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ALMOST EINSTEIN MANIFOLDS WITH

CIRCULANT STRUCTURES

Iva Dokuzova

Abstract. We consider a 3-dimensional Riemannian manifold M with
a circulant metric g and a circulant structure q satisfying q3 = id. The
structure q is compatible with g such that an isometry is induced in any
tangent space of M . We introduce three classes of such manifolds. Two
of them are determined by special properties of the curvature tensor. The
third class is composed by manifolds whose structure q is parallel with
respect to the Levi-Civita connection of g. We obtain some curvature
properties of these manifolds (M, g, q) and give some explicit examples of

such manifolds.

1. Introduction

The Riemannian manifolds with additional structures are among the most
studied types of manifolds in differential geometry. For example, we will re-
fer to the theory of Riemannian almost product manifolds and to the theory
of almost Hermitian manifolds. A. Naveira gave a classification of Riemann-
ian almost product manifolds. It was made by the properties of the tensor
∇P , where ∇ is the Levi-Civita connection determined by the metric and P
is the almost product structure ([11]). The class W0 defined by ∇P = 0
in this classification is common to all classes. Every manifold in this class
satisfies the curvature identity R(x, y, Pz, Pu) = R(x, y, z, u), which implies
R(Px, Py, Pz, Pu) = R(x, y, z, u). In this vein, almost Hermitian manifolds
were classified by A. Gray and L. Hervella ([7]). Due to Gray, in these classes
curvature identities are a key to understand their geometry. Substantial results
in the geometry of Riemannian manifolds with additional structures are asso-
ciated with the curvature tensor, the Ricci tensor, the scalar curvatures, the
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Ricci curvature and sectional curvatures of some characteristic 2-planes of the
tangent space of the manifolds (for instance [1], [2], [6], [9], [10]).

The main aim of the present paper is to continue the investigations in [5]
and [4], and to find more geometric properties of a 3-dimensional Riemannian
manifold M with a circulant metric g and an additional circulant structure q
with q3 = id, i.e., a manifold (M, g, q).

The paper is organized as follows. In Section 2, we define a Riemannian
manifold (M, g, q) equipped with a circulant metric g and an endomorphism q
whose third power is the identity. Moreover, we assume that the local coor-
dinates of q form a circulant matrix. Then q is compatible with g such that
an isometry is induced in any tangent space of M . We recall necessary facts
about such manifolds and we consider three classes L0, L1, L2 (L0 ⊂ L1 ⊂ L2)
of manifolds (M, g, q) that are of interest to our further studies. In Section 3,
we obtain conditions for the Ricci tensor ρ, which are necessary and sufficient
for belonging of (M, g, q) to L2. In both classes L2 and L1, we express the
Ricci tensor ρ by the metric g and the structure q and establish that (M, g, q)
is an almost Einstein manifold. In Section 4, we are interested in the sectional
curvatures of some characteristic 2-planes in L2, also in L1. In both classes we
find the Ricci curvature in the direction of a non-zero vector x. For a manifold
(M, g, q) ∈ L0 we obtain a partial differential equation for the scalar curvature
and a necessary and sufficient condition for conformal flatness. In Section 5,
we construct explicit examples of the considered manifolds (M, g, q).

2. Preliminaries

Let M be a 3-dimensional manifold equipped with a Riemannian metric g.
We assume that the metric g at a point p(X1, X2, X3) ∈ M has the following
matrix form

(1) (gij) =





A B B
B A B
B B A



 , A > B > 0,

where A and B are smooth functions of X1, X2, X3. Then the metric g is
positive definite.

Let q be an endomorphism in the tangent space TpM , whose coordinate
matrix with respect to a basis {e1, e2, e3} of TpM is

(2) (qji ) =





0 1 0
0 0 1
1 0 0



 .

Obviously

q3 = id,

and the structure q is an isometry with respect to g, i.e.,

(3) g(qx, qy) = g(x, y).
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In (3) and further, x, y, z, u will stand for arbitrary elements of the algebra
on the smooth vector fields on M or vectors in the tangent space TpM . The
Einstein summation convention is used, the range of the summation indices
being always {1, 2, 3}.

We denote by (M, g, q) the manifold M equipped with the Riemannian met-
ric g and the structure q, defined by (1) and (2).

Let us remark that the matrix (2) generates the commutative algebra
Circ(3)(over R) of all 3× 3 real circulant matrices ([8]).

The Levi-Civita connection on a Riemannian manifold is denoted by ∇. The
curvature tensor R of ∇ is defined by

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z.

Also, we consider the tensor of type (0, 4) associated with R, defined as follows

R(x, y, z, u) = g(R(x, y)z, u).

We say that a manifold (M, g, q) is in class L0 if the structure q is parallel
with respect to g, i.e.,

(4) ∇q = 0.

We say that a manifold (M, g, q) is in class L1 if

(5) R(x, y, qz, qu) = R(x, y, z, u).

We say that a manifold (M, g, q) is in class L2 if

(6) R(qx, qy, qz, qu) = R(x, y, z, u).

It is easy to see that L0 ⊂ L1 ⊂ L2 are valid.
In [5] it is proved that (M, g, q) ∈ L0 if and only if the gradients of the

functions A and B satisfy the following equality

(7) gradA = gradB





−1 1 1
1 −1 1
1 1 −1



 .

Let Rijkh be the components of the curvature tensor R of type (0, 4).
The local form of (5) is Rijlmqlkq

m
h = Rijkh. Then, using (2), we find

R1212 = R1223 = R1231, R1313 = R1321 = R1332, R2323 = R2331 = R2312,

which implies

(8) R1212 = R1313 = R2323 = −R1213 = −R1323 = R1223.

Vice versa, from (2) and (8) it follows (5).
Hence we arrive at the following:

Proposition 2.1. The property (5) of the manifold (M, g, q) is equivalent to

the conditions (8).

In [4] it is proved:



1444 I. DOKUZOVA

Proposition 2.2. The property (6) of the manifold (M, g, q) is equivalent to

the conditions

(9) R1212 = R1313 = R2323, R1213 = R1323 = −R1223.

Definition. A basis of type {x, qx, q2x} of TpM is called a q-basis. In this case
we say that the vector x induces a q-basis of TpM . Similarly, a basis {x, qx}
of a 2-plane α = {x, qx} is called a q-basis.

In [5], for (M, g, q) it is verified that

(i) A vector x = (x1, x2, x3) induces a q-basis of TpM if and only if

3x1x2x3 6= (x1)3 + (x2)3 + (x3)3;

(ii) If a vector x induces a q-basis of TpM and ϕ = ∠(x, qx), then

ϕ ∈
(

0,
2π

3

)

, ∠(x, qx) = ∠(qx, q2x) = ∠(x, q2x) = ϕ;

(iii) An orthogonal q-basis of TpM exists.

3. Almost Einstein manifolds

We consider the associated metric f with g on (M, g, q) determined by

(10) f(x, y) = g(x, qy) + g(qx, y).

It is an indefinite metric, whose matrix of components is

(11) (fij) =





2B A+B A+B
A+B 2B A+B
A+B A+B 2B



 .

The inverse matrices of (gij) and (fij) are as follows

(12) (gij) =
1

D





A+B −B −B
−B A+B −B
−B −B A+B



 ,

(13) (f ij) =
1

2D





−A− 3B A+B A+B
A+B −A− 3B A+B
A+B A+B −A− 3B



 ,

where D = (A−B)(A+ 2B).
The Ricci tensor ρ and the scalar curvature τ with respect to g are given by

the well-known formulas:

(14) ρ(y, z) = gijR(ei, y, z, ej), τ = gijρ(ei, ej).

Their associated quantities are determined by

(15) ρ∗(y, z) = f ijR(ei, y, z, ej), τ∗ = f ijρ(ei, ej).
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ARiemannian manifold is said to be Einstein if its Ricci tensor ρ is a constant
multiple of the metric tensor g, i.e.,

(16) ρ(x, y) = αg(x, y).

In [13], for locally decomposable Riemannian manifolds is defined a class of
almost Einstein manifolds.

For the considered in our paper manifolds, we give the following:

Definition. A Riemannian manifold (M, g, q) is called almost Einstein if the
metrics g and f satisfy

(17) ρ(x, y) = αg(x, y) + βf(x, y),

where α and β are smooth functions on M .

3.1. The case (M, g, q) ∈ L2

Theorem 3.1. A manifold (M, g, q) belongs to L2 if and only if the components

of the Ricci tensor ρ are

(18) ρ11 = ρ22 = ρ33, ρ12 = ρ13 = ρ23.

Proof. Let (M, g, q) ∈ L2. Consequently, the components of the curvature
tensor R satisfy (9). For brevity, we denote

(19) R1 = R1212, R2 = R1213.

Then, having in mind (9), (12) and (14), we get the components of ρ, as follows:

ρ11 = ρ22 = ρ33 =
2

D

(

− (A+B)R1 +BR2

)

,

ρ12 = ρ13 = ρ23 = −
1

D

(

BR1 + (A+ 3B)R2

)

,

(20)

i.e., (18).
Vice versa, let the components of the Ricci tensor ρ of (M, g, q) satisfy

(18). It is known that the curvature tensor R for a 3-dimensional Riemannian
manifold is completely determined by the Ricci tensor ρ and the metric g, as
follows ([12])

R(x, y, z, u) = −g(x, z)ρ(y, u)− g(y, u)ρ(x, z) + g(y, z)ρ(x, u)

+ g(x, u)ρ(y, z) +
τ

2

(

g(x, z)g(y, u)− g(y, z)g(x, u)
)

,
(21)

which in a local form is

Rijkl = −gikρjl − gjlρik + gjkρil + gilρjk +
τ

2

(

gikgjl − gjkgil
)

.

By straightforward computation, for (M, g, q) we get

R1212 = −A(ρ11 + ρ22) + 2Bρ12 +
τ

2
(A2 −B2),

R1313 = −A(ρ11 + ρ33) + 2Bρ13 +
τ

2
(A2 −B2),
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R2323 = −A(ρ22 + ρ33) + 2Bρ23 +
τ

2
(A2 −B2),

R1213 = −Aρ23 +B(ρ12 + ρ13 − ρ11) +
τ

2
B(A−B),

R1223 = Aρ13 +B(ρ22 − ρ12 − ρ23)−
τ

2
B(A−B),

R1323 = −Aρ12 +B(ρ13 + ρ23 − ρ33) +
τ

2
B(A−B).

We substitute (18) in the above equalities and obtain (9), i.e., (M, g, q) is in
L2. �

Theorem 3.2. A manifold (M, g, q) belongs to L2 if and only if (M, g, q) is

an almost Einstein manifold.

Proof. Let (M, g, q) ∈ L2. From (14) and (15), using (12), (13) and (18), we
get the values of the scalar curvatures τ and τ∗, as follows:

(22) τ =
3

D

(

(A+B)ρ11−2Bρ12
)

, τ∗ =
3

2D

(

− (A+3B)ρ11+2(A+B)ρ12
)

.

Immediately from (22) we have

ρ11 =
τ

3
(A+B) +

2τ∗

3
B, ρ12 =

τ

6
(A+ 3B) +

τ∗

3
(A+B),

and due to (1) and (11) we get

ρ11 =
τ

3
g11 +

(τ

6
+

τ∗

3

)

f11, ρ12 =
τ

3
g12 +

(τ

6
+

τ∗

3

)

f12.

Hence, taking into account (1), (11) and (18), we obtain

ρij =
τ

3
gij +

(τ

6
+

τ∗

3

)

fij ,

i.e.,

(23) ρ(x, y) =
τ

3
g(x, y) +

(τ

6
+

τ∗

3

)

f(x, y).

Therefore, according to (17), the manifold (M, g, q) is almost Einstein.
Inversely, let (M, g, q) be an almost Einstein manifold. Using (1), (11) and

(17) we get (18), i.e., (M, g, q) ∈ L2. �

Obviously, from (21) and (23) it follows:

Theorem 3.3. Let (M, g, q) ∈ L2. Then

(24) R =
τ

6
π1 +

(τ

6
+

τ∗

3

)

π2,

where

π1(x, y, z, u) = g(y, z)g(x, u)− g(x, z)g(y, u),

π2(x, y, z, u) = g(y, z)f(x, u) + g(x, u)f(y, z)(25)

− g(x, z)f(y, u)− g(y, u)f(x, z).
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Now we suppose that (M, g, q) is an Einstein manifold. From (1) and (16)
we obtain (18).

Consequently, we establish the following:

Proposition 3.4. Every Einstein manifold (M, g, q) belongs to L2.

Let (M, g, q) ∈ L2. By using (9), (13) and (15), we calculate the components
of the Ricci tensor ρ∗:

ρ∗11 = ρ∗22 = ρ∗33 =
1

D

(

(A+ 3B)R1 − (A+B)R2

)

,

ρ∗12 = ρ∗13 = ρ∗23 =
1

2D

(

(A+B)R1 + (3A+ 5B)R2

)

.

(26)

For brevity, we denote

(27) ρ1 = ρ11, ρ2 = ρ12, ρ∗1 = ρ∗11, ρ∗2 = ρ∗12.

Let (M, g, q) be an Einstein manifold. Then (M, g, q) ∈ L2 and its Ricci
tensor ρ satisfies (23). We compare (16) and (23), and bearing in mind (1) and
(11), we get the following system for 3α− τ and τ∗ + τ

2 :

B
(

3α− τ
)

− (A+B)
(

τ∗ +
τ

2

)

= 0, A
(

3α− τ
)

− 2B
(

τ∗ +
τ

2

)

= 0.

The determinant of the system is D = (A − B)(A + 2B) 6= 0. Hence its only
solution is 3α− τ = 0 and

(28) τ∗ +
τ

2
= 0.

In this case (22) and (27) imply

(29) Bρ1 = Aρ2.

From (20), (27) and (29) we get

(30) (A+B)R2 = BR1.

We substitute the latter equality in (20) and also in (26). Thus, having in mind
(27), we obtain

(31) ρ∗1 = −
A+B

2A
ρ1, ρ∗2 = −

A+ 3B

4B
ρ2.

Inversely, let (M, g, q) be in L2 and the components of the Ricci tensors ρ and
ρ∗ satisfy (31). Then, from (20), (26) and (27), we obtain (30). We substitute
(30) in (20) and find (29). Further, from (22) and (29) we have (28). Hence
(23) implies ρ(x, y) = τ

3 g(x, y), i.e., (M, g, q) is an Einstein manifold.
Therefore, we arrive at the following:

Theorem 3.5. Let (M, g, q) ∈ L2. Then the following propositions are equival-

ent:

(i) (M, g, q) is an Einstein manifold;
(ii) The scalar curvatures τ and τ∗ satisfy (28);
(iii) The components of the Ricci tensor ρ satisfy (29);



1448 I. DOKUZOVA

(iv) The components of the curvature tensor R satisfy (30);
(v) The components of the Ricci tensors ρ and ρ∗ satisfy (31).

3.2. The case (M, g, q) ∈ L1

Theorem 3.6. Let (M, g, q) ∈ L2. Then the following propositions are equival-

ent:

(i) (M, g, q) ∈ L1;
(ii) The components of the Ricci tensor ρ satisfy ρ1 = −2ρ2;
(iii) The scalar curvatures τ and τ∗ satisfy τ∗ = −τ ;
(iv) The components of the Ricci tensors ρ and ρ∗ satisfy ρ∗1 = −ρ1, ρ

∗

2 =
−ρ2.

Proof. Let (M, g, q) ∈ L1. Thus (8) and (19) imply R1 = −R2. Then, from
(20), (26) and (27), we obtain the components of the Ricci tensors ρ and ρ∗,
as follows:

(32)
ρ1 = −

2

A−B
R1, ρ2 =

1

A−B
R1,

ρ∗1 =
2

A−B
R1, ρ∗2 = −

1

A−B
R1.

Substituting ρ1 = −2ρ2 into (22), we find the values of the scalar curvatures

(33) τ∗ = −τ, τ =
3

A−B
ρ1.

Vice versa, if (M, g, q) ∈ L2 and
a) τ∗ = −τ , then (22) and (27) imply ρ1 = −2ρ2. From the latter equality

and (20) it follows R1 = −R2, so (M, g, q) ∈ L1.
b) ρ∗1 = −ρ1, ρ

∗

2 = −ρ2, then bearing in mind (20), (26) and (27) we get
R1 = −R2, i.e., (M, g, q) ∈ L1. �

According to (23) and the first equality of (33) we have the following:

Theorem 3.7. Let (M, g, q) ∈ L1. Then

(34) ρ(x, y) =
τ

6

(

2g(x, y)− f(x, y)
)

.

Immediately from (1), (11) and (34) we obtain:

Corollary 3.8. The Ricci tensor ρ of a manifold (M, g, q) ∈ L1 is degenerate.

Remark 3.9. A manifold (M, g, q) ∈ L1 doesn’t admit Einstein metric.

Theorem 3.10. Let (M, g, q) ∈ L1. Then

(35) R =
τ

6
(π1 − π2),

where π1 and π2 are determined by (25).

Proof. For (M, g, q) ∈ L1 the conditions of Theorem 3.3 are valid. Hence we
apply the first equality of (33) in (24) and we get (35). �
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4. Some curvature properties

The sectional curvature of a non-degenerate 2-plane {x, y} spanned by the
vectors x, y ∈ TpM is the value ([13])

(36) µ(x, y) =
R(x, y, x, y)

g(x, x)g(y, y)− g2(x, y)
.

Let x induce a q-basis of TpM for (M, q, g) and σ = {x, qx} be a 2-plane.
Evidently, if y ∈ σ and y 6= x, then qy /∈ σ. Consequently, σ has only two
q-bases: {x, qx} and {−x,−qx}. That’s why the sectional curvature µ(x, qx)
depends only on ϕ = ∠(x, qx).

In [4] it is proved that, if (M, g, q) ∈ L2 and x induces a q-basis, then
µ(x, qx) = µ(x, q2x) = µ(qx, q2x).

Now we recall that the Ricci curvature in the direction of a non-zero vector
x is the value

(37) r(x) =
ρ(x, x)

g(x, x)
.

4.1. The case (M, q, g) ∈ L2

Theorem 4.1. Let (M, g, q) ∈ L2 and a vector x induce a q-basis. Then

(38) µ(x, qx) = µ(x, q2x) = µ(qx, q2x) = −
τ(1 + 3 cosϕ) + 4τ∗ cosϕ

6(1 + cosϕ)
,

where ϕ = ∠(x, qx).

Proof. Let a vector x induce a q-basis. In [5], for (M, g, q) it is verified that
g(x, qx) = g(x, q2x) = g(qx, q2x) = g(x, x) cosϕ, where ϕ ∈ (0, 2π

3 ). From

(3) and (10) we find f(x, x) = 2g(x, qx), f(x, qx) = g(x, x) + g(x, q2x) and
f(x, q2x) = g(x, x) + g(x, qx). Then (24), (25) and (36) imply (38). �

Corollary 4.2. Let (M, g, q) ∈ L2 and a vector x induce an orthonormal q-
basis. Then

µ(x, qx) = µ(x, q2x) = µ(qx, q2x) = −
τ

6
.

Theorem 4.3. Let (M, g, q) ∈ L2 and a vector x induce a q-basis. Then

(39) r(x) = r(qx) = r(q2x) =
τ

3
(1 + cosϕ) +

2τ∗

3
cosϕ,

where ϕ = ∠(x, qx).

Proof. Let (M, g, q) ∈ L2. According to Theorem 3.2, the Ricci tensor ρ is
given by (23). Then, using (3) and (10), we find

(40) ρ(x, x) = ρ(qx, qx) = ρ(q2x, q2x) =
τ

3
g(x, x) +

(τ

6
+

τ∗

3

)

f(x, x).

Let a vector x induce a q-basis. From (10), (37) and (40) it follows (39). �
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4.2. The case (M, g, q) ∈ L1

If (M, g, q) ∈ L1, then (38) is valid. According to Theorem 3.6, we have
τ∗ = −τ . In this case we get the following:

Theorem 4.4. Let (M, g, q) ∈ L1 and a vector x induce a q-basis. Then

(41) µ(x, qx) = µ(x, q2x) = µ(qx, q2x) = −
τ

6
tan2

ϕ

2
,

where ϕ = ∠(x, qx).

Now we substitute τ∗ = −τ in (39) and obtain:

Theorem 4.5. Let (M, g, q) ∈ L1 and a vector x induce a q-basis. Then

(42) r(x) = r(qx) = r(q2x) =
τ

3
(1 − cosϕ),

where ϕ = ∠(x, qx).

4.3. The case (M, g, q) ∈ L0

Proposition 4.6. Let (M, g, q) ∈ L0. Then for the scalar curvature τ we have

(43) τ1 + τ2 + τ3 = 0,

where τi =
∂τ
∂Xi .

Proof. It is known that in a Riemannian manifold for the scalar curvature τ
and the Ricci tensor ρ it is valid

(44) ∇iρ
i
k =

1

2
∇kτ, ρik = ρakg

ai.

For (M, g, q) ∈ L0 the Ricci tensor has the expression (34), which in a local
form is

(45) ρij =
τ

6

(

2gij − fij
)

.

From (4) and (10) we have

(46) ∇f = 0.

Using (44)–(46), we obtain

τk =
τa
3

(

2δak − fkbg
ab
)

,

where δak are the Kronecker symbols. Then, from (11) and (12), we get (43). �

Theorem 4.7. A manifold (M, g, q) ∈ L0 is conformally flat if and only if the

scalar curvature τ is a constant.

Proof. It is known that the Cotton tensor C for a Riemannian manifold is
defined in the following way ([3]):

(47) Cijk = ∇kρij −∇jρik +
1

4

(

∇kτgij −∇jτgik
)

.
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In 3-dimensional manifolds the Cotton tensor is prominent as the substitute
for the Weyl tensor. It is conformally invariant and its vanishing is equivalent
to conformal flatness.

For (M, g, q) ∈ L0, from (45)–(47), we get

(48) Cijk =
1

6

(

τkgij − τjgik + 2τjfik − 2τkfij
)

, τi =
∂τ

∂X i
.

Let τ be a constant. Hence, according to (48), we have Cijk = 0. Inversely, let
Cijk = 0. Then from (48) and taking into account (1) and (11), we obtain the
following system for τ1, τ2, τ3:

(2A+B)τi + (A− 4B)τj = 0, i 6= j.

Since A > B > 0, then the only solution is τ1 = τ2 = τ3 = 0. �

5. Examples of manifolds (M, g, q)

Now we give examples in order to demonstrate explicitly that all classes
presented are nonempty indeed.

Let (M, g, q) be determined by (1) and (2). We denote

Ai =
∂A

∂X i
, Bi =

∂B

∂X i
, Aij =

∂2A

∂X i∂Xj
, Bij =

∂2B

∂X i∂Xj
.

We will use the following:

Theorem 5.1 ([4]). The nonzero components of the curvature tensor R of type

(0, 4) of the manifold (M, g, q) are

R1212 =
1

2
(2B21 −A11 −A22)

+
A+B

4D

(

2A3B2 −A2
3 + (B1 −B2 −B3)(B1 +B2 − B3)

)

−
2B

4D

(

(A1 −B2)(B1 +B2 −B3)−A1A3 +A3B2

)

,

R1313 =
1

2
(2B31 −A11 −A33)

+
A+B

4D

(

2A2B3 −A2
2 + (−B1 +B2 +B3)(−B1 +B2 −B3)

)

−
2B

4D

(

(A1 −B3)(B1 −B2 +B3)−A1A2 +A2B3

)

,

R2323 =
1

2
(2B23 −A22 −A33)

+
A+B

4D

(

2B3A1 −A2
1 + (B1 −B2 +B3)(B1 −B2 − B3)

)

−
2B

4D

(

(A2 −B3)(B2 −B1 +B3)−A1A2 +A1B3

)

,

R1213 =
1

2
(B21 +B31 −B11 −A23)
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+
A+B

4D

(

A1(B2 −B3 +B1) + 2B3(B3 −B2 −B1) + A2A3)
)

−
B

4D

(

A2
1 +A2

2 +A2
3 + 2A1(A2 −B3)− 2A2B3

− 2A3(B1 −B3) + (B1 −B2 −B3)(B1 +B2 −B3)
)

,

R1223 =
1

2
(B22 −B12 −B23 +A13)

+
A+B

4D

(

A2(B2 +B3 −B1)− (2B3 −A1)(2B2 −A3)
)

−
B

4D

(

A2
2 −A2

1 +A2
3 + 2A1(B2 +B3) + 2A2(B2 −B3)

+ 2A3(B3 −B1)− 4B2B3 + (B1 +B2 −B3)(B1 −B2 −B3)
)

,

R1323 =
1

2
(B23 −B33 +B13 −A12)

+
A+B

4D

(

(2B2 −A1)(2B3 −A2)−A3(−B1 +B2 +B3

)

−
B

4D

(

A2
1 −A2

2 −A2
3 − 2A1(B2 +B3) + 2A2(B1 −B2)

+ 2A3(B2 −B3) + 4B2B3 + (−B1 +B2 +B3)(B1 −B2 +B3)
)

,

where D = (A−B)(A+2B). The rest of the nonzero components are obtained

by the properties

Rijkh = Rkhij , Rijkh = −Rjikh = −Rijhk.

5.1. An example in L2.

We consider a manifold (M, g, q) with

(49) A = a exp (X1 +X2 +X3), B = b exp (X1 +X2 +X3), a, b ∈ R,

where a > b > 0.
ObviouslyA > B > 0. We substitute the functions (49) and their derivatives

in the equalities of Theorem 5.1 and calculate the components of the curvature
tensor R:

R1212 = R1313 = R2323 =
(b − a)(5a+ 7b) exp (X1 +X2 +X3)

4(a+ 2b)
,

R1213 = R1323 = −R1223 =
(b− a)(a+ 5b) exp (X1 +X2 +X3)

4(a+ 2b)
.

(50)

We check directly that the conditions (9) are valid, but the conditions (8) are
not valid.

Therefore, we establish the following:

Theorem 5.2. The manifold (M, g, q) with (49) belongs to L2 but doesn’t

belong to L1.
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Substituting (50) into (20) and (26), and due to (19) and (27), we obtain
the components of the Ricci tensors ρ and ρ∗:

(51) ρ1 =
5a+ b

2(a+ 2b)
, ρ2 =

a+ 11b

4(a+ 2b)
, ρ∗1 = −1, ρ∗2 = −1.

Hence, from (22) and (27) we calculate the values of the scalar curvatures τ
and τ∗:

(52)

τ =
15

2(a+ 2b) exp (X1 +X2 +X3)
,

τ∗ = −
3

(a+ 2b) exp (X1 +X2 +X3)
.

Let a vector x induce a q-basis and ϕ = ∠(x, qx). Then, from (38) and (52),
we get

(53) µ(x, qx) = −
5 + 7 cosϕ

4(a+ 2b)(1 + cosϕ) exp (X1 +X2 +X3)
.

Using (39) and (52) we find

(54) r(x) =
5 + cosϕ

2(a+ 2b) exp (X1 +X2 +X3)
.

Therefore, we arrive at the following:

Proposition 5.3. For the manifold (M, g, q) with (49), the following assertions
are valid:

(i) The components of the Ricci tensors ρ and ρ∗ are (51);
(ii) The scalar curvatures τ and τ∗ are (52);
(iii) The sectional curvatures of the 2-planes {x, qx}, {x, q2x}, {qx, q2x}

are (53);
(iv) The Ricci curvature r(x) in the direction of a non-zero vector x is (54).

Corollary 5.4. For the manifold (M, g, q) with (49), the Ricci curvature sat-

isfies the inequalities:

9

4(a+ 2b) exp (X1 +X2 +X3)
< r(x) <

3

(a+ 2b) exp (X1 +X2 +X3)
.

The proof follows immediately from the conditions ϕ ∈
(

0, 2π3
)

and (54).

5.2. An example in L1

Let (M, g, q) be a manifold with

(55) A = a(X1 +X2 +X3), B = b(X1 +X2 +X3), a, b ∈ R,

where

X1 +X2 +X3 > 0, a > b > 0.
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Evidently A > B > 0. According to Theorem 5.1 and equalities (55) we obtain

R1212 = R1313 = R2323

= R1223 = −R1213 = −R1323 =
−(a− b)2

4(a+ 2b)(X1 +X2 +X3)
.

(56)

We check directly that the conditions (8) are valid, but the conditions (7) for
the functions (55) are not valid.

Thus, we have the following:

Theorem 5.5. The manifold (M, g, q) with (55) belongs to L1 but doesn’t

belong to L0.

From (19), (32), (33) and (56), we obtain the components of the Ricci tensor
ρ and the value of the scalar curvature τ , as follows:

(57) ρ1 =
(a− b)

2(a+ 2b)(X1 +X2 +X3)2
, ρ2 = −

1

2
ρ1,

(58) τ =
3

2(a+ 2b)(X1 +X2 +X3)3
.

Let a vector x induce a q-basis and ϕ = ∠(x, qx). From (41) and (58) we
get

(59) µ(x, qx) = −
tan2 ϕ

2

4(X1 +X2 +X3)3(a+ 2b)
.

Due to (42) and (58) we find

(60) r(x) =
1− cosϕ

2(a+ 2b)(X1 +X2 +X3)3
.

Therefore, we establish the following:

Proposition 5.6. For the manifold (M, g, q) with (55), the following assertions
are valid:

(i) The components of the Ricci tensor ρ are (57);
(ii) The scalar curvature τ is (58);
(iii) The sectional curvatures of the 2-planes {x, qx}, {x, q2x}, {qx, q2x}

are (59);
(iv) The Ricci curvature r(x) in the direction of a non-zero vector x is (60).

Corollary 5.7. For the manifold (M, g, q) with (55), the Ricci curvature sat-

isfies the inequalities:

0 < r(x) <
3

4(a+ 2b)(X1 +X2 +X3)3
.

Since ϕ is in the range
(

0, 2π3
)

and due to (60) the proof follows.
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5.3. An example in L0

Let (M, g, q) be a manifold with

(61) A = (X1)2 + (X2)2 + (X3)2 , B = X1X2 +X1X3 +X2X3,

where

X1X2 +X1X3 +X2X3 > 0.

We verify that A > B > 0 and (7) are valid.
Consequently, we have the following:

Theorem 5.8. The manifold (M, g, q) with (61) belongs to L0.

According to Theorem 5.1 and (61) we find

R1212 = R1313 = R2323 = −R1213 = −R1323 = R1223 = −1.

Hence, using (19), (32) and (33), we get the components of the Ricci tensor

(62) ρ1 =
2

A−B
, ρ2 = −

1

2
ρ1,

and the value of the scalar curvature

(63) τ =
6

(A−B)2
.

Let a vector x induce a q-basis and ϕ = ∠(x, qx). From (41) and (63) we
obtain

(64) µ(x, qx) = −
tan2 ϕ

2

(A−B)2
.

Due to (42) and (63) we find

(65) r(x) =
2(1− cosϕ)

(A−B)2
.

Therefore, we establish the following:

Proposition 5.9. For the manifold (M, g, q) with (61), the following assertions
are valid:

(i) The components of the Ricci tensor ρ are (62);
(ii) The scalar curvature τ is (63);
(iii) The sectional curvatures of the 2-planes {x, qx}, {x, q2x}, {qx, q2x}

are (64);
(iv) The Ricci curvature r(x) in the direction of a non-zero vector x is (65).

Corollary 5.10. For the manifold (M, g, q) with (61), the Ricci curvature

satisfies the inequalities:

0 < r(x) <
3

(A−B)2
.
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6. Conclusion

In Section 3, it is verified that every Einstein manifold (M, g, q) belongs to
L2. Also are obtained necessary and sufficient conditions for (M, g, q) to be an
Einstein manifold.

Further, it remains the problem of obtaining of explicit examples of 3-
dimensional Einstein manifolds (M, g, q).
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