East Asian Math J 17(2001), No 2, pp. 325-337

ON A HYPERSURFACE OF THE FIRST APPROXIMATE MATSUMOTO SPACE

IL-YONG LEE AND DONG-GUM JUN

ABSTRACT We consider the special hypersurface of the first approximate Matsumoto metric with $b_i(x) = \partial_i b$ being the gradient of a scalar function b(x) In this paper, we consider the hypersurface of the first approximate Matsumoto space with the same equation b(x) = constant We are devoted to finding the condition for this hypersurface to be a hyperplane of the first or second kind We show that this hypersurface is not a hyper-plane of third kind

1. The first approximate Matsumoto space

The Matsumoto metric is expressed as the form

(1.1)
$$\frac{\alpha^2}{\alpha - \beta} = \lim_{r \to \infty} \alpha \sum_{k=0}^r \left(\frac{\beta}{\alpha}\right)^k$$

for $|\beta| < |\alpha|$. We regard $b_i(x)$ as very small numerically. If we neglect all the powers which are greater than r of $b_i(x)$ in (1.1), then (α, β) -metric

(1.2)
$$L = \alpha \sum_{k=0}^{r} \left(\frac{\beta}{\alpha}\right)^{k}$$

Received March 2, 2001 Revised Separtember 19, 2001

²⁰⁰⁰ Mathematics Subject Classification 53B40

Key words and phrases Finsler space, hypersurface, induced Cartan connection, Matsumoto metric

is an approximate metric to the Matsumoto metric. Then we shall call the (α, β) -metric (1.2) the general approximate Matsumoto metric. If we put r = 2, then L is the first approximate Matsumoto metric. That is to say, we have as follows:

(1.3)
$$L = \alpha + \beta + \frac{\beta^2}{\alpha}.$$

326

Here, by taking a general Riemannian metric α and a general non-zero 1-form β on a general differentiable manifold M^n , Hong-Suh Park, Il-Yong Lee and Chan-Keun Park [8] give as follows:

DEFINITION 1.1. On an *n*-dimensional differential manifold M^n , an (α, β) -metric L of type (1.3) is called the *first approximate Mat*sumoto metric and the Finsler space (M^n, L) is called the *first approx*imate Matsumoto space.

The derivatives of the first approximate Matsumoto metric L with respect of α and β are given by

(1.4)
$$L_{\alpha} = (\alpha^2 - \beta^2)/\alpha^2, \quad L_{\beta} = (\alpha + 2\beta)/\alpha,$$
$$L_{\alpha\alpha} = 2\beta^2/\alpha^3, \quad L_{\beta\beta} = 2/\alpha,$$
$$L_{\alpha\beta} = -2\beta/a^2,$$

where $L_{\alpha} = \partial L / \partial \alpha$, $L_{\beta} = \partial L / \partial \beta$.

If in the first approximate Matsumoto space $F^n = (M^n, L)$ where $L = \alpha + \beta + \beta^2 / \alpha$, we put

$$lpha=(a_{\imath\jmath}(x)y^{\imath}y^{\jmath})^{rac{1}{2}},\quad eta=b_{\imath}(x)y^{i},$$

then the normalized element of support $l_i = \partial_i L$ is given by

(1.5)
$$l_i = \alpha^{-1} L_{\alpha} y_i + L_{\beta} b_i,$$

where $Y_i = a_{ij}y^i$. The angular metric tensor $h_{ij} = L^{-1} \partial_i \partial_j L$ is given by

$$(1.6) h_{ij} = pa_{ij} + q_0 b_i b_j + q_1 (b_i Y_j + b_j Y_i) + q_2 Y_1 Y_j,$$

where

$$p = LL_{\alpha}\alpha^{-1} = \frac{(\alpha^2 + \alpha\beta + \beta^2)(\alpha^2 - \beta^2)}{\alpha^k},$$

$$q_0 = LL_{\beta\beta} = \frac{2(\alpha^2 + \alpha\beta + b^2)}{\alpha^2},$$

$$q_1 = LL_{\alpha\beta}\alpha^{-1} = -\frac{2\beta(\alpha^2 + \alpha\beta + \beta^2)}{\alpha^k},$$

$$q_2 = L\alpha^{-2}(L_{\alpha\alpha} - L_{\alpha}\alpha^{-1}) = \frac{(\alpha^2 + \alpha\beta + \beta^2)(3\beta^2 - \alpha^2)}{\alpha^6}.$$

The fundamental tensor $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$ is given by

(1.8)
$$g_{ij} = pa_{ij} + p_0 b_i b_j + p_1 (b_i Y_j + b_j Y_i) + q_2 Y_i Y_j,$$

where

(1.9)
$$p_{0} = q_{0} + L_{\beta}^{2} = \frac{3(\alpha^{2} + 2\alpha\beta + \beta^{2})}{\alpha^{2}},$$
$$p_{1} = q_{1} + L^{-1}pL_{\beta} = \frac{\alpha^{3} + 4\alpha^{2}\beta + \alpha\beta^{2}}{\alpha^{4}},$$
$$p_{2} = q_{2} + p^{2}L^{-2} = \frac{-\alpha^{3}\beta + 3\alpha\beta^{3} + 4\beta^{4}}{\alpha^{6}}.$$

Moreover, the reciprocal tensor g^{ij} of g_{ij} is given by

(1.10)
$$g^{ij} = p^{-1}a^{ij} - S_0b^ib^j - S_1(b^iy^j + b^jy^i) - S_2y^iy^j,$$

where

(1.11)
$$b^{i} = a^{ij}b_{j}, \quad S_{0} = (pp_{0} + (p_{0}p_{2} - p_{1}^{2})\alpha^{2})/\zeta p,$$
$$S_{1} = (pp_{1} + (p_{0}p_{2} - p_{1}^{2})\beta)/\zeta p,$$
$$S_{2} = (pp_{2} + (p_{0}p_{2} - p_{1}^{2})b^{2})/\zeta p, \quad b^{2} = a_{ij}b^{i}b^{j},$$
$$\zeta = p(p + p_{0}b^{2} + p_{1}\beta) + (p_{0}p_{2} - p_{1}^{2})(\alpha^{2}b^{2} - \beta^{2}).$$

The *hv*-torsion tensor $C_{ijk} = \frac{1}{2}\dot{\partial}_k g_{ij}$ is given by ([9])

(1.12)
$$2pC_{ijk} = p_1(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j) + \gamma m_i m_j m_k,$$

where

(1.13)
$$\gamma_1 = p \frac{\partial p_0}{\partial \beta} - 3p_1 q_0, \quad m_i = b_i - \alpha^{-2} \beta Y_i.$$

It is noted that the covariant vector m_i is a non-vanishing one, and is orthogonal to the element of support y^i .

Let $\begin{cases} i \\ jk \end{cases}$ be the components of Christoffel's symbol of the associated Riemannian space \mathbb{R}^n and ∇_k be covariant differentiation with respect to x^k relative to this Christoffel's symbol. We shall use the following tensors.

(1.14)
$$2E_{ij} = b_{ij} + b_{ji}, \quad 2F_{ij} = b_{ij} - b_{ji},$$

where $b_{ij} = \nabla_j b_i$.

If we denote the Cartan's connection $C\Gamma$ as $(\Gamma_{j}^{*i}{}_{k}, \Gamma_{0}^{*i}{}_{k}, C_{j}{}^{i}{}_{k})$, then the difference tensor $D_{j}{}^{i}{}_{k} = \Gamma_{j}^{*i}{}_{k} - \begin{cases} i\\ jk \end{cases}$ of the first approximate Matsumoto space is given by ([10]). (1.15)

$$\begin{split} D_{j^{i}k} &= B^{i}E_{jk} + F^{i}{}_{k}B_{j} + F^{i}{}_{j}B_{k} + B^{i}{}_{j}b_{0k} + B^{i}{}_{k}b_{0j} \\ &- b_{0m}g^{im}B_{jk} - C_{j^{i}m}A^{m}{}_{k} - C_{k}{}^{i}{}_{m}A^{m}{}_{j} + C_{jkm}A^{m}{}_{s}g^{is} \\ &+ \lambda^{s}\left(C_{j}{}^{i}{}_{m}C_{s}{}^{m}{}_{k} + C_{k}{}^{i}{}_{m}C_{s}{}^{m}{}_{j} - C_{j}{}^{m}{}_{k}C_{m}{}^{i}{}_{s}\right), \end{split}$$

where

(1.16)

$$B_{k} = p_{0}b_{k} + p_{1}Y_{k}, \quad B^{i} = g^{ij}B_{j}, \quad F^{k}{}_{i} = g^{kj}F_{ji},$$

$$B_{ij} = \left\{ p_{1}(a_{ij} - \alpha^{-2}Y_{i}Y_{j}) + \frac{\partial p_{0}}{\partial \beta}m_{i}m_{j} \right\} / 2,$$

$$B^{k}{}_{i} = g^{kj}B_{ji},$$

$$A^{m}{}_{k} = B^{m}{}_{k}E_{00} + B^{m}E_{k_{0}} + B_{k}F^{m}{}_{0} + B_{0}F^{m}{}_{k},$$

$$\lambda^{m} = B^{m}E_{00} + 2B_{0}F^{m}{}_{0}, \quad B_{0} = b_{i}y^{i}.$$

328

Here and in the following we denote 0 as contraction with y^{i} except for the quantities p_{0} , q_{0} and s_{0} .

2. Induced Cartan connection

Let F^{n-1} be a hypersurface of F^n given by the equations $x^i = x^i(u^{\alpha})$. Suppose that the matrix of the projection factor $B^i{}_{\alpha} = \partial x^i/\partial u^{\alpha}$ is of rank n-1. The element of support y^i of F^n is to be taken tangential to F^{n-1} , that is,

(2.1)
$$y^{i} = B^{i}{}_{\alpha}(u)v^{\alpha}.$$

Thus v^{α} is the element of support of F^{n-1} at the point u^{α} . The metric tensor $g_{\alpha\beta}$ and HV-torsion tensor $C_{\alpha\beta\gamma}$ of F^{n-1} are given by

(2.2)
$$g_{\alpha\beta} = g_{ij}B^{i}{}_{\alpha}B^{j}{}_{\beta}, \quad C_{\alpha\beta\gamma} = C_{ijk}B^{i}{}_{\alpha}B^{j}{}_{\beta}B^{k}{}_{\gamma}.$$

At each point u^{α} of F^{n-1} , a unit normal vector $N^{i}(u, v)$ is defined by

(2.3)
$$g_{ij}(x(u,v),y(u,v))B^{i}{}_{\alpha}N^{i}=0, \quad g_{ij}(x(u,v),y(u,v))N^{i}N^{j}=1.$$

As for the angular metric tensor h_{ij} , we have

(2.4)
$$h_{\alpha\beta} = h_{ij}B^{i}{}_{\alpha}B^{j}{}_{\beta}, \quad h_{ij}B^{i}{}_{\alpha}N^{j} = 0, \quad h_{ij}N^{i}N^{j} = 1.$$

If (B^{α}, N_{i}) denote the inverse of (B^{i}_{α}, N^{i}) , then we have

(2.5)
$$B^{\alpha}{}_{i} = g^{\alpha\beta}g_{ij}B^{j}{}_{\beta}, \quad B^{i}{}_{\alpha}B^{\beta}{}_{i} = \delta^{\beta}_{\alpha},$$
$$B^{\alpha}{}_{i}N^{i} = 0, \quad B^{i}{}_{\alpha}N_{i} = 0, \quad N_{i} = g_{ij}N^{j},$$
$$B^{i}{}_{\alpha}B^{\alpha}{}_{j} + N^{i}N_{j} = \delta^{i}_{j}.$$

The induced connection $IC\Gamma = (\Gamma_{\beta}^{*\alpha}{}_{\gamma}, G^{\alpha}{}_{\beta}, C_{\beta}{}^{\alpha}{}_{\gamma})$ of F^{n-1} induced from the Cartan's connection $C\Gamma = (\Gamma_{j}^{*i}{}_{k}, \Gamma_{0}^{*i}{}_{k}, C_{j}{}^{i}{}_{k})$ is given by ([6])

(2.6) $\Gamma^{*\gamma}_{\beta\gamma} = B^{\alpha}{}_{i}(B_{\beta}{}^{i}{}_{\gamma} + \Gamma^{*i}_{\gamma}{}_{k}B^{i}{}_{\beta}B^{k}{}_{\gamma}) + M^{\alpha}{}_{\beta}H_{\gamma},$

(2.7)
$$G^{\alpha}{}_{b} = B^{\alpha}{}_{i}(B_{0}{}^{i}{}_{\beta} + \Gamma^{*i}{}_{0}{}_{k}B^{j}{}_{\beta}),$$

(2.8) $C_{\beta}{}^{\alpha}{}_{\gamma} = B^{\alpha}{}_{\imath}C_{\jmath}{}^{i}{}_{k}B^{\jmath}{}_{\beta}B^{k}{}_{\gamma},$

where

(2.9)
$$M_{\beta\gamma} = N_i C_j{}^i{}_k B^j{}_\beta B^k{}_\gamma, \quad M^{\alpha}{}_\beta = g^{\alpha\gamma} M_{\beta\gamma},$$

(2.10)
$$H_{\beta} = N_{i}(B_{0}^{i}{}_{\beta} + \Gamma_{0}^{*i}{}_{j}B^{j}{}_{\beta}),$$

and $B_{\beta}{}^{i}{}_{\gamma} = \partial B^{i}{}_{\beta}/\partial u^{r}$, $B_{0}{}^{i}{}_{\beta} = B_{\alpha}{}^{i}{}_{\beta}v^{\alpha}$. The quatities $M_{\beta\gamma}$ and H_{β} are called second fundamental v-tensor and normal curvature vector respectively ([6]). The second fundamental h-tensor $H_{\beta\gamma}$ is defined as ([6])

(2.11)
$$H_{\beta\gamma} = N_{\iota}(B_{\beta}^{\iota}{}_{\gamma} + \Gamma_{j}^{\star\iota}{}_{k}B^{j}{}_{\beta}B^{k}{}_{\gamma}) + M_{\beta}H_{\gamma},$$

where

$$(2.12) M_{\beta} = N_i C_j^{\ i}{}_k B^j{}_{\beta} N^k$$

The relative *h*- and *v*-covariant derivatives of projection factor $B^i{}_{\alpha}$ with respect to $IC\Gamma$ are given by

(2.13)
$$B^{i}{}_{\alpha|\beta} = H_{\alpha\beta}N^{i}, \quad B^{i}{}_{\alpha|\beta} = M_{\alpha\beta}N^{i}.$$

The equation (2.11) shows that $H_{\beta\gamma}$ is generally not symmetric and

(2.14)
$$H_{\alpha\gamma} - H_{\gamma\beta} = M_{\beta}H_{\gamma} - M_{\gamma}H_{\beta}.$$

Furthermore (2.10), (2.11) and (2.12) yield

(2.15)
$$H_{0\gamma} = H_{\gamma}, \quad H_{\gamma 0} = H_{\gamma} + M_{\gamma} H_{0}.$$

We qnote the following Lemma which is due to Matsumoto [6] as follows:

LEMMA 2.1 ([6]). The normal curvature $H_0 = H_\beta v^\beta$ vanishes if and only if the normal curvature vector H_β vanishes.

LEMMA 2.2 ([6]). A hypersurface F^{n-1} is a hyperplane of the first kind if and only if $H_{\alpha} = 0$.

LEMMA 2.3 ([6]) A hypersurface F^{n-1} is a hyperplane of the second kind with respect to the connection $C\Gamma$ if and only if $H_{\alpha} = 0$ and $H_{\alpha\beta} = 0$.

LEMMA 2.4 ([6]) A hypersurface F^{n-1} is a hyperplane of the third kind with respect to the connection $C\Gamma$ if and only if $H_{\alpha} = 0$ and $M_{\alpha\beta} = H_{\alpha\beta} = 0$.

3. Hypersurface $F^{n-1}(c)$ of the first approximate Matsumoto space

Let us consider a special Matsumoto metric with a gradient $b_i(x) = \partial_i b$ for a scalar function b(x) and consider a hypersurface $F^{n-1}(c)$ which is given by the equation b(x) = c (constant). From parametric equations $x^i = x^i(u^{\alpha})$ of $F^{n-1}(c)$ we get $\partial_{\alpha}b(x(u)) = 0 = b_i B^i{}_{\alpha}$, so that $b_i(x)$ are regarded as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$(3.1) b_i B^i{}_{\alpha} = 0 \quad \text{and} \quad b_i y^i = 0.$$

In general, the induced metric L(u, v) from the Matsumoto metric is given by

$$L(u,v) = (a_{ij}(x)B^i{}_{\alpha}B^j{}_{\beta}v^{\alpha}v^{\beta})^{\frac{1}{2}} + b_i(x)B^i{}_{\alpha}v^{\alpha} + \frac{b_i(x)b_j(x)B^i{}_{\alpha}B^j{}_{\beta}v^{\alpha}v^{\beta}}{\sqrt{a_{ij}(x)B^i{}_{\alpha}B^j{}_{\beta}v^{\alpha}v^{\beta}}}$$

Therefore, the induced metric of the $F^{n-1}(c)$ becomes

(3.2)
$$L(u,v) = \sqrt{a_{\alpha\beta}(u)v^{\alpha}v^{\beta}}, \quad a_{\alpha\beta} = a_{ij}(x)B^{i}{}_{\alpha}B^{j}{}_{\beta}$$

which is the Riemannian metric.

At the point of $F^{n-1}(c)$, form (1.7), (1.9) and (1.11), we have (3.3) $p = 1, q_0 = 2, q_1 = 0, q_2 = -\alpha^{-2}, p_0 = 2, p_1 = \alpha^{-1}, p_2 = 0,$ $\zeta = 1 + 2b^2, S_0 = 2/(1 + 2b^2), S_1 = \{\alpha(1 + 2b^2)\}^{-1},$ $S_2 = -b^2/\{\alpha^2(1 + 2b^2)\}.$ Therefore, from (1.10) we get (3.4)

$$g^{ij} = a^{ij} - rac{2}{1+2b^2}b^ib^j - rac{1}{lpha(1+2b^2)}(b^iy^j - b^jy^i) + rac{b^2}{lpha^2(1+2b^2)}y^iy^j.$$

Thus along F^{n-1} , (3.4) and (3.1) lead to $g^{ij}b_ib_j = \frac{b^2}{\alpha^2(1+2b^2)}$. Therefore, we get

(3.5)
$$b_i(x(u)) = \sqrt{\frac{b^2}{\alpha^2(1+2b^2)}} N_i, \quad b^2 = a^{ij}b_ib_j.$$

Again from (3.4) and (3.5) we get

(3.6)
$$b^i = a^{ij}b_j = \sqrt{b^2(1+2b^2)}N^i + b^2\alpha^{-1}y^i.$$

Hence, we have the following

THEOREM 3.1 Let F^n be the first approximate Matsumoto space with a gradient $b_i(x) = \partial_i b(x)$ and let $F^{n-1}(c)$ be a hypersurface of F^n which is given by b(x) = c (constant). Suppose the Riemannian metric $a_{ij}(x)dx^idx^j$ is positive definite and b_i is a non-zero field. Then the induced metric on $F^{n-1}(c)$ is a Riemannian metric given by (3.2) and relation (3.5) and (3.6) hold.

Along $F^{n-1}(c)$, the angular metric tensor and metric tensor are given by

(3.7)
$$h_{ij} = a_{ij} + 2b_i b_j - \frac{Y_i Y_j}{\alpha^2},$$

(3.8)
$$g_{ij} = a_{ij} + 3b_i b_j + \frac{1}{\alpha} (b_i y_j + b_j y_i).$$

From (3.1), (3.7) and (2.4) it follows that if $h_{\alpha\beta}^{(a)}$ denote the angular metric tensor of the Riemannian $a_{ij}(x)$, then along $F^{n-1}(c)$ $h_{\alpha\beta} = h_{\alpha\beta}^{(a)}$. From (1.11), we get $\frac{\partial p_0}{\partial \beta} = 12\alpha^4/(\alpha - \beta)^5$. Thus along $F^{n-1}(c)$,

 $\frac{\partial p_0}{\partial \beta} = \frac{12}{\alpha}$ and therefore (1.13) gives $r_1 = 6/\alpha$, $m_i = b_i$. Therefore, the *hv*-torsion tensor becomes

(3.9)
$$C_{ijk} = \frac{1}{2\alpha} (h_{ij}b_k + h_{jk}b_i + h_{ki}b_j) + \frac{3}{\alpha}b_ib_jb_k.$$

Therefore, (2.4), (2.9), (2.12), (3.1) and (3.9) give

(3.10)
$$M_{\alpha\beta} = \frac{1}{2\alpha} \sqrt{\frac{b^2}{1+2b^2}} h_{\alpha\beta}, \quad M_{\alpha} = 0.$$

Hence, from (2.14) it follows that $H_{\alpha\beta}$ is symmetric.

THEOREM 3.2 The second fundamental v-tensor of $F^{n-1}(c)$ is given by (3.10) and the second fundamental h-tensor $H_{\alpha\beta}$ is symmetric.

Next from (3.1) we get $b_{i|\beta}B^i{}_{\alpha} + b_iB^i{}_{\alpha|\beta} = 0$. Therefore, from (2.13) and the fact that $b_{i|\beta} = b_{i|\beta}B^i{}_{\beta} + b_i|_{\beta}N^{j}H_{\beta}$, we get

(3.11)
$$b_{i|j}B^{i}{}_{\alpha}B^{j}{}_{\beta}+b_{i|j}B^{i}{}_{\alpha}N^{j}H_{\beta}+b_{i}H_{\alpha\beta}N^{i}=0.$$

Since $b_i|_j = -b_h C_i{}^h{}_j$, from (2.12), (3.5) and (3.10) we get

$$b_i]_j B^i{}_{\alpha} N^j = \sqrt{\frac{b^2}{\alpha^2(1+2b^2)}} M_{\alpha} = 0.$$

Thus (3.11) gives

(3.12)
$$\sqrt{\frac{b^2}{1+2b^2}}H_{\alpha\beta} + b_{ij}B^i{}_{\alpha}B^j{}_{\beta} = 0.$$

It is noted that $b_{i|j}$ is symmetric. Furthermore, contracting (3.12) with v^{β} and v^{α} respectively and using (2.1), (2.15) and (3.10) we get

(3.13)
$$\sqrt{\frac{b^2}{1+2b^2}}H_{\alpha} + b_{i|j}B^i{}_{\alpha}y^i = 0, \quad \sqrt{\frac{b^2}{1+2b^2}}H_0 + b_{i|j}y^iy^j = 0.$$

In view of Lemmas (2.1), and (2.2), the hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $H_0 = 0$. Thus from (3.13) it follows that $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $b_{i|j}y^iy^j = 0$. This $b_{i|j}$ being the covariant derivative with respect to $C\Gamma$, of F^n , it may depend on y^i . On the other hand $\nabla_j b_i = b_{ij}$ is the covariant derivative with respect to the Riemannian connection $\begin{cases} i\\jk \end{cases}$ constructed from $a_{ij}(x)$, therefore b_{ij} does not depend on y^i . We shall consider the difference $b_{i|j} - b_{ij}$ in the following. The difference tensor $D_j^{i}{}_k = \Gamma_j^{*i}{}_k - \begin{cases} i\\jk \end{cases}$ is given by (1.15). Since b_i is a gradient vector, from (1.14) we have $E_{ij} = b_{ij}$, $F_{ij} = 0$, $F^{*}{}_{j} = 0$. Thus (1.17) reduces to

$$D_{j}{}^{i}{}_{k} = B^{i}b_{jk} + B^{i}{}_{j}b_{0k} + B^{i}{}_{k}b_{0j} - b_{0m}g^{im}B_{jk}$$

$$(3.14) \qquad -C_{j}{}^{i}{}_{m}A^{m}{}_{k} - C_{k}{}^{i}{}_{m}A^{m}{}_{j} + C_{jkm}A^{m}{}_{s}g^{2k}$$

$$+ \lambda^{s}(C_{j}{}^{i}{}_{m}C_{s}{}^{m}{}_{k} + C_{k}{}^{i}{}_{m}C_{s}{}^{m}{}_{j} - C_{j}{}^{m}{}_{k}C_{m}{}^{i}{}_{s}).$$

But in view of (3.3) and (3.4), the expressions (1.16) reduce to (3.15)

$$\begin{split} B_{i} &= 3b_{i} + \alpha^{-1}y_{i}, \quad B^{i} = \frac{2b^{i}}{1+2b^{2}} + \frac{y^{i}}{\alpha(1+2b^{2})}, \\ B_{ij} &= \frac{1}{2\alpha}(a_{ij} - \alpha^{-2}y_{i}y_{j} + 12b_{i}b_{j}), \\ B^{i}{}_{j} &= \frac{1}{2\alpha}(\delta^{i}{}_{j} - \alpha^{-2}y_{j}y^{i}) + \frac{5}{\alpha(1+2b^{2})}b^{i}b_{j} - \frac{1+12b^{2}}{2\alpha^{2}(1+2b^{2})}y^{i}b_{j}, \\ A^{m}{}_{k} &= B^{m}{}_{k}b_{00} + B^{m}b_{k0}, \\ \lambda^{m} &= B^{m}b_{00}. \end{split}$$

By virtue of (3.1) we have $B_0^i = 0$, $B_{i0} = 0$ which gives $A_0^m = B^m b_{00}$.

We, therefore, have

(3.16)
$$D_{j}{}^{i}{}_{0} = B^{i}b_{j0} + B^{i}{}_{j}b_{00} - B^{m}C_{j}{}^{i}{}_{m}b_{00},$$

(3.17)
$$D_{0}{}^{i}{}_{0} = B^{i}b_{00} = \left[\frac{2b^{i}}{1+2b^{2}} + \frac{y^{i}}{\alpha(1+2b^{2})}\right]b_{00}$$

Thus paying attention to (3.1) along the $F^{n-1}(c)$, we finally get (3.18)

$$b_i D_j{}^i{}_0 = \frac{2b^i}{1+2b^2} b_{j0} + \frac{1+12b^2}{2\alpha(1+2b^2)} b_{00} - 2b^m b_i C_j{}^i{}_m b_{00},$$

(3.19)

$$b_i D_0{}^i{}_0 = \frac{2b^i}{1+2b^2}b_{00}.$$

From (2.12), (3.5), (3.6) and (3.10) it follows that

$$b^m b_i \cdot C_j{}^i{}_m B^j{}_{\alpha} = b^2 M_{\alpha} = 0.$$

Therefore, the relation $b_{i|j} = b_{ij} - b_r D_i r_j$ and equations (3.18), (3.19) give

$$b_{i|j}y^{i}y^{j} = b_{00} - b_{r}D_{0}^{r}{}_{0} = \frac{1}{1+2b^{2}}b_{00}$$

Consequently, (3.13) may be written as

(3.20)
$$\sqrt{b^2}H_{\alpha} + \frac{1}{\sqrt{1+2b^2}}b_{i0}B^i{}_{\alpha} = 0, \quad \sqrt{b^2}H_0 + \frac{1}{\sqrt{1+2b^2}}b_{00} = 0.$$

Thus the condition $H_0 = 0$ is equivalent to $b_{00} = 0$, where b_{ij} does not depend on y^i . Since y^i is to satisfy (3.1), the condition is written as $b_{ij}y^iy^j = (b_iy^i)(c_jy^i)$ for some $c_j(x)$, so that we have

$$(3.21) 2b_{ij} = b_i C_j + b_j C_i.$$

From (3.1) and (3.21) it follows that $b_{00} = 0$, $b_{ij}B^i{}_{\alpha}B^j{}_{\beta} = 0$, $b_{ij}B^i{}_{\alpha}y^j = 0$. Hence, (3.20) gives $H_{\alpha} = 0$. Again from (3.21) and (3.15) we get $b_{i0}b^i = \frac{c_0b^2}{2}$, $\lambda^m = 0$, $A^i{}_jB^j{}_{\beta} = 0$ and $B_{ij}B^i{}_{\alpha}B^j{}_{\beta} = \frac{1}{2\alpha}h_{\alpha\beta}$. Thus (2.9), (3.4), (3.5), (3.6), (3.10) and (3.14) give

$$b_r D_i{}^r{}_j B^i{}_{\alpha} B^j{}_{\beta} = \frac{-C_0 b^2}{4\alpha (1+2b^2)^2} h_{\alpha\beta}.$$

Therefore, equation (3.12) reduces to

(3.22)
$$\sqrt{\frac{b^2}{1+2b^2}}H_{\alpha\beta} + \frac{C_0b^2}{4\alpha(1+2b^2)^2}h_{\alpha\beta} = 0.$$

Hence the hypersurface $F^{n-1}(c)$ is umbilic.

THEOREM 3.3 The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of the first kind is (3.21) and in this case the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor.

In view of Lemma (2.3), $F^{n-1}(c)$ is hyperplane of second kind if and only if $H_{\alpha} = 0$, and $H_{\alpha\beta} = 0$. Thus from (3.22) we get $C_0 = C_I(x)y^i =$ 0. Therefore, there exist a function e(x) such that $c_i(x) = e(x)b_i(x)$. Thus (3.21) gives

$$(3.23) b_{ij} = eb_i b_j.$$

THEOREM 3.4 The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of the second kind is (3.23).

Finally (3.10) and Lemma 2.4 show that $F^{n-1}(c)$ does not become a hyperplane of the third kind.

THEOREM 3.5 The hypersurface $F^{n-1}(c)$ is not a hyperplane of the third kind.

References

- T Aikou, M Hashiguchi and K Yamaguchi, On Matsumoto's Finsler space with time measure, Rep Fac. Sci. Kagoshima Univ (Math. Phys. Chem.) 23 (1990), 1-12
- [2] M. Hashiguchi, S. Hojo and M. Mausumoto, On Landsberg spaces of two drmensions with (α, β) -metric, Korean Math. Soc. 10 (1973), 17-26
- [3] V K Kropina, On projective Finsler spaces with a metric of some special form, Naven Doklad Vyas Skolay, Fiz Mat. Nauki 2 (1960), 38-42
- [4] V K Kropina, Projective two-dimensional Finsler spaces with special metric, Trudy Sem Vektor Tensor Anal 11 (1961), 277-292
- [5] M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24 (1972), 29-37
- [6] M Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ. 25 (1985), 107– 144
- [7] M Matsumoto, A slope of a mountain is a Finsler surface with respect to a time measure 29 (1989), 17-25.
- [8] Hong-Suh Park, Il-Yong Lee and Chan Keun Park, Finsler space with the general approximate matsumoto metric, Indian J. Pure Appl. Math (to appear).
- [9] G Randers, On an asymmetrical metric in the four-space of general relativity, Phys, Rev. (2) 59 (1941), 195-199.

[10] C Shibata, On Finsler spaces with an (α, β) -metric, J Hokkaido Univ. Edu (Section IIA) **35** (1984), 1–16

Division of Mathematical Sciences Kyungsung University Pusan 608-736, Korea *E-mail*: iylee@star.kyungsung.ac.kr

Department of Mathematics Soonchunhyang University Asan 337-880, Korea