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ON A HYPERSURFACE OF THE FIRST
APPROXIMATE MATSUMOTO SPACE

I1-YoNG LEE AND DonNG-GUM JUN

ABSTRACT We consider the special hypersurface of the first approxi-
mate Matsumoto metric with 6,(x) = 8,b being the gradient of a scalar
function b(z) In this paper, we consider the hypersurface of the first
approximate Matsumoto space with the same equation d{¢) = corn-
stant We are devoted to finding the condition for this hypersurface
to be a hyperplane of the first or second kind We show that this
hypersurface 1s not a hyper-plane of third kind

1. The first approximate Matsumoto space

The Matsumoto metric is expressed as the form

T k
(1.1) o = lim « (é)
k=0

a—3 rooc fa3

for |B| < |a|. We regard b,{z) as very small numerically. If we neglect
- all the powers which are greater than r of b,(z) in (1.1), then («, 8)-
metric

(1.2) L=ak\; (g)k
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is an approximate metric to the Matsumoto metric. Then we shall call
the (a, B)-metric (1.2) the general approzimate Matsumoto metric. If
we put 7 = 2, then L is the first approximate Matsumoto metric. That
is to say, we have as follows:

2
(1.3) L=at+p+=.

Here, by taking a general Riemannian metric & and a general non-zero
1-formm B on a general differentiable manifold M™, Hong-Suh Park,
[I-Yong Lee and Chan-Keun Park [8] give as follows:

DEFINITION 1.1. On an n-dimensional differential manifold M™,
an (o, 8)-metric L of type (1.3) is called the first epprommate Mat-
sumoto metric and the Finsler space (M™, L) is called the first approz-
wnate Matsumaoto space.

The derivatives of the first approximate Matsumoto metric L with
respect ot a and 3 are given by

Lo = (o —BY)/a?, Lg=(a+28)/o,
(1.4) Laa =23%/a®, Lgs =2/a,

Lag = —283/a?,
where Ly = 8L/8a, Lg = 8L/65.

If in the first approximate Matsumoto space F™ = (M™, L) where
L=oa+ 3+ 5% a, we put

a = (a'm(x)ytyj)%: 8= b,(m)y",
then the normalized element of support I, = 8,L is given by
(1.5) i = & ' Loy + Lgb;,

where Y, = a;,%*. The angular metric tensor Py = L‘lélc;?JL is given
by

(1.6) huj = pai; + qob.b, + q1(8,Y; + b,Y;) + Y1 Y,,
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where
2 2\( 2 2
_ oy (@ +af+ ) e? — )
p=LL,a " = - ,
do = LLgy = 22T B+
2 2
(1.7 *
- 28(a* + o + 8°)
_ 1 _
g1 = LLaga™ " = ~ oF ,

2(2a2 _ 2
g2 = La~? (Lo — Lya™) = (& +af +56)(3ﬁ a?)

The fundamental tensor g,, = %3133L2 is given by

(18) Gvy = Py, +p0bzb3 + pl(bzl/) + bJYl) + Q'Z)/z)/ja
where
3(a® + 208 + 32
Po=qo+Lj = ( 026 ﬁ)7
_ o® + 4028 + aff?
(1.9) pr=q+ L 'pLg = af ,
3 a,.a3 4
- —a°3+ 3a8° +48
P2 =G +;02L 2= A asﬁ ;

Moreover, the reciprocal tensor g% of g,, is given by

(1.10) g7 = p~la" ~ Spb'p? — S, (b +Vy) — Syt

where

b =a¥b,, Sy = (ppo+ (pop2 — Pi)e?)/Cp,
(111) 81 = (pp1 + (pop2 — P})B)/<ps |

82 = (pp2 + (pop2 — P1)V?)/Cp, b = ay, bW,

¢ = p(p+ pob?® + p1B) + (pop2 — pi)(@2b* — B°).
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1.
The hv-torsion tensor Ci = Eakgz_'; is given by ([9})

(1.12) 2}70,3;; = pl(h,Jmk + hjkmz + hk,-mj) + ym,m,my,
where
(1.13) "= Zpﬁ 3pigp, m; = b, —a °3Y,.

It is noted that the covariant vector m, is a non-vanishing one, and
is orthogonal to the element of support y*.

Let {;k } be the components of Christoffel’s symbol of the asso-

ciated Riemannian space R™ and V} be covariant differentiation with
respect to z¥ relative to this Christoffel’s symbol. We shall use the
following tensors.

(1.14) 2Ezj = b:j + tha 2EJ = bﬁ] - bj“
where b,; = V;b;.
If we denote the Cartan’s connection CT as (I"";,., | A AP jik)a then

the difference tensor D)% = I'}% — of the first approximate

i
1k
Matsumoto space is given by ([10]).

(1.15)

D'y = B*Ejx + F*\ B, + F', By + B ;box + B'xbo,
— bomg™ ng - CJ mA™ e — Ci* m,A + Cka sgw
T"/\s(cj mCs k'l‘CkmCs 3 Yy kas),

where

Br =pobi +p1Ye, B'=g“B;, F*, =g"F,,

dpo
B;;, = {Pl(aw o YY) + ﬂm,mJ} /2,
Bkz = ngB;na
A"y = B™ . Eqo + BmEko + By F™g + BoF™y,
A™ = B™Eqo + 2BoF™p, Bp= b,‘_yi.

(1.16)
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Here and in the following we denote 0 as contraction with ¥* except
for the quantities pg, gp and sg.

2. Induced Cartan connection

Let F™~' be a hypersurface of F™ given by the equations z* =
z*(u*). Suppose that the matrix of the projection factor B*, = dx*/fu®
18 of rank n — 1. The element of support 3* of F* is to be taken tan-
gential to F™~ !, that is,

(2.1) y' = By (u)v®.

Thus »* is the element of support of F»~! at the point 4*. The
metric tensor gos and HV -torsion tensor Cppy of F™~! are given by

(2.2) 9os = GyB'aB’s, Cagy = CiB'aB3B",.
At each point u* of F»~1 a unit normal vector N*(u,v) is defined by
(23) 04 (2(,0),y(u, V) B'aN* = 0, gy, (w{u,v), y(u, v)) N'N? = 1.
As for the angular metric tensor h;;, we have
(2.4) hop = hyjB'aBip, hijB'aN’ =0, h,N'N?=1.
If (B*,, N,) denote the inverse of (B4, N*), then we have

B, =¢*%g;,B's, B'aB’ =4,

(2.5) B*N*=0, B'.N,=0, N,=g,;N,
B'.B*, + N'N, = §;.

The induced connection ICT = ([, G*5,Cp%,) of F*~* induced
from the Cartan’s connection CT = (T'3*x, 3%, Cy*x) is given by {[6])
(2.6) I'37y = B, (Bg"y + [ B*sB*,) + M°3H,,

(2.7) G*, = B*(Bo's + 3w B’ 3),
(2.8) Cs~, = B*,C,"B’3B*,,
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where
(2.9) Mpy = N.C;*xB'3B*,, M®s=g""Mp,,
(2.10) Hg = Nl(Boig + [‘B%JB{B),

and Bg'y, = 0B'g/0v", By's = B,'gv*. The quatities Mg, and Hp
are called second fundamental v-tensor and normal curvaiure vector
respectively ({6]). The second fundamental h-tensor Hg, is defined as

(I6})

(2.11) Hpy = Nu(Bg'y + I}'xB?gB*,) + MgH,,
where
(2.12) Mp = N,C,*, B?gN*.

The relative h- and v-covariant derivatives of projection factor B,
with respect to ICT are given by

(2.13) Blap = HagN*, B = M,sN".
The equation (2.11) shows that Hg, is generally not symmetric and
(2.14) Hoy — Hyp = MgH, — M, Hp.
Furthermore (2.10), (2.11) and (2.12) yield
(2.15) " Hoy,=H,, Hy=H,+M,H,.

We gnote the following Lemma which is due to Matsumoto [6] as
follows:

LEMMA 2.1 ({6]). The normal curvature Hy = Hgv? vanishes if
and only if the normal curvature vector Hg vanishes.

LEMMA 2.2 ([6]). A hypersurface F™~ ! is a hyperplane of the
first kind if and only if H, = 0.
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LEMMA 2 3 (i6)) A hypersurface F™ ' 1s a hyperplane of the
second kind with respect to the connection CT if and only of Ho = 0

LeMMA 2.4 (I6]) A hypersurface F™™' is a hyperplane of the
third kind wnth respect to the connection CL if and only if Hy, = 0 and
Myp = Hopg = 0.

3. Hypersurface F"~1{c) of the first
approximate Matsumoto space

Let us consider a special Matsumoto metric with a gradient b.(x) =
9;b for a scalar function b(x) and consider a hypersurface F™~1(c)
which is given by the equation b(z) = ¢ (constant). From parametric
equations z* = z{u®) of F" (¢} we get Bab(z(u)) = 0 = b,B%,, so
that b,(z) are regarded as covariant components of a normal vector
field of F*~!(c). Therefore, along the F™~(c) we have

(3.1) b,B'a =0 and by =0.

In general, the induced metric L{w,v) from the Matsumoto metric
is given by
b, (x)b,(z)B* o B? gv*vP
Vai, () Bt B guvP

Therefore, the induced metric of the F*~1(¢) becomes

(3.2) L{u,v) = 1/ aap(u)v®vB, aap = a,(c)B’aB’g

which is the Riemanman metric.
At the point of F*~!{(c), form (1.7}, (1.9) and (1.11), we have
(3-3)
p=1, q0:2) =0 __:___a—2, POZQ, y41 :a—ls pQZOa
¢C=1+2%, 8=2/(1+2b%), 8 = {a(l+26%)}71,
Sy = —b*/{c?(1 + 269},

L{u,v) = (@, () B o B gv*vP)2 +b,(2) B* ov* +
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Therefore, from (1.10) we get

(3.4)
g? = av — _zﬁ_“b“ = ——1~—(b‘y7 —by*) + —"b—g—"yzyj
1+ 20° a(l + 2b7) a?(1 + 2b%)
. . b2
Thus along F™~%, (3.4) and (3.1) lead to g*b,b; = a?(1 + 2b?)

Therefore, we get

’ b2 2 ¥
(3.5) b,(:c(u)) = mNz, b =a bzbj.

Again from (3.4) and (3.5) we get

(3.6) ¥ =a¥b, = \/b2(1 + 2b%)N"* + b1y .

Hence, we have the following

THEOREM 3 1 Let F™ be the first approzimate Matsumoto space
with a gradient b,(x) = 8,b(z) and let F*~(c) be a hypersurface of F™
whach is given by b(x) = ¢ (constant). Suppose the Riemannian metric
ai;(x)dzida? is positwe definate and b, is a non-zero field. Then the
wnduced metric on F™~}(c) is a Riemanman metric quen by (3.2) and
relation (3.5) and (3.6) hold.

Along F"~!(c), the angular metric tensor and metric tensor are
given by

2 Y
144
1

From (3.1), (3.7) and (2.4) it follows that if hffﬁ) denote the angular
metric tensor of the Riemannian a;;(x), then along F*~1(c) has =

a 9]
hgg From (1.11), we get F%g = 120*/(a — B8)°. Thus along F*(c),
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Opo 12

B a and therefore {(1.13) gives r; = 6/, m, = b;. Therefore, the
84

hv-torsion tensor becomes
1 3
(3.9) Cu'k = %(h”bk + hjkb; + hkzbj) + Ebsbjbk-
Therefore, {2.4), (2.9), (2.12), (3.1) and (3.9) give

1 b?
3.10 Ma —_ — SE—— —_— O.
(3.10) P= 50\ Trapltes Mo

Hence, from (2.14) it follows that H,g is symmetric.

THEOREM 3 2 The second fundamental v-tensor of "~ 1{c) is
grven by (3.10) and the second fundamental h-tensor H,z3 15 symmetric.

Next from (3.1) we get b, gBa +b,B%3 = 0. Therefore, from (2.13)
and the fact that b,3 = b,|, B’ + b;|, N7 Hg, we get

(3.11) byjB'aB’g + by, B'aNTHg + b,HosN* = 0.
Since b,|, = —b,C,",, from (2.12), (3.5) and (3.10) we get

b‘Z

—_ M, = 0.
o2(1 + 252y e =0

bi], B'a N7 =

Thus (3.11) gives

/ b? .
(312) m—b—QHaﬁ + bth QB‘?[j — 0

It is noted that b,|, is symmetric. Furthermore, contracting {3.12)
with »# and v® respectively and using (2.1), (2.15) and (3.10) we get

b‘Z b2
3.13 _'_'_Ha bz ‘Bta P = ’ T L 913 1 ‘Y = 0.
(B313) { 7oopp et biiBlay’ =0 \/1+2b?H°+b“”J 0
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In view of Lemmas (2.1), and (2.2), the hypersurface F*~1(c) is
hyperplane of the first kind if and only if Hp = 0. Thus from (3.13)
it follows that F*~!(c) is a hyperplane of the first kind if and only if
b,,¥*y’ = 0. This b,); being the covariant derivative with respect to
CT, of F™, it may depend on 3*. On the other hand V,b, = b,; is the

covariant derivative with respect to the Riemannian connection { ik }

constructed from a,,(x), therefore b,; does not depend on 4*. We shall
consider the difference b,, — b;, in the following. The difference tensor

D% = Y — {;k} is given by (1.15). Since b; is a gradient vector,

from (1.14) we have E;; = b,;, F,, = 0, F*, = 0. Thus (1.17) reduces
to

D;*, = By + B*,box + B kg, — bomg™™ By
(3.14) — C*m A — C*mA™ + CjemA™ g%
+ A® (Cjzmcsmk + Ckszst - Jkam‘s)-

But in view of (3.3) and (3.4), the expressions (1.16) reduce to
(3.15)

_ : 2b* Y
B; = 3b, 1 B = )
e 11208 T a(l+ 269

1 _
B, = 5—&(0,,3 —aYyy; + 12b,b,),

i 5] . 1+ 1267
B = (8 — a2yt — Y ph - 1 b

2 20'( 2 2 yjy )+ le(]. +262)b b} 2a2(1+2b2)y J?

A™ = B™bog + B by,
A™ = B™bog.

By virtue of (3.1) we have By = 0, B,o = 0 which gives A™y =
B™bgg.

We, therefore, have

(3.16) D% = B'bjo + B';boo — B™C,*mboo,

. 2pt y‘l
3.17 Doty = Bbyo = .
(3.17) 0'0 00 [1-1—21)2 + o +2b2)} boo
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Thus paying attention to (3.1) along the F™~{c), we finally get
(3.18)

2y 1+ 128
b,Dj'o = ——5b ———5<boo — 20" 5:C," mboo,
30 T o2 50 T Sa(l + 207 00 3 mV00
(3.19)
; 2b
b; Do*p = boo-
00 1+ 22 00

From (2.12), (3.5), (3.6) and (3.10) it follows that
b™b, - C) Bl = b2 M, = 0.

Therefore, the relation b,, = b,; — b,D,", and equations (3.18}, (3.19)
give
z T 1
by ¥'y =boo — b, Do"o = mboo-

Consequently, (3.13) may be written as

1 1

3.20) VB2H, + —==—b,B' =0, Vb Hp+ —====b
( ) a 1+2b2 200 o ’ 0 1+2b2 00

Thus the condition Hy = 0 is equivalent to boo = 0, where b,; does
not depend on y*. Since * is to satisfy (3.1), the condition is written
as byy'y? = (b,y*)(¢,y") for some ¢;{(z), so that we have
(3.21) 2b,;, = b,C; +b,C,.

From (3.1) and (3.21) it follows that boo = 0, b,;B*aB’g = 0,
by By’ = 0. Hence, (3.20) gives H, = 0. Again from (3.21) and

2 -
(3.15) we get bobt = ci;—, A" =0, A*,B’g = 0 and B,;B*,Big =
1
5o has. Thus (2.9), (3.4), (3.5), (3.6), (3.10) and (3.14) give

—Cb?
4a(1 + 207)2
Therefore, equation (3.12) reduces to

b? Cob?
22 V| o g+ 0o = 0.
(3.22) T3 op s T o v oy eP

Hence the hypersurface F™~1(¢) is umbilic.

= 0.

b,-DerBzaBjﬁ = hag.
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THEOREM 3 3 The necessary and sufficient condition for F*~1(c)
to be a hyperplane of the first kind is (3.21) and in this case the second
fundamental tensor of F*~1(c) is proportional to its angular metric
tensor.

In view of Lemma (2.3), F™~1(c) is hyperplane of second kind if and
only if Hy, = 0, and H,s = 0. Thus from (3.22) we get Co = Cr{z)y* =
0. Therefore, there exist a function e{x) such that c,(x) = e{z)b,(x).
Thus (3.21) gives

(3.23) b, = ebyb,.

THEOREM 3 4 The necessary and sufficient condetron for F*~1(c)
to be a hyperplane of the second kind 1s (3.23).

Finally (3.10) and Lemma 2.4 show that F™ *(c) does not become
a hyperplane of the third kind.

THEOREM 3.5 The hypersurface F™~1(c) is not a hyperplane of
the third kind.
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