.

Once obtained the metric tensor of a complex Randers space, it is a technical
computation to get the expression of (1.1) Chern-Finsler connection. Certainly,
it involves a lot of trivial calculus and for this reason we will not dwell too much
on it. Computational details can be found in [5].

The first computation refers to the coefficients of the Chern-Finsler (c.n.c.).
A simplified writing for them is

(2.8)
CF

N i
j=

a

N i
j +

1
γ

(
lr̄

∂br̄

∂zj
− β2

|β|2
∂br̄

∂zj
η̄r

)
ξi +

β

2|β|k
ri ∂br̄

∂zj
,

where ξi := β̄ηi + α2bi and
a

N i
j := ami ∂alm

∂zj ηl .
Next, let us introduce the following complex Cartan tensors ([3]):

(2.9) Cjh̄k :=
∂gjh̄

∂ηk
=

α|β|
4δ

(
1
α4

lj lk − β̄2

|β|4 bjbk

)
Ch̄ −

|β|
2δα

(
rjh̄Ck + rkh̄Cj

)
,

where Cj := δ
(

1
α2 lj − β̄

|β|2 bj

)
= Cjh̄kgh̄k ; δ := α2||b||2−|β|2

2γ − n|β|
2F and rjh̄ :=

hjh̄ − α2

2|β|2 bjbh̄, with hjh̄ from (2.4).

Then the vertical coefficients of Chern-Finsler connections are

Ci
jk := gm̄i ∂gkm̄

∂ηj
= gm̄i ∂gjm̄

∂ηk
= gm̄iCjm̄k.

An expanded writing for these coefficients is

Ci
jk =

α|β|
2γ

(
1
α4

lj lk − β̄2

|β|4 bjbk

)
εi(2.10)

− |β|
2δF

(
δi
jCk + δi

kCj

)
+

1
2δγ

(bjCk + bkCj) ξi − 1
L

Cjkηi,

where εi := α||b||2+|β|
F ηi − αβ

|β| b
i and Cjk := Cjh̄kη̄h = − |β|α

2δ2 CjCk.

We remark that a complex Finsler metric is purely Hermitian if and only if
Ck = 0. For a complex Randers metric, Ck = 0 leads to F = α(1 + ||b||) and
aij̄ ||b||2 = bibj̄ . Thus, we have proved:

Colorallary 2.1. A complex Randers metric is purely Hermitian if and only
if aij̄ ||b||2 = bibj̄ .

For the horizontal coefficients Li
jk = ∂Ni

k

∂ηj of the Chern-Finsler connection,
and for the (1.2) holomorphic curvature of the complex Randers spaces (M, α+
|β|) in direction η, the calculus are a bit intricate and can be found in [5], and
therefore here we pass over these.
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Up to this point the above discussions are in some analogies with the real
Randers case. Indeed the study of some geometrical aspects on complex Ran-
ders metrics is of interest.

3. Kähler-Randers metrics

When trying to show more geometrical properties of complex Randers met-
rics, we face the fact that there are so many computations. Certainly, one
should not infer that this class of complex Finsler metrics is less significant.
On the contrary, beyond the computations in the sequel we show that there
are interesting results.

Proposition 3.1. Let (M, α + |β|) be a complex Randers space with property
∂|β|2
∂zi

= ε
∂α2

∂zi
, where ε = ε(z) is a real valued function.

i) If aij̄ is the Euclidian metric, then F = α + |β| is locally Minkowski.
ii) If ε = 0 for any z, Ck 6= 0 for any k, and aij̄ is Kähler, then F = α + |β|

is weakly Kähler if and only if bi

a

Gi= 0, where
a

Gi:=
a

N i
j ηj .

iii) If ε = ||b||2, then ||b||2 is a constant.

Proof. Indeed, if aij̄ is the Euclidian metric, then ∂|β|2
∂zi = ∂α2

∂zi = 0 and so
∂F
∂zi = 0. This means that there exist charts in any (z, η) such that the complex
Randers metric F = α + |β| depends only on the η variable, i.e., it is locally
Minkowski and i) is true.

The assumption ∂|β|2
∂zi = ε∂α2

∂zi can be written as

(3.1) β̄
∂br

∂zi
ηr + β

∂bm̄

∂zi
η̄m = ε

∂arm̄

∂zi
ηrη̄m.

Deriving the relation (3.1) with respect to η and η̄, we obtain

(3.2) bm̄
∂br

∂zi
+ br

∂bm̄

∂zi
= ε

∂arm̄

∂zi
.

Now, contracting in (3.2) by br and bm̄, we get

(3.3) br ∂br

∂zi
+ bm̄ ∂bm̄

∂zi
=

ε

||b||2 bm̄br ∂arm̄

∂zi
.

In [5], after the calculus of the Li
jk coefficients we obtain the weakly Kähler

condition for a complex Randers space. By this, a straightforward computation
using (3.3) with ε = 0 and Γr̄

j̄k
= 1

2ar̄k{∂akj̄

∂zi −∂aij̄

∂zk } = 0 since aij̄ is Kähler,
show immediate that the assertion ii) is true.

Now, by (3.3) we obtain ∂||b||2
∂zi = −

(
1− ε

||b||2
)

bm̄br ∂arm̄

∂zi . Putting ε = ||b||2

in last relation we have ∂||b||2
∂zi = 0, and so ||b||2 is a constant, i.e., iii). ¤

Lemma 3.1. Let (M,α+|β|) be a complex Randers space with property ∂|β|2
∂zi =

||b||2 ∂α2

∂zi . The following statements are equivalent:
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i) ||b||2br ∂arm̄

∂zl
η̄m = β̄bm̄br ∂arm̄

∂zl
;

ii) ||b||2 ∂bm̄

∂zi
η̄m = β̄

∂bm̄

∂zi
bm̄;

iii) bs̄
∂bm̄

∂zi
η̄m = β̄

∂bs̄

∂zi
;

iv) β̄

(
∂bi

∂zl
ηiηl − bl

a

Gl

)
+ β

∂bm̄

∂zl
η̄mηl = 0.

Proof. i) ⇐⇒ ii). A straightforward computation, using Proposition 3.1 iii),
lead us to

(3.4) ||b||2 ∂bm̄

∂zi
η̄m − β̄

∂bm̄

∂zi
bm̄ = ||b||2br ∂arm̄

∂zl
η̄m − β̄bm̄br ∂arm̄

∂zl
.

By (3.4), immediately results the equivalence between i) and ii).
ii) ⇐⇒ iii). Given ii), deriving it with respect to η̄, we obtain ||b||2 ∂bs̄

∂zi =
bs̄

∂bm̄

∂zi bm̄. Using again ii) we obtain iii). Conversely, contracting iii) by bs̄ it
results ii).

ii) ⇐⇒ iv). Now, deriving the relation (3.1) with respect to η̄ and contracting
it by bm̄ we deduce

(3.5) ||b||2β̄
(

∂bi

∂zl
ηiηl − bl

a

Gl

)
+ |β|2 ∂bm̄

∂zi
bm̄ηl = 0,

and the equivalence between assumptions ii) and iv) is trivial. So, the proof is
complete. ¤

Proposition 3.2. Let (M, α + |β|) be a complex Randers space with ∂|β|2
∂zi =

||b||2 ∂α2

∂zi . If one of equivalent conditions from Lemma 3.1 holds, then
CF

N i
j=

a

N i
j .

Proof. An elementary computation, taking into account Lemma 3.1 in the for-
mula (2.8) which give the coefficients of Chern-Finsler (c.n.c), prove that all

terms are vanishes except the first term. Indeed we obtain
CF

N i
j=

a

N i
j . ¤

Proposition 3.3. Let (M, α + |β|) be a complex Randers space with ∂|β|2
∂zi =

||b||2 ∂α2

∂zi and aij̄ be Kähler. If one of equivalent conditions from Lemma 3.1
holds, then F = α + |β| is strongly Kähler.

Proof. By Proposition 3.2, we have
CF

N i
j=

a

N i
j and Li

jk = ∂
CF

Ni
k

∂ηj = ∂
a

Ni
k

∂ηj . Because

aij̄ is Kähler, it results ∂
a

Ni
k

∂ηj = ∂
a

Ni
j

∂ηk . Therefore, Li
jk = Li

kj , i.e., F = α + |β| is
strongly Kähler. ¤

Finally, we depict some examples which illustrate our theory.

Example 3.1. We consider aij̄ = 1
1−|z|2

(
δij + zizj

1−|z|2
)
the Bergman metric

on the unit disk ∆n := {z ∈ Cn, |z| < 1} which is a Kähler-purely Hermitian
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metric, of holomorphic curvature −4. In order to obtain an example of strongly
Kähler-Randers metric, we must to solve the system of differential equations

(3.6) ||b||2br ∂arm̄

∂zl
η̄m = β̄bm̄br ∂arm̄

∂zl
,

that is the assumptions i) from Lemma 3.1.
A straightforward computation, using ||b||2 = (1−|z|2)(bibı̄−z̄ibı̄z

kbk) gives:

(3.7) z̄ibı̄

(
alj̄ −

1
||b||2 blbj̄

)
= 0.

So, we obtain two cases:

a) alj̄ = 1
||b||2 blbj̄ . This means that the Randers metric is F = α + |β| =

α(1 + ||b||), and hence the space is with purely Hermitian metric, or
b) biz

i = 0 which leads to a strongly Kähler-Randers metric F = α + |β|
on ∆n with properties

bibı̄ =
||b||2

1− |z|2 ; bi = − ∂bl

∂zi
zl ;

∂bl̄

∂zi
z̄l = 0;(3.8)

CF

N i
j =

a

N i
j=

1
1− |z|2

(
z̄jηi + z̄kηkδi

j

)
; KF = −4α2

L
< 0.

Example 3.2. Now, we give an example of complex Randers space of complex
dimension two. In order to reduce clutter, let us relabel the local coordinates
z1, z2, η1, η2 as z, w, η, θ, respectively.

Let

(3.9) D =
{
(z, w) ∈ C2, |w| < |z| < 1

}

be the Hartogs triangle with the Kähler-purely Hermitian metric

(3.10) aij =
∂2

∂zi∂zj

(
log

1
(1− |z|2) (|z|2 − |w|2)

)
; α2(z, w; η, θ) = aijη

iηj ,

where |zi|2 := ziz̄i, zi ∈ {z, w}, ηi ∈ {η, θ}. We choose

(3.11) bz =
w

|z|2 − |w|2 ; bw = − z

|z|2 − |w|2 .

By a direct computation, we deduce

azz =
1

(1− |z|2)2 + bzbz̄; azw = bzbw̄; aww = bwbw̄;(3.12)

azz =
(
1− |z|2)2

; awz =
wz

(
1− |z|2)2

|z|2 ;
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aww =

(|z|2 − |w|2)2

|z|2 +
|w|2 (

1− |z|2)2

|z|2 ;

bz = 0; bw = −|z|
2 − |w|2

z
;

||b||2 = 1; α2 − |β|2 =
|η|2

(1− |z|2)2

and the coefficients of the Chern-Finsler (c.n.c.) are

CF

Nz
z =

a

Nz
z =

2zη

1− |z|2 ;
CF

Nz
w=

a

Nz
w= 0;(3.13)

CF

Nw
z =

a

Nw
z =

2zw

z

(
1

1− |z|2 +
1

|z|2 − |w|2
)

η − |z|2 + |w|2
z (|z|2 − |w|2)θ;

CF

Nw
w =

a

Nw
w = − |z|2 + |w|2

z (|z|2 − |w|2)η +
2wθ

|z|2 − |w|2 .

Thus we have another example of strongly Kähler-Randers metric. It is a
complex Finsler metric on Hartogs triangle and its holomorphic curvature is
negative, KF = − 4

Lα

[
F (α− |β|)2 + |β|3] < 0.

4. The variational problem

The variational problem for a complex Lagrangian L = F 2, with its fun-
damental metric tensor gij̄ = ∂2L

∂ηi∂η̄j , lead in [15, p. 94], to a complex ge-
odesic curve, which is an horizontal curve in weakly Kähler circumstances.
On the other hand this complex geodesic determines two complex nonlinear
connections depending only on the complex Lagrangian L, one is the Car-
tan (c.n.c.) and the other is the Chern-Lagrange (c.n.c.) (in particular Chern-
Finsler (c.n.c.)), both related to the same complex spray. The Chern-Finsler
(c.n.c.) is precisely determined when we try to lift a Hermitian vertical connec-
tion to the whole complexified tangent bundle of T ′M manifold (good vertical
connection in [1]). Certainly, the Chern-Finsler (c.n.c.) has its geometrical
meaning but from a physical point of view, and note that complex Lagrange
geometry is a model for many quantum physics theories ([15]), we should not
loose interest in other (c.n.c.) intrinsically related to the variational problem
for a complex Randers Lagrangian.

Following some ideas from the real case ([14]), we shall study the variational
problem for the Lagrangian L = F 2 = (α + |β|)2 in the canonical parametriza-
tion of a curve on complex manifold M with respect to the purely Hermit-
ian structure α. The outcome is a (c.n.c.) of Lorentz type in the canonical
parametrization.

Let us consider c(t), t ∈ R, a C∞ curve on complex manifold M and
(zk(t), ηk(t) = dzk

dt ) its extension on T ′M. The Euler-Lagrange equations with
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respect to a complex Lagrangian L are ([2, 15, 17])

(4.1) Ei(L) :=
∂L

∂zi
− d

dt

(
∂L

∂ηi

)
= 0,

where L is considered along the curve c on T ′M. Generally, the solutions of the
Euler-Lagrange equations are extremal curves which respect to arc length.

Proposition 4.1. For any complex Finsler space (M,F ) we have dL
dt = dF

dt =
0, along an extremal curve c on T ′M.

Proof. First, taking into account that L = (α + |β|)2 depends on the parameter
t ∈ R by means of zk(t), ηk(t) and theirs conjugates, we have

(1)
dL

dt
=

∂L

∂zi
ηi +

∂L

∂ηi

dηi

dt
+

∂L

∂z̄i
η̄i +

∂L

∂η̄i

dη̄i

dt
.

Then, from the homogeneity of Finsler function we have ∂L
∂ηi η

i = L and hence
dL
dt = d

dt

(
∂L
∂ηi

)
ηi + ∂L

∂ηi
dηi

dt . But Ei(L) = 0 says d
dt

(
∂L
∂ηi

)
= ∂L

∂zi along the

extremal curve c on T ′M. It follows then dL
dt = ∂L

∂zi η
i + ∂L

∂ηi
dηi

dt and, since t and

L are real valued, by conjugation we obtain dL
dt = ∂L

∂z̄i η̄
i + ∂L

∂η̄i
dη̄i

dt . Summing up
the last two relations, and looking at (1) formula, we get dL

dt = 0. Moreover,
dL
dt = dF 2

dt = 2F dF
dt = 0 implies dF

dt = 0. ¤

Let us develop the calculus in (4.1) for L = (α + |β|)2 :

∂L

∂zi
= Lα

∂α

∂zi
+ L|β|

∂|β|
∂zi

= 2F

(
∂α

∂zi
+

∂|β|
∂zi

)
;

∂L

∂ηi
= Lα

∂α

∂ηi
+ L|β|

∂|β|
∂ηi

= 2F

(
∂α

∂ηi
+

∂|β|
∂ηi

)
;

d

dt

(
∂L

∂ηi

)
=

dLα

dt

∂α

∂ηi
+ Lα

d

dt

(
∂α

∂ηi

)
+

dL|β|
dt

∂|β|
∂ηi

+ L|β|
d

dt

(
∂|β|
∂ηi

)

= 2
dF

dt

(
∂α

∂ηi
+

∂|β|
∂ηi

)
+ 2F

[
d

dt

(
∂α

∂ηi

)
+

d

dt

(
∂|β|
∂ηi

)]

= 2F

[
d

dt

(
∂α

∂ηi

)
+

d

dt

(
∂|β|
∂ηi

)]
,

along the extremal curve c on T ′M, in view of Proposition 2.1.
Thus, (4.1) yields Ei(L) = 2F (Ei(α) + Ei(|β|)) = 0. But,

Ei(α2) =
∂α2

∂zi
− d

dt

(
∂α2

∂ηi

)
= 2α

∂α

∂zi
− 2

d

dt

(
α

∂α

∂ηi

)
= 2αEi(α)− 2

dα

dt

∂α

∂ηi
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and

Ei(|β|2) =
∂|β|2
∂zi

− d

dt

(
∂|β|2
∂ηi

)
= 2|β|∂|β|

∂zi
− 2

d

dt

(
|β|∂|β|

∂ηi

)

= 2|β|Ei(|β|)− 2
d|β|
dt

∂|β|
∂ηi

.

So, we have proved:

Proposition 4.2. The Euler-Lagrange equations with respect to L = (α + |β|)2
are

(4.2) |β|Ei(α2) + αEi(|β|2) + 2|β|dα

dt

∂α

∂ηi
+ 2α

d|β|
dt

∂|β|
∂ηi

= 0.

Now, we choose s(t) the arc length of the curve c on T ′M with respect to
the purely Hermitian structure α as a parametrization of the curve c on T ′M.
Since ds2 = α2

(
z, dz

dt

)
dt2 it yields α2

(
z, dz

ds

)
= 1 and hence

(4.3)
dα

ds
= 0; ηi =

dzi

dt
=

dzi

ds

ds

dt
= α

dzi

ds
and

dηi

ds
= α

d2zi

ds2
.

In Proposition 3.1 we assert that dF
dt = 0 with F = α + |β|. Since dα

ds = 0
in the canonical parametrization, it results that d|β|

ds = 0, along the extremal
curve c on T ′M. As a consequence of (4.2) we have:

Theorem 4.1. For the complex Randers spaces (M, α+|β|), the Euler-Lagrange
equations in the canonical parametrization are

(4.4) |β|Ei(α2) + αEi(|β|2) = 0.

By analogy with the real case, [14], we call the equations (4.4) the Lorentz
equations of the complex Randers space (M, α + |β|).

Next, let us compute Ei(α2) and Ei(|β|2) in the canonical parametrization.
First of all, the condition d|β|

ds = 0 is equivalent to

(4.5) α2bl̄

d2zl

ds2
= −ql̄η̄

l − β̄2

|β|2
(

qlη
l + α2bl

d2zl

ds2

)
,

which multiplied with bi gives

(4.6) −α2bibl̄

d2zl

ds2
= biql̄η̄

l +
β̄2

|β|2 biqlη
l +

β̄2α2

|β|2 bibl
d2zl

ds2
,

where ql := ∂bl

∂zr ηr + ∂bl

∂z̄r η̄r; ql̄ = ql.
We have

Ei(α2) =
∂α2

∂zi
− d

dt

(
∂α2

∂ηi

)
=

∂α2

∂zi
− d

ds

(
∂α2

∂ηi

)
ds

dt

= −α2ail̄

d2zl

ds2
+ 2alr̄Γr̄

j̄iη̄
jηl − air̄Γr̄

j̄l̄η
jηl;
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Ei(|β|2)

=
∂|β|2
∂zi

− d

dt

(
∂|β|2
∂ηi

)
=

∂|β|2
∂zi

− d

ds

(
∂|β|2
∂ηi

)
ds

dt

= − α2bibl̄

d2zl

ds2
+ β̄Filη

l + (Fil̄ − biql̄) η̄l

= − α2bibl̄

d2zl

ds2
+ β̄Filη

l +
(

bl
∂br̄

∂zi
− bi

∂br̄

∂zl

)
η̄rηl −

(
bl̄

∂bi

∂z̄r
+ bi

∂bl̄

∂z̄r

)
η̄rη̄l,

where Γr̄
j̄i

:= 1
2ar̄k{∂akj̄

∂zi −∂aij̄

∂zk } and Γr̄
j̄l̄

:= 1
2ar̄k{∂akj̄

∂z̄l +∂akl̄

∂z̄j } are the coeffi-
cients of Levi-Civita connection of aij̄ ; Fil := ∂bl

∂zi − ∂bi
∂zl are complex electro-

magnetic tensor fields of the functions β.
Plugging the relation (4.6) into the formulas of Ei(|β|2), we obtain:

Ei(|β|2) =
β̄2α2

|β|2 bibl
d2zl

ds2
+

(
β̄2

|β|2 bi
∂bl

∂zr
ηr + β̄Fil + bl

∂br̄

∂zi
η̄r

)
ηl

+
(

β̄2

|β|2 bi
∂br

∂z̄l
ηr − β̄

∂bi

∂z̄l

)
η̄l.

Now, substituting above formulas of Ei(α2) and Ei(|β|2) in (4.4), it results
[
α2|β|ail̄

d2zl

ds2
−

(
αβ̄2

|β|2 bi
∂br

∂z̄l
ηr − αβ̄

∂bi

∂z̄l
− |β|air̄Γr̄

j̄l̄η
j

)
ηl

]

+
[
α3β̄2

|β|2 bibl
d2zl

ds2
+

(
αβ̄2

|β|2 bi
∂bl

∂zr
ηr + αβ̄Fil + αbl

∂br̄

∂zi
η̄r + 2|β|alr̄Γr̄

j̄iη̄
j

)
ηl

]
=0.

Further, following the same arguments as in [15, p. 93], the vanishing of the
both brackets above:
(4.7)

α3β̄2

|β|2 bibl
d2zl

ds2
+

(
αβ̄2

|β|2 bi
∂bl

∂zr
ηr + αβ̄Fil + αbl

∂br̄

∂zi
η̄r + 2|β|alr̄Γr̄

j̄iη̄
j

)
ηl = 0;

(4.8) α2|β|ail̄

d2zl

ds2
−

(
αβ̄2

|β|2 bi
∂br

∂z̄l
ηr − αβ̄

∂bi

∂z̄l
− |β|air̄Γr̄

j̄l̄η
j

)
ηl = 0.

are called the equations of a complex geodesic of Lorentz type.
By conjugation everywhere in the equations (4.8) and contracting then with

aı̄h, it gives

(4.9) α2|β|d
2zh

ds2
−

(
αβ2

|β|2 bh ∂br̄

∂zl
η̄r − αβaı̄h ∂bı̄

∂zl
− |β|Γh

jlη
j

)
ηl = 0.

Taking into account formulas (4.3), we obtain

(4.10)
d2zh

ds2
+ Γh

jl

dzj

ds

dzl

ds
+

(
β

|β|a
ı̄h ∂bı̄

∂zl
− β2

|β|3 bh ∂br̄

∂zl
η̄r

)
dzl

ds
= 0.
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We note that (4.10) can be rewritten in the form d2zh

dt2 +2Gh(z(t), η(t)) = 0,

where Gh := 1
2Γh

jlη
jηl + α

2

(
β
|β|a

ı̄h ∂bı̄
∂zl − β2

|β|3 bh ∂br̄

∂zl η̄
r
)

ηl. Using the changes of
complex coordinates on T ′M, by direct computation we can prove that the
functions Gh are the coefficients of a complex spray on T ′M . Now, recall from

[15] that a complex spray determines a (c.n.c)
c

N by the rule
c

N i
j=

∂Gi

∂ηj which,
following the real case, will be called of Cartan type.

On the other hand, any (c.n.c.) N , by contraction determines a complex
spray, i.e., N i

j ηj = 2Gi. Paying more attention to the spray resulted from
(4.10) we observe that it is contracted with ηl. Therefore, (4.10) leads to:

Proposition 4.3. The functions

(4.11)
Lo

Nh
l (z, η) :=

a

Nh
l +

αβ

|β| a
ı̄h ∂bı̄

∂zl
− αβ2

|β|3 bh ∂br̄

∂zl
η̄r

are the coefficients of a (c.n.c.).

We called this (c.n.c.) of Lorentz type.

It is obvious that
c

N i
j (z, η) = 1

2
∂(

Lo

Ni
kηk)

∂ηj and both (c.n.c.) are inhomogeneous
with respect to η.

By direct computation we can find the link between Chern-Finsler (c.n.c)

and
Lo

N i
k (c.n.c.) :

(4.12)
CF

N i
k=

Lo

N i
k +

1
γ

εi

(
β2 α||b||2 + |β|

|β|3
∂bm̄

∂zk
η̄m +

∂bl

∂zk
ηl − bm̄ ∂alm̄

∂zk
ηl − αβ

|β| b
m̄ ∂bm̄

∂zk

)
.

Note that as yet we have not reached to the first set (4.7) of equations. In
[15], for the general framework of complex Lagrange spaces, it is proved that
it is related to the weakly Kähler condition of the Chern-Finsler connection.
We think that it is natural to view what consequences brings the existence of
a complex geodesic of Lorentz type. Therefore, contracting the relation (4.7)
by ηi and taking into account that Filη

iηl = 0; alr̄Γr̄
j̄i

η̄jηi = 0, we find

(4.13) α2β̄bl
d2zl

ds2
+

(
β̄

∂br

∂zl
ηr + β

∂br̄

∂zl
η̄r

)
ηl = 0.

Replacing (4.13) in (4.9) multiplied with β̄bl

|β| and respectively (4.13) multi-

plied with αβ̄bi

|β2| in (4.7), it is obtained

(4.14) β
α||b||2 + |β|

|β|
∂bm̄

∂zr
η̄mηr+β̄

(
∂br

∂zl
− bm̄ ∂alm̄

∂zr

)
ηlηr−α|β|bm̄ ∂bm̄

∂zr
ηr = 0;

(4.15)
(

αβ̄Fil + αbl
∂br̄

∂zi
η̄r + 2|β|alr̄Γr̄

j̄iη̄
j

)
ηl = αbi

∂bm̄

∂zr
η̄mηr.
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Furthermore, we can obtain a significant consequence of the equations (4.7)
and (4.8). Namely, corroborating the relations (4.14) and (4.15) with the
weakly Kähler condition, it results

Proposition 4.4. A complex Randers space (M, α+ |β|) for which there exists
a complex geodesic of Lorentz type is weakly Kähler.

Finally, taking into account (4.12) and (4.14) we obtain

Colorallary 4.1. If there exists a complex geodesic of Lorentz type, then
Lo

N i
k

and
CF

N i
k determine the same spray.

In this note we made an approach for the main tools in the geometry of
complex Randers spaces. The matter is far from being exhausted. It was
not our goal here to study complex Randers spaces with constant holomorphic
curvature or the Zermelo navigation problem ([8]), to give some examples.
It is hoped that the complex Randers spaces will enrich the complex Finsler
geometry, bringing forward new interesting questions. It is not lost of interest
the study of complex Kropina spaces, or a general study for complex (α, β)-
metrics.
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