ON A HYPERSURFACE OF THE FIRST APPROXIMATE MATSUMOTO SPACE

Il-Yong Lee and Dong-Gum Jun

Abstract

We consider the special hypersurface of the first approximate Matsumoto metric with $b_{2}(x)=\partial_{2} b$ being the gradient of a scalar function $b(x)$ In this paper, we consider the hypersurface of the first approximate Matsumoto space with the same equation $b(x)=$ constant We are devoted to finding the condition for this hypersurface to be a hyperplane of the first or second kind We show that this hypersurface is not a hyper-plane of third kind

1. The first approximate Matsumoto space

The Matsumoto metric is expressed as the form

$$
\begin{equation*}
\frac{\alpha^{2}}{\alpha-\beta}=\lim _{r \rightarrow \infty} \alpha \sum_{k=0}^{r}\left(\frac{\beta}{\alpha}\right)^{k} \tag{1.1}
\end{equation*}
$$

for $|\beta|<|\alpha|$. We regard $b_{i}(x)$ as very small numerically. If we neglect all the powers which are greater than r of $b_{2}(x)$ in (1.1), then (α, β) metric

$$
\begin{equation*}
L=\alpha \sum_{k=0}^{r}\left(\frac{\beta}{\alpha}\right)^{k} \tag{1.2}
\end{equation*}
$$

Received March 2, 2001 Revised Sepmtember 19, 2001
2000 Mathematics Subject Classfication 53B40
Key words and phrases Finsler space, hypersurface, induced Cartan connection, Matsumoto metric
is an approximate metric to the Matsumoto metric. Then we shall call the (α, β)-metric (1.2) the general approxmate Matsumoto metric. If we put $r=2$, then L is the first approximate Matsumoto metric. That is to say, we have as follows:

$$
\begin{equation*}
L=\alpha+\beta+\frac{\beta^{2}}{\alpha} . \tag{1.3}
\end{equation*}
$$

Here, by taking a general Riemannian metric α and a general non-zero 1-form β on a general differentiable manifold M^{n}, Hong-Suh Park, Il-Yong Lee and Chan-Keun Park [8] give as follows:

Definition 1.1. On an n-dimensional differential manifold M^{n}, an (α, β)-metric L of type (1.3) is called the first approximate Matsumoto metric and the Finsler space (M^{n}, L) is called the first approximate Matsumoto space.

The derivatives of the first approximate Matsumoto metric L with respect ot α and β are given by

$$
\begin{align*}
& L_{\alpha}=\left(\alpha^{2}-\beta^{2}\right) / \alpha^{2}, \quad L_{\beta}=(\alpha+2 \beta) / \alpha, \\
& L_{\alpha \alpha}=2 \beta^{2} / \alpha^{3}, \quad L_{\beta \beta}=2 / \alpha, \tag{1.4}\\
& L_{\alpha \beta}=-2 \beta / a^{2},
\end{align*}
$$

where $L_{\alpha}=\partial L / \partial \alpha, L_{\beta}=\partial L / \partial \beta$.
If in the first approximate Matsumoto space $F^{n}=\left(M^{n}, L\right)$ where $L=\alpha+\beta+\beta^{2} / \alpha$, we put

$$
\alpha=\left(a_{\imath \jmath}(x) y^{2} y^{j}\right)^{\frac{1}{2}}, \quad \beta=b_{\imath}(x) y^{i},
$$

then the normalized element of support $l_{\imath}=\partial_{\imath} L$ is given by

$$
\begin{equation*}
l_{i}=\alpha^{-1} L_{\alpha} y_{i}+L_{\beta} b_{i} \tag{1.5}
\end{equation*}
$$

where $Y_{\imath}=a_{i j} y^{2}$. The angular metric tensor $h_{\imath \jmath}=L^{-1} \dot{\partial}_{\imath} \dot{\partial}_{j} L$ is given by

$$
\begin{equation*}
h_{i j}=p a_{i j}+q_{0} b_{2} b_{j}+q_{1}\left(b_{2} Y_{j}+b_{j} Y_{i}\right)+q_{2} Y_{1} Y_{j}, \tag{1.6}
\end{equation*}
$$

where

$$
\begin{align*}
& p=L L_{\alpha} \alpha^{-1}=\frac{\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)\left(\alpha^{2}-\beta^{2}\right)}{\alpha^{k}}, \\
& q_{0}=L L_{\beta \beta}=\frac{2\left(\alpha^{2}+\alpha \beta+b^{2}\right)}{\alpha^{2}}, \tag{1.7}\\
& q_{1}=L L_{\alpha \beta} \alpha^{-1}=-\frac{2 \beta\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)}{\alpha^{k}}, \\
& q_{2}=L \alpha^{-2}\left(L_{\alpha \alpha}-L_{\alpha} \alpha^{-1}\right)=\frac{\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)\left(3 \beta^{2}-\alpha^{2}\right)}{\alpha^{6}} .
\end{align*}
$$

The fundamental tensor $g_{\imath \jmath}=\frac{1}{2} \dot{\partial}_{\imath} \dot{\partial}_{\jmath} L^{2}$ is given by

$$
\begin{equation*}
g_{v j}=p a_{2 j}+p_{0} b_{2} b_{j}+p_{1}\left(b_{2} Y_{j}+b_{j} Y_{2}\right)+q_{2} Y_{2} Y_{j}, \tag{1.8}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{0}=q_{0}+L_{\beta}^{2}=\frac{3\left(\alpha^{2}+2 \alpha \beta+\beta^{2}\right)}{\alpha^{2}}, \\
& p_{1}=q_{1}+L^{-1} p L_{\beta}=\frac{\alpha^{3}+4 \alpha^{2} \beta+\alpha \beta^{2}}{\alpha^{4}}, \tag{1.9}\\
& p_{2}=q_{2}+p^{2} L^{-2}=\frac{-\alpha^{3} \beta+3 \alpha \beta^{3}+4 \beta^{4}}{\alpha^{6}} .
\end{align*}
$$

Moreover, the reciprocal tensor $g^{2 j}$ of $g_{2 j}$ is given by

$$
\begin{equation*}
g^{23}=p^{-1} a^{23}-S_{0} b^{2} b^{3}-S_{1}\left(b^{2} y^{3}+b^{3} y^{i}\right)-S_{2} y^{2} y^{3}, \tag{1.10}
\end{equation*}
$$

where

$$
\begin{align*}
& b^{2}=a^{2} b_{3}, \quad S_{0}=\left(p p_{0}+\left(p_{0} p_{2}-p_{1}^{2}\right) \alpha^{2}\right) / \zeta p, \\
& S_{1}=\left(p p_{1}+\left(p_{0} p_{2}-p_{1}^{2}\right) \beta\right) / \zeta p, \tag{1.11}\\
& S_{2}=\left(p p_{2}+\left(p_{0} p_{2}-p_{1}^{2}\right) b^{2}\right) / \zeta p, \quad b^{2}=a_{i j} b^{i} b^{3}, \\
& \zeta=p\left(p+p_{0} b^{2}+p_{1} \beta\right)+\left(p_{0} p_{2}-p_{1}^{2}\right)\left(\alpha^{2} b^{2}-\beta^{2}\right) .
\end{align*}
$$

The $h v$-torsion tensor $C_{\imath \jmath k}=\frac{1}{2} \dot{\partial}_{k} g_{\imath \jmath}$ is given by ([9])

$$
\begin{equation*}
2 p C_{\imath \jmath k}=p_{1}\left(h_{\imath \jmath} m_{k}+h_{\jmath k} m_{\imath}+h_{k i} m_{j}\right)+\gamma m_{\imath} m_{\jmath} m_{k} \tag{1.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{1}=p \frac{\partial p_{0}}{\partial \beta}-3 p_{1} q_{0}, \quad m_{i}=b_{\imath}-\alpha^{-2} \beta Y_{i} \tag{1.13}
\end{equation*}
$$

It is noted that the covariant vector m_{\imath} is a non-vanishing one, and is orthogonal to the element of support y^{2}.

Let $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ be the components of Christoffel's symbol of the associated Riemannian space R^{n} and ∇_{k} be covariant differentiation with respect to x^{k} relative to this Christoffel's symbol. We shall use the following tensors.

$$
\begin{equation*}
2 E_{\imath j}=b_{\imath j}+b_{j 2}, \quad 2 F_{i j}=b_{\imath j}-b_{j \imath} \tag{1.14}
\end{equation*}
$$

where $b_{i j}=\nabla_{j} b_{i}$.
If we denote the Cartan's connection $C \Gamma$ as $\left(\Gamma_{j}^{* \imath}{ }_{k}, \Gamma_{0}^{* \imath}{ }_{k}, C_{j}{ }^{i}{ }_{k}\right)$, then the difference tensor $D_{j}{ }^{2} k=\Gamma_{j}^{* i} k-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ of the first approximate Matsumoto space is given by ([10]).

$$
\begin{align*}
D_{j}{ }_{k}= & B^{2} E_{j k}+F_{k}{ }_{k} B_{j}+F_{j}^{i} B_{k}+B_{j}^{i} b_{0 k}+B_{k}^{i} b_{0_{j}} \tag{1.15}\\
& -b_{0 m} g_{\cdot}^{2 m} B_{j k}-C_{j}^{i}{ }_{m} A^{m}{ }_{k}-C_{k}{ }_{m} A^{m}{ }_{j}+C_{j k m} A^{m}{ }_{s} g^{2 s} \\
& +\lambda^{s}\left(C_{j}^{i}{ }_{m} C_{s}^{m}{ }_{k}+C_{k}{ }_{m}^{i} C_{s}^{m}{ }_{j}-C_{j}^{m}{ }_{k} C_{m}{ }_{s}{ }_{s}\right)
\end{align*}
$$

where

$$
\begin{align*}
& B_{k}=p_{0} b_{k}+p_{1} Y_{k}, \quad B^{i}=g^{\imath j} B_{j}, \quad F_{i}^{k}=g^{k_{3}} F_{j i} \\
& B_{i j}=\left\{p_{1}\left(a_{\imath \jmath}-\alpha^{-2} Y_{i} Y_{j}\right)+\frac{\partial p_{0}}{\partial \beta} m_{\imath} m_{j}\right\} / 2 \\
& B_{\imath}^{k}=g^{k \jmath} B_{\jmath \imath}, \tag{1.16}\\
& A_{k}^{m}=B_{k}^{m} E_{00}+B^{m} E_{k_{0}}+B_{k} F_{0}^{m}+B_{0} F_{k}^{m} \\
& \lambda^{m}=B^{m} E_{00}+2 B_{0} F_{0}^{m}, \quad B_{0}=b_{i} y^{i}
\end{align*}
$$

Here and in the following we denote 0 as contraction with y^{2} except for the quantities p_{0}, q_{0} and s_{0}.

2. Induced Cartan connection

Let F^{n-1} be a hypersurface of F^{n} given by the equations $x^{2}=$ $x^{i}\left(u^{\alpha}\right)$. Suppose that the matrix of the projection factor $B_{\alpha}=\partial x^{i} / \partial u^{\alpha}$ is of rank $n-1$. The element of support y^{2} of F^{n} is to be taken tangential to F^{n-1}, that is,

$$
\begin{equation*}
y^{2}=B_{\alpha}^{2}(u) v^{\alpha} \tag{2.1}
\end{equation*}
$$

Thus v^{α} is the element of support of F^{n-1} at the point u^{α}. The metric tensor $g_{\alpha \beta}$ and $H V$-torsion tensor $C_{\alpha \beta \gamma}$ of F^{n-1} are given by

$$
\begin{equation*}
g_{\alpha \beta}=g_{\imath \jmath} B_{\alpha}^{2} B_{\beta}^{\jmath}, \quad C_{\alpha \beta \gamma}=C_{\imath \jmath k} B_{\alpha}^{\imath} B_{\beta}^{\jmath} B_{\gamma}^{k} \tag{2.2}
\end{equation*}
$$

At each point u^{α} of F^{n-1}, a unit normal vector $N^{2}(u, v)$ is defined by
(2.3) $g_{\imath j}(x(u, v), y(u, v)) B_{\alpha}^{i} N^{i}=0, \quad g_{\imath \jmath}(x(u, v), y(u, v)) N^{i} N^{j}=1$.

As for the angular metric tensor $h_{i j}$, we have

$$
\begin{equation*}
h_{\alpha \beta}=h_{\imath j} B_{\alpha}^{i} B_{\beta}^{j}, \quad h_{i j} B_{\alpha}^{i} N^{3}=0, \quad h_{i j} N^{\imath} N^{\jmath}=1 \tag{2.4}
\end{equation*}
$$

If ($B^{\alpha}{ }_{2}, N_{2}$) denote the inverse of (B_{α}^{2}, N^{2}), then we have

$$
\begin{align*}
& B_{2}^{\alpha}=g^{\alpha \beta} g_{i j} B_{\beta}^{3}, \quad B_{\alpha}^{2} B_{2}^{\beta}=\delta_{\alpha}^{\beta} \\
& B^{\alpha}{ }_{2} N^{2}=0, \quad B_{\alpha}^{2} N_{\imath}=0, \quad N_{\imath}=g_{i j} N^{j} \tag{2.5}\\
& B_{\alpha}^{2} B_{j}^{\alpha}+N^{i} N_{j}=\delta_{j}^{\imath}
\end{align*}
$$

The induced connection $I C \mathrm{~T}=\left(\Gamma_{\beta}^{*}{ }_{\gamma}, G^{\alpha}{ }_{\beta}, C_{\beta}{ }^{\alpha}{ }_{\gamma}\right)$ of F^{n-1} induced from the Cartan's connection $C \Gamma=\left(\Gamma_{j k}^{* z}, \Gamma_{0}^{* z}, C_{j}{ }^{2}\right.$) is given by ([6])

$$
\begin{align*}
& \Gamma_{\beta}^{*} \gamma_{\gamma}=B_{i}^{\alpha}\left(B_{\beta}^{2}{ }_{\gamma}+\Gamma_{\jmath}^{* 2} B_{\beta}^{i} B_{\gamma}^{k}\right)+M_{\beta}^{\alpha} H_{\gamma} \tag{2.6}\\
& G_{b}^{\alpha}=B_{i}^{\alpha}\left(B_{0}^{2} \beta_{\beta}+\Gamma_{0}^{* 2} B_{\beta}^{j}\right) \tag{2.7}\\
& C_{\beta}^{\alpha}{ }_{\gamma}=B_{\imath}^{\alpha} C_{j}^{i}{ }_{k} B_{\beta}^{\jmath} B_{\gamma}^{k} \tag{2.8}
\end{align*}
$$

where

$$
\begin{equation*}
M_{\beta \gamma}=N_{i} C_{j}^{2}{ }_{k} B_{\beta}^{3} B_{\gamma}^{k}, \quad M_{\beta}^{\alpha}=g^{\alpha \gamma} M_{\beta \gamma} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
H_{\beta}=\dot{N}_{2}\left(B_{0}^{2} \beta+\Gamma_{0}^{* 2}, B_{\beta}^{3}\right) \tag{2.10}
\end{equation*}
$$

and $B_{\beta}{ }^{2}{ }_{\gamma}=\partial B^{2} \beta / \partial u^{r}, B_{0}{ }^{i}{ }_{\beta}=B_{\alpha}{ }^{2}{ }_{\beta} v^{\alpha}$. The quatities $M_{\beta \gamma}$ and H_{β} are called second fundamental v-tensor and normal curvature vector respectively ([6]). The second fundamental h-tensor $H_{\beta \gamma}$ is defined as ([6])

$$
\begin{equation*}
H_{\beta \gamma}=N_{\imath}\left(B_{\beta_{\gamma}^{2}}+\Gamma_{\jmath k}^{* 2} B_{\beta}^{\jmath} B_{\gamma}^{k}\right)+M_{\beta} H_{\gamma} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\beta}=N_{i} C_{j k}^{i} B_{\beta}^{j} N^{k} \tag{2.12}
\end{equation*}
$$

The relative h - and v-covariant derivatives of projection factor B_{α}^{i} with respect to $I C \Gamma$ are given by

$$
\begin{equation*}
B_{\alpha \mid \beta}^{2}=H_{\alpha \beta} N^{i}, \quad B_{\alpha \mid \beta}^{i}=M_{\alpha \beta} N^{\imath} \tag{2.13}
\end{equation*}
$$

The equation (2.11) shows that $H_{\beta \gamma}$ is generally not symmetric and

$$
\begin{equation*}
H_{\alpha \gamma}-H_{\gamma \beta}=M_{\beta} H_{\gamma}-M_{\gamma} H_{\beta} . \tag{2.14}
\end{equation*}
$$

Furthermore (2.10), (2.11) and (2.12) yield

$$
\begin{equation*}
H_{0 \gamma}=H_{\gamma}, \quad H_{\gamma 0}=H_{\gamma}+M_{\gamma} H_{0} \tag{2.15}
\end{equation*}
$$

We qnote the following Lemma which is due to Matsumoto [6] as follows:

LEMMA 2.1 ([6]). The normal curvature $H_{0}=H_{\beta} v^{\beta}$ vanishes if and only if the normal curvature vector H_{β} vanishes.

Lemma 2.2 ([6]). A hypersurface F^{n-1} is a hyperplane of the first kind if and only if $H_{\alpha}=0$.

Lemma 23 ([6]) A hypersurface F^{n-1} is a hyperplane of the second kind with respect to the connection $C \Gamma$ if and only of $H_{\alpha}=0$ and $H_{\alpha \beta}=0$.

Lemma 2.4 ([6]) A hypersurface F^{n-1} is a hyperplane of the third kind with respect to the connection $C \Gamma$ if and only of $H_{\alpha}=0$ and $M_{\alpha \beta}=H_{\alpha \beta}=0$.

3. Hypersurface $F^{n-1}(c)$ of the first approximate Matsumoto space

Let us consider a special Matsumoto metric with a gradient $b_{\imath}(x)=$ $\partial_{i} b$ for a scalar function $b(x)$ and consider a hypersurface $F^{n-1}(c)$ which is given by the equation $b(x)=c$ (constant). From parametric equations $x^{2}=x^{i}\left(u^{\alpha}\right)$ of $F^{n-1}(c)$ we get $\partial_{\alpha} b(x(u))=0=b_{2} B^{2}{ }_{\alpha}$, so that $b_{2}(x)$ are regarded as covariant components of a normal vector field of $F^{n-1}(c)$. Therefore, along the $F^{n-1}(c)$ we have

$$
\begin{equation*}
b_{\imath} B_{\alpha}^{2}=0 \quad \text { and } \quad b_{\imath} y^{2}=0 \tag{3.1}
\end{equation*}
$$

In general, the induced metric $L(u, v)$ from the Matsumoto metric is given by

$$
L(u, v)=\left(a_{\imath \jmath}(x) B_{\alpha_{\alpha}} B^{J}{ }_{\beta} v^{\alpha} v^{\beta}\right)^{\frac{1}{2}}+b_{2}(x) B_{\alpha}{ }_{\alpha} v^{\alpha}+\frac{b_{2}(x) b_{\jmath}(x) B^{2}{ }_{\alpha} B^{3}{ }_{\beta} v^{\alpha} v^{\beta}}{\sqrt{a_{i \jmath}(x) B^{2}{ }_{\alpha} B^{j}{ }_{\beta} v^{\alpha} v^{\beta}}}
$$

Therefore, the induced metric of the $F^{n-1}(c)$ becomes

$$
\begin{equation*}
L(u, v)=\sqrt{a_{\alpha \beta}(u) v^{\alpha} v^{\beta}}, \quad a_{\alpha \beta}=a_{\imath \jmath}(x) B_{\alpha}^{\alpha} B^{\jmath}{ }_{\beta} \tag{3.2}
\end{equation*}
$$

which is the Riemanman metric.
At the point of $F^{n-1}(c)$, form (1.7), (1.9) and (1.11), we have

$$
\begin{align*}
& p=1, \quad q_{0}=2, \quad q_{1}=0, \quad q_{2}=-\alpha^{-2}, \quad p_{0}=2, \quad p_{1}=\alpha^{-1}, \quad p_{2}=0, \tag{3.3}\\
& \zeta=1+2 b^{2}, \quad S_{0}=2 /\left(1+2 b^{2}\right), \quad S_{1}=\left\{\alpha\left(1+2 b^{2}\right)\right\}^{-1}, \\
& S_{2}=-b^{2} /\left\{\alpha^{2}\left(1+2 b^{2}\right)\right\} .
\end{align*}
$$

Therefore, from (1.10) we get

$$
\begin{equation*}
g^{23}=a^{i 3}-\frac{2}{1+2 b^{2}} b^{2} b^{3}-\frac{1}{\alpha\left(1+2 b^{2}\right)}\left(b^{2} y^{3}-b^{j} y^{2}\right)+\frac{b^{2}}{\alpha^{2}\left(1+2 b^{2}\right)} y^{i} y^{3} . \tag{3.4}
\end{equation*}
$$

Thus along F^{n-1}, (3.4) and (3.1) lead to $g^{i} b_{2} b_{j}=\frac{b^{2}}{\alpha^{2}\left(1+2 b^{2}\right)}$.
Therefore, we get

$$
\begin{equation*}
b_{i}(x(u))=\sqrt{\frac{b^{2}}{\alpha^{2}\left(1+2 b^{2}\right)}} N_{2}, \quad b^{2}=a^{2 J_{2}} b_{j} . \tag{3.5}
\end{equation*}
$$

Again from (3.4) and (3.5) we get

$$
\begin{equation*}
b^{2}=a^{2 j} b_{j}=\sqrt{b^{2}\left(1+2 b^{2}\right)} N^{2}+b^{2} \alpha^{-1} y^{i} . \tag{3.6}
\end{equation*}
$$

Hence, we have the following
Theorem 31 Let F^{n} be the first approximate Matsumoto space with a gradient $b_{2}(x)=\partial_{2} b(x)$ and let $F^{n-1}(c)$ be a hypersurface of F^{n} which is given by $b(x)=c$ (constant). Suppose the Riemannian metric $a_{i j}(x) d x^{i} d x^{j}$ is posituve definte and b_{2} is a non-zero field. Then the induced metric on $F^{n-1}(c)$ is a Riemannian metric given by (3.2) and relatzon (3.5) and (3.6) hold.

Along $F^{n-1}(c)$, the angular metric tensor and metric tensor are given by

$$
\begin{align*}
h_{i j} & =a_{i j}+2 b_{2} b_{j}-\frac{Y_{\imath} Y_{3}}{\alpha^{2}} \tag{3.7}\\
g_{i j} & =a_{\imath \jmath}+3 b_{i} b_{\jmath}+\frac{1}{\alpha}\left(b_{\imath} y_{j}+b_{\jmath} y_{\imath}\right) . \tag{3.8}
\end{align*}
$$

From (3.1), (3.7) and (2.4) it follows that if $h_{\alpha \beta}^{(\alpha)}$ denote the angular metric tensor of the Riemannian $a_{i j}(x)$, then along $F^{n-1}(c) h_{\alpha \beta}=$ $h_{\alpha \beta}^{(a)}$. From (1.11), we get $\frac{\partial p_{0}}{\partial \beta}=12 \alpha^{4} /(\alpha-\beta)^{5}$. Thus along $F^{n-1}(c)$,
$\frac{\partial p_{0}}{\partial \beta}=\frac{12}{\alpha}$ and therefore (1.13) gives $r_{1}=6 / \alpha, m_{2}=b_{i}$. Therefore, the $h v$-torsion tensor becomes

$$
\begin{equation*}
C_{2 j k}=\frac{1}{2 \alpha}\left(h_{\imath \jmath} b_{k}+h_{j k} b_{\imath}+h_{k \imath} b_{j}\right)+\frac{3}{\alpha} b_{\imath} b_{\jmath} b_{k} \tag{3.9}
\end{equation*}
$$

Therefore, (2.4), (2.9), (2.12), (3.1) and (3.9) give

$$
\begin{equation*}
M_{\alpha \beta}=\frac{1}{2 \alpha} \sqrt{\frac{b^{2}}{1+2 b^{2}}} h_{\alpha \beta}, \quad M_{\alpha}=0 \tag{3.10}
\end{equation*}
$$

Hence, from (2.14) it follows that $H_{\alpha \beta}$ is symmetric.
Theorem 32 The second fundamental v-tensor of $F^{n-1}(c)$ is given by (3.10) and the second fundamental h-tensor $H_{\alpha \beta}$ ss symmetric.

Next from (3.1) we get $b_{2 \mid \beta} B_{\alpha}^{2}+b_{2} B_{\alpha \mid \beta}^{2}=0$. Therefore, from (2.13) and the fact that $b_{2 \mid \beta}=b_{i \mid j} B_{\beta}^{2}+b_{i \mid j} N^{3} H_{\beta}$, we get

$$
\begin{equation*}
b_{\imath!j} B_{\alpha}^{i} B_{\beta}^{j}+b_{i \backslash j} B_{\alpha}^{i} N^{j} H_{\beta}+b_{\imath} H_{\alpha \beta} N^{i}=0 . \tag{3.11}
\end{equation*}
$$

Since $\left.b_{2}\right|_{j}=-b_{h} C_{2}{ }^{h}$, from (2.12), (3.5) and (3.10) we get

$$
\left.b_{i}\right|_{\jmath} B_{\alpha}^{2} N^{\jmath}=\sqrt{\frac{b^{2}}{\alpha^{2}\left(1+2 b^{2}\right)}} M_{\alpha}=0
$$

Thus (3.11) gives

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{1+2 b^{2}}} H_{\alpha \beta}+b_{z \mid \jmath} B_{\alpha}^{2} B_{\beta}{ }_{\beta}=0 . \tag{3.12}
\end{equation*}
$$

It is noted that $b_{2 \mid j}$ is symmetric. Furthermore, contracting (3.12) with v^{β} and v^{α} respectively and using (2.1), (2.15) and (3.10) we get
(3.13) $\sqrt{\frac{b^{2}}{1+2 b^{2}}} H_{\alpha}+b_{2 \mid j} B^{2}{ }_{\alpha} y^{2}=0, \quad \sqrt{\frac{b^{2}}{1+2 b^{2}}} H_{0}+b_{2 \mid j} y^{2} y^{\prime}=0$.

In view of Lemmas (2.1), and (2.2), the hypersurface $F^{n-1}(c)$ is hyperplane of the first kind if and only if $H_{0}=0$. Thus from (3.13) it follows that $F^{n-1}(c)$ is a hyperplane of the first kind if and only if $b_{\imath \mid j} y^{2} y^{3}=0$. This $b_{\imath \mid j}$ being the covariant derivative with respect to $C \Gamma$, of F^{n}, it may depend on y^{2}. On the other hand $\nabla_{j} b_{i}=b_{\imath j}$ is the covariant derivative with respect to the Riemannian connection $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ constructed from $a_{\imath \jmath}(x)$, therefore $b_{\imath \jmath}$ does not depend on y^{i}. We shall consider the difference $b_{i \mid j}-b_{i j}$ in the following. The difference tensor $D_{j}{ }^{i}{ }_{k}=\Gamma_{j}^{* 2} k-\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ is given by (1.15). Since b_{i} is a gradient vector, from (1.14) we have $E_{i j}=b_{2 j}, F_{2 j}=0, F^{2}{ }_{j}=0$. Thus (1.17) reduces to

$$
\begin{align*}
D_{j}{ }^{2} k= & B^{2} b_{j k}+B^{2}{ }_{j} b_{0 k}+B^{2}{ }_{k} b_{0_{j}}-b_{0 m} g^{2 m} B_{j k} \\
& -C_{j}{ }_{m} A^{m}{ }_{k}-C_{k}{ }^{2}{ }_{m} A^{m}{ }_{j}+C_{j k m} A^{m}{ }_{s} g^{2 k} \tag{3.14}\\
& +\lambda^{s}\left(C_{j}{ }_{m}{ }_{m} C_{s}^{m}{ }_{k}+C_{k}{ }_{m} C_{s}{ }^{m}{ }_{j}-C_{j}{ }^{m}{ }_{k} C_{m}{ }^{2} s\right) .
\end{align*}
$$

But in view of (3.3) and (3.4), the expressions (1.16) reduce to (3.15)

$$
\begin{aligned}
& B_{i}=3 b_{\imath}+\alpha^{-1} y_{\imath}, \quad B^{i}=\frac{2 b^{i}}{1+2 b^{2}}+\frac{y^{2}}{\alpha\left(1+2 b^{2}\right)}, \\
& B_{2 \jmath}=\frac{1}{2 \alpha}\left(a_{2 \jmath}-\alpha^{-2} y_{\imath} y_{j}+12 b_{\imath} b_{j}\right), \\
& B^{2}=\frac{1}{2 \alpha}\left(\delta_{j}^{2}-\alpha^{-2} y_{j} y^{2}\right)+\frac{5}{\alpha\left(1+2 b^{2}\right)} b^{i} b_{j}-\frac{1+12 b^{2}}{2 \alpha^{2}\left(1+2 b^{2}\right)} y^{2} b_{\jmath}, \\
& A^{m}{ }_{k}=B^{m}{ }_{k} b_{00}+B^{m} b_{k 0}, \\
& \lambda^{m}=B^{m} b_{00} .
\end{aligned}
$$

By virtue of (3.1) we have $B^{2}{ }_{0}=0, B_{20}=0$ which gives $A^{m}=$ $B^{m} b_{00}$.

We, therefore, have

$$
\begin{equation*}
D_{j}{ }^{2}{ }_{0}=B^{2} b_{j 0}+B^{2}{ }_{j} b_{00}-B^{m} C_{j}{ }^{2}{ }_{m} b_{00}, \tag{3.16}
\end{equation*}
$$

$$
\begin{equation*}
D_{0}{ }^{i}{ }_{0}=B^{2} b_{00}=\left[\frac{2 b^{i}}{1+2 b^{2}}+\frac{y^{2}}{\alpha\left(1+2 b^{2}\right)}\right] b_{00} . \tag{3.17}
\end{equation*}
$$

Thus paying attention to (3.1) along the $F^{n-1}(c)$, we finally get

$$
\begin{equation*}
b_{\imath} D_{3}^{2}{ }_{0}=\frac{2 b^{i}}{1+2 b^{2}} b_{\jmath 0}+\frac{1+12 b^{2}}{2 \alpha\left(1+2 b^{2}\right)} b_{00}-2 b^{m} b_{i} C_{\jmath}^{2} b_{00} \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
b_{i} D_{0}{ }^{i}{ }_{0}=\frac{2 b^{2}}{1+2 b^{2}} b_{00} . \tag{3.19}
\end{equation*}
$$

From (2.12), (3.5), (3.6) and (3.10) it follows that

$$
b^{m} b_{\imath} \cdot C_{\jmath}{ }_{m}^{2} B_{\alpha}^{\jmath}=b^{2} M_{\alpha}=0
$$

Therefore, the relation $b_{2 \mid \jmath}=b_{2 \jmath}-b_{r} D_{2}{ }^{r}$, and equations (3.18), (3.19) give

$$
b_{2 \mid, 3} y^{2} y^{3}=b_{00}-b_{r} D_{0}^{r}{ }_{0}=\frac{1}{1+2 b^{2}} b_{00}
$$

Consequently, (3.13) may be written as

$$
\begin{equation*}
\sqrt{b^{2}} H_{\alpha}+\frac{1}{\sqrt{1+2 b^{2}}} b_{r 0} B_{\alpha}^{2}=0, \quad \sqrt{b^{2}} H_{0}+\frac{1}{\sqrt{1+2 b^{2}}} b_{00}=0 \tag{3.20}
\end{equation*}
$$

Thus the condition $H_{0}=0$ is equivalent to $b_{00}=0$, where b_{23} does not depend on y^{2}. Since y^{2} is to satisfy (3.1), the condition is written as $b_{\imath j} y^{i} y^{\jmath}=\left(b_{\imath} y^{2}\right)\left(c_{j} y^{i}\right)$ for some $c_{j}(x)$, so that we have

$$
\begin{equation*}
2 b_{23}=b_{2} C_{3}+b_{3} C_{2} \tag{3.21}
\end{equation*}
$$

From (3.1) and (3.21) it follows that $b_{00}=0, b_{\imath \jmath} B_{\alpha}^{2} B_{\beta}^{3}=0$, $b_{2 \jmath} B_{\alpha}{ }_{\alpha} y^{j}=0$. Hence, (3.20) gives $H_{\alpha}=0$. Again from (3.21) and (3.15) we get $b_{i 0} b^{i}=\frac{c_{0} b^{2}}{2}, \lambda^{m}=0, A_{3}{ }_{3} B_{\beta}{ }_{\beta}=0$ and $B_{2 j} B_{\alpha}^{2} B^{j}{ }_{\beta}=$ $\frac{1}{2 \alpha} h_{\alpha \beta}$. Thus (2.9), (3.4), (3.5), (3.6), (3.10) and (3.14) give

$$
b_{r} D_{2}^{r}{ }_{3} B_{\alpha}^{t} B_{\beta}^{j}=\frac{-C_{0} b^{2}}{4 \alpha\left(1+2 b^{2}\right)^{2}} h_{\alpha \beta}
$$

Therefore, equation (3.12) reduces to

$$
\begin{equation*}
\sqrt{\frac{b^{2}}{1+2 b^{2}}} H_{\alpha \beta}+\frac{C_{0} b^{2}}{4 \alpha\left(1+2 b^{2}\right)^{2}} h_{\alpha \beta}=0 \tag{3.22}
\end{equation*}
$$

Hence the hypersurface $F^{n-1}(c)$ is umbilic.

Theorem 33 The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of the first kind is (3.21) and in this case the second fundamental tensor of $F^{n-1}(c)$ is proportional to its angular metric tensor.

In view of Lemma (2.3), $F^{n-1}(c)$ is hyperplane of second kind if and only if $H_{\alpha}=0$, and $H_{\alpha \beta}=0$. Thus from (3.22) we get $C_{0}=C_{I}(x) y^{i}=$ 0 . Therefore, there exist a function $e(x)$ such that $c_{2}(x)=e(x) b_{2}(x)$. Thus (3.21) gives

$$
\begin{equation*}
b_{\imath j}=e b_{2} b_{j} . \tag{3.23}
\end{equation*}
$$

Theorem 34 The necessary and sufficient condition for $F^{n-1}(c)$ to be a hyperplane of the second kand is (3.23).

Finally (3.10) and Lemma 2.4 show that $F^{n-1}(c)$ does not become a hyperplane of the third kind.

Theorem 3.5 The hypersurface $F^{n-1}(c)$ is not a hyperplane of the therd kind.

References

[1] T Aikou, M Hashıguchı and K Yamaguchi, On Matsumoto's Finsler space with tame measure, Rep Eac. Sci. Kagoshima Univ (Math. Phys. Chem.) 23 (1990), 1-12
[2] M. Hashiguchi, S Hojo and M Mausumoto, On Landsberg spaces of two dvmenswns with (α, β)-metric, Korean Math. Soc 10 (1973), 17-26
[3] V K Kropina, On projective Finsler spaces with a metric of some special form, Naven Doklad Vyas Skolay, Fiz Mat. Nauki 2 (1960), 38-42
[4] V K Kropina, Projective two-dimensional Finsler spaces wnth special metric, Trudy Sem Vektor Tensor Anal 11 (1961), 277-292
[5] M Matsumoto, On C-reducible Funsler spaces, Tensor, N. S. 24 (1972), 29-37
[6] M Matsumoto, The induced and intrinsuc Fensler connectrons of a hypersurface and Funslerzan progective geometry, J. Math. Kyoto Univ. 25 (1985), 107144
[7] M Matsumoto, A slope of a mountain ws a Finsler surface wnth respect to a trme measure 29 (1989), 17-25.
[8] Hong-Suh Park, Il-Yong Lee and Chan Keun Park, Finsler space unth the geneval approxzmate matsumoto metric, Indian J. Pure Appl. Math (to appear).
[9] G Randers, On an asymmetrical metric in the four-space of general relatavaty, Phys, Rev.(2) 59 (1941), 195-199.
[10] C Shibata, On Finsler spaces wnth an (α, β)-metric, J Hokkado Unvv. Edu (Section IIA) 35 (1984), 1-16

Division of Mathematical Sciences
Kyungsung University
Pusan 608-736, Korea
E-mail: iylee@star.kyungsung.ac.kr
Department of Mathematics
Soonchunhyang University
Asan 337-880, Korea

