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GEOMETRIC INEQUALITIES FOR

WARPED PRODUCTS SUBMANIFOLDS IN

GENERALIZED COMPLEX SPACE FORMS

Mohd Aquib, Mohd Aslam, Michel Nguiffo Boyom,
and Mohammad Hasan Shahid

Abstract. In this article, we derived Chen’s inequality for warped prod-

uct bi-slant submanifolds in generalized complex space forms using semi-

symmetric metric connections and discuss the equality case of the in-
equality. Further, we discuss non-existence of such minimal immersion.

We also provide various applications of the obtained inequalities.

1. Introduction

Since the celebrated theory of J. F. Nash of isometric immersion of a Rie-
mannian manifold into a suitable Euclidean space gives very important and
effective motivation to view each Riemannian manifold as a submanifold in a
Euclidean space, the problem of discovering simple basic relationships between
intrinsic and extrinsic invariants of a Riemannian submanifold becomes one of
the most fundamental problems in submanifold theory. The main extrinsic in-
variant is the squared mean curvature, and the main intrinsic invariants include
the classical curvature invariants: the Ricci curvature and the scalar curvature.

Apart from Hermitian geometry, the theory of product manifolds has impor-
tant physical and geometrical aspects. In physics, the spacetime of Einstein’s
general relativity could be considered as a product of 3-dimensional space and
1-dimensional time, both having their metrics, thus its topology is generated
by the metrics of these spaces. There are also nice applications of product
manifolds in Kaluza-Klein theory, brane theory and gauge theory. In 1969, R.
L. Bishop et al. [5] introduced a generalized case of Riemannian product mani-
folds to study manifolds of negative sectional curvature called warped product
manifold. They defined warped products as follows:

Let us consider a Riemannian manifold M1 of dimension n1 with Riemannian
metric g1, M2 of dimension n2 with Riemannian metric g2 and σ be positive
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differentiable functions on M1. Consider the warped product manifold M1×M2

with its projections ι1 : M1 ×M2 →M1 and ι2 : M1 ×M2 →M2. Then, their
warped product manifold M = M1 ×σ M2 is the product manifold equipped
with the structure

g(X,Y ) = g1(ι1∗X, ι1∗Y ) + (σ ◦ ι1)2g2(ι2∗X, ι2∗Y )

for any vector fields X,Y on M , where ∗ denotes the symbol for tangent maps.
Due to its usefulness, many research article has been published in this area

[6, 7, 9–12,14,16,19].
On the other hand, as a generalization of the complex space form Tricerri

and Vanhecke [18] introduced the notion of generalized complex space form.
Afterwards, many interesting results have been proved in this ambient space

[1, 3, 4, 15,17].
In this article, our main aim is to obtain Chen’s inequality for warped prod-

uct bi-slant submanifolds of generalized complex space forms endowed with
semi-symmetric metric connections. We also obtained various application of
the derived results.

2. Preliminaries

Let J and g be an almost complex structure and a Riemannian metric on
an almost Hermitian manifold M , respectively. Then, M is said to be:

• a nearly Kaehler manifold if (∇XJ)X = 0.
• a Kaehler manifold if ∇J = 0 for all X ∈ TM , where ∇ is the Levi-

Civita connection of the Riemannian metric g.
• a generalized complex space form, denoted by M(f1, f2), if the Rie-

mannian curvature tensor R satisfies

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ}

for all X,Y, Z ∈ TM , where f1 and f2 are smooth functions on M(f1, f2).

Let M
2m

be an almost Hermitian manifold and Mn be a submanifold M
2m

with induced metric g. Let ∇ be an induced connection on the tangent bundle
TM and ∇⊥ be an induced connection on the normal bundle T⊥M of M .
Then, the Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X,Y ),

∇XN = −ANX +∇⊥XN,

where X,Y ∈ TM , N ∈ T⊥M and h, AN are the second fundamental form
and the shape operator, respectively.

The relation between the shape operator and the second fundamental form
is given by

g(h(X,Y ), N) = g(ANX,Y )



GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS 181

for vector fields X,Y ∈ TM and N ∈ T⊥M .
Let R and R be the curvature tensors of M(c) and M , respectively. Then,

the Gauss equation is given by

R(X,Y, Z,W ) = R(X,Y, Z,W )

+ g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z)),(1)

X,Y, Z,W ∈ TM .
The notion of the semi-symmetric linear connection was introduced by Fried-

mann and Schouten [13]. If ω is the 1-form given by ω(X) = g(X,U) for any
vector fields X,Y, U ∈ TM and the torsion tensor T of a linear connection
satisfies the relation

T (X,Y ) = ω(y)X − ω(X)y,

then such a linear connection is said to be semi-symmetric. If a semi-symmetric
connection satisfies

∇̃g = 0,

then it is said to be a semi-symmetric metric connection ∇̃.
Further, with respect to semi-symmetric metric connection ∇̃ on M(c) the

curvature tensor R̃ can be written as

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− α(Y, Z)g(X,W )

+ α(X,Z)g(Y,W )− α(X,W )g(Y,W ) + α(Y,W )g(X,Z)(2)

for any X,Y, Z,W ∈ TM , where α is a (0, 2)-tensor field defined by

α(X,Y ∗) = (∇Xω)Y − ω(X)ωY +
1

2
ω(P )g(X,Y )

for all X,Y ∈ TM .
Let M be an n-dimensional submanifold of a generalized complex space form

M(f1, f2) of complex dimension m. Then, we know that

JX = PX +QX,

where P and Q are the tangential and normal components of JX, respectively
and X ∈ TM .

It should be noted that:

• The submanifold is said to be an anti-invariant submanifold if P = 0.
• The submanifold is said to be an invariant submanifold if Q = 0.

Let {e1, . . . , en} be an orthonormal basis of the tangent space TM of M . Then,
the squared norm of P at p ∈M is defined by

||P ||2 =

n∑
i,j=1

g2(Jei, ej).

Let π ⊂ TxM at a point x ∈ M be a plane section. If {e1, . . . , en} is the
orthonormal basis of TxM and {en+1, . . . , e2m} is the orthonormal basis of
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T⊥x M at any x ∈ M , then the sectional curvature K(π) of a Riemannian
manifold M is given by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej),

where τ is the scalar curvature. On the other hand, the mean curvature vector
field H on M is given by

H =
1

n

n∑
i=1

g(h(ei, ei)).

Definition. A submanifold is said to be a minimal submanifold if the mean
curvature vector H vanishes identically, that is H = 0.

We also recall the definition of slant submanifolds.

Definition ([11]). Let M̃2m be an almost hermitian manifold. Then, a sub-

manifold Mn of M̃2m is said to be slant if for each given point x ∈Mn and for
any non-zero vector X ∈ TxM , the angle θ(X) between JX and TxM is free
from the choice of X.

Definition ([19]). Let M̃2m be an almost hermitian manifold. Then, a sub-

manifold Mn of M̃2m is said a bi-slant submanifold if there exists a pair of
orthogonal distributions D1 and D2 such that

(i) TMn = D1 ⊕D1,
(ii) JD1 ⊥ D2 and JD2 ⊥ D1;
(iii) For i = 1, 2, each distribution Di is slant with a slant angle θi.

Indeed, bi-slant submanifolds englobe not only slant submanifolds but semi-
slant submanifolds, hemi-slant submanifolds, CR-submanifolds also. The first
author assembled it in the following table [2]:

Table 1. Definition

S.N.
M̃ M D1 D2 θ1 θ2

(1) M̃ bi-slant slant slant slant angle slant angle

(2) M̃ semi-slant invariant slant 0 slant angle

(3) M̃ hemi-slant slant anti-
invariant

slant angle π
2

(4) M̃ CR invariant anti-
invariant

0 π
2

(5) M̃ slant either D1 =0 or D2 =0 either θ1 =θ2 =θ or θ1 =θ2 6= θ

Further, a slant submanifold is said to be
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• invariant if the slant angle θ = 0.
• anti-invariant if the slant angle θ = π

2 .
• proper slant if the slant angle θ ∈ (0, π2 ).

Furthermore, since Mn is a bi-slant submanifold, we define an adapted or-
thonormal frame as:

n = 2d1 + 2d2 follows

{e1, e2 = sec θ1P1, . . . , e2d1−1, e2d1 = sec θ1Pe2d1−1
, . . . , e2d1+1,

e2d1+2 = sec θ2Pe2d1+1, . . . , e2d1+2d2−1, e2d1+2d2 = sec θ2P2d1+2d2−1}.

Then, by setting g(e1, Je2) = −g(Je1, e2) = −g(Je1, sec θ1Pe1), one can obtain
g(e1, Je2) = − sec θ1g(Pe1, P e2). Following ((2.8) in [12]), we get g(e1, Je2) =
cos θ1g(e1, e2). This implies

g2(ei, Jej) =

{
cos2 θ1 for each i = 1, . . . , 2d1 − 1,

cos2 θ2 for each j = 2d1 + 1, . . . , 2d1 + 2d2 − 1.

Hence, we have

n∑
i,j=1

g2(Jei, ej) = (n1 cos2 θ1 + n2 cos2 θ2).

Now, we recall the following well-known algebraic lemma for later use.

Lemma 2.1 ([10]). For n ≥ 2, let a1, . . . , an, b be real numbers such that( n∑
i=1

ai

)2

= (n− 1)

( n∑
i=1

a2
i + b

)
.

Then 2a1a2 ≥ b with equality holding if and only if

a1 + a2 = a3 = · · · = an.

Finally, we conclude the section with the following relation between sectional
curvature and Laplacian of warping function for warped product by B. Y. Chen
[8]. According to him, we have∑

1≤i≤n1

∑
n1+1≤j≤n

K(ei ∧ ej) = n2
∆σ

σ
= n2

(
∆(lnσ)− ||∇σ||2

)
,(3)

where ∆ is the Laplacian operator.

3. Chen’s inequality for warped product submanifolds in
generalized complex space forms

In this section we state and prove the main result of the article. More
precisely we have the following result.
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Theorem 3.1. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c) be an isometric immersion of warped product

bi-slant submanifold into M̃2m(c). Then,

n2
∆σ

σ
≤ n2

4
||H||2 + n1n2f1 + λ− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
,(4)

where λ denotes the trace of α and θ1 and θ2 are slant functions along M1 and
M2, respectively. The equality case holds in (4) if and only if ϕ is a mixed
totally geodesic isometric immersion and the following satisfies

H1

H2
=
n1

n2
,

where H1 and H2 are the mean curvature vectors along Mn1
1 and Mn2

2 , respec-
tively.

Proof. From (1), (2) and the Gauss equation with respect to the semi-symmetric
metric connection, we have

R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z))

= f1{g(Y,Z)X − g(X,Z)Y }+ f2{g(X, JZ)JY

− g(Y, JZ)JX + 2g(X, JY )JZ} − α(Y,Z)g(X,W )

+ α(X,Z)g(Y,W )− α(X,W )g(Y,W ) + α(Y,W )g(X,Z).

Putting X = W = ei, Y = Z = ej , i 6= j and by summing after 1 ≤ i, j ≤ n, it
follows from the previous relation that

2τ = f1n
(
n− 1

)
+ f2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
+ 2(n− 1)λ+ n2||H||2 − ||h||2.(5)

Let us assume that

δ = 2τ − f1n
(
n− 1

)
− f2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
− 2(n− 1)λ− n2

2
||H||2.(6)

Then, we derive from (5) and (6) that

(7) n2||H||2 = 2(δ + ||h||2).

Thus, with respect to the chosen orthonormal frame, (7) takes the form( n∑
i=1

hn+1
ii

)2

= 2

{
δ +

n∑
i=1

(hn+1
ii )2 +

∑
i 6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hrij)
2

}
.

If we substitute a1 = hn+1
11 , a2 =

∑n1

i=2 h
n+1
ii and a3 =

∑n
t=n1+1 h

n+1
tt , the

above equation reduces to( 3∑
i=1

ai

)2

= 2

{
δ +

3∑
i=1

a2
i +

∑
1≤i6=j≤n

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hrij)
2
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−
∑

2≤j 6=k≤n1

hn+1
jj hn+1

kk −
∑

n1+1≤s6=t≤n

hn+1
ss hn+1

tt

}
.

Thus a1, a2, a3 satisfy the lemma of Chen (for n = 3), that is,( 3∑
i=1

ai

)2

= 2

(
b+

3∑
i=1

a2
i

)
.

Then 2a1a2 ≥ b with equality holding if and only if a1 + a2 = a3. In the case
under considering, this means∑

1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ

2
+

∑
1≤α<β≤n

(hn+1
αβ )2 +

2m∑
r=n+2

n∑
α,β=1

(hrαβ)2.(8)

Equality holds if and only if
n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt .(9)

Again using the Gauss equation, we have

(10) n2
∆σ

σ
= τ −

∑
1≤j<k≤n1

κ(ej ∧ ek)−
∑

n1+1≤s<t≤n

κ(es ∧ et).

Combining (3), (8) and (10) yields the following relation

n2
∆σ

σ
= τ − f1

2
n1

(
n1 − 1

)
− 3n1f2 cos2 θ1

− (n1 − 1)λ−
2m∑

r=n+1

∑
1≤j<k≤n1

(
hrjjh

r
kk − (hrjk)2

)
− f1

2
n2

(
n2 − 1

)
− 3n2f2 cos2 θ2

− (n2 − 1)λ−
2m∑

r=n+1

∑
n1+1≤s<t≤n

(
hrssh

r
tt − (hrst)

2
)
.(11)

Taking into account (8) and (11), we find

n2
∆σ

σ
≤ τ − f1

2
n
(
n− 1

)
+ n1n2f1 − (n1 − 1)λ

− (n2 − 1)λ− 3n1f2 cos2 θ1 − 3n2f2 cos2 θ2 −
δ

2
.

Using (6) in the above equation, we obtain

n2
∆σ

σ
≤ n2

4
||H||2 + n1n2f1 − (2n− 3)λ
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− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
,

which is the required inequality.
From (8) and (9), we conclude that the equality in (4) holds if and only if

2m∑
r=n+1

n1∑
i=1

hrii =

2m∑
r=n+1

n∑
t=n1+1

hrtt = 0,

and n1H1 = n2H2 are partially mean curvature vectors on Mn1
1 and Mn2

2 ,
respectively.

Moreover from (8), we obtain

hrαβ = 0, ∀ 1 ≤ α ≤ n1,

n+ 1 ≤ β ≤ n,
n+ 1 ≤ r ≤ 2m

and the converse is also true in case of warped product bi-slant submanifolds
into the generalized complex space form. This concludes the proof of the result.

�

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.2. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σM

n2
2 → M̃2m(c) be an isometric immersion from warped product

submanifold into M̃2m(c). Then we have the following inequalities:

Table 2.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
n2

∆σ
σ
≤ n2

4
||H||2 + n1n2f1 + λ − 3f2

2

(
n1 +

n2 cos2 θ2

)
,

(2) M(f1, f2) hemi-slant
n2

∆σ
σ

≤ n2

4
||H||2 + n1n2f1 + λ −

3f2
2

(
n1 cos2 θ1

)
,

(3) M(f1, f2) CR
n2

∆σ
σ
≤ n2

4
||H||2 + n1n2f1 + λ− n1

3f2
2
,

(4) M(f1, f2) slant
n2

∆σ
σ
≤ n2

4
||H||2 +n1n2f1 +λ− 3f2

4

(
n cos2 θ

)
,

(5) M(f1, f2) invariant
n2

∆σ
σ
≤ n2

4
||H||2 + n1n2f1 + λ− 3n1

f2
2
,
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S.N. M(f1, f2) M Inequality

(6) M(f1, f2) anti-
invariant n2

∆σ
σ
≤ n2

4
||H||2 + n1n2f1 + λ− 3n2

f2
2
,

Since we know that if Mn is a compact oriented Riemannian submanifold
without boundary, then we have the formula with respect to the volume element
dV : ∫

Mn

∆σdV = 0.(12)

Hence, as a consequence we obtain the following result.

Theorem 3.3. Let ϕ : Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c) be a compact oriented

warped product bi-slant submanifold in the generalized complex space form.
Then, Mn is simply a Riemannian product if and only if

(13) ||H||2 ≥ 2f2

n2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
− 4

n2
n1n2f1 + λ.

Proof. We consider the warped product bi-slant submanifolds as a compact
oriented Riemannian manifold without boundary. If the inequality (4) holds,

n2

(
∆(lnσ)− ||∇σ||2

)
≤ n2

4
||H||2 + n1n2f1 + λ− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
.

Since Mn is a compact warped product submanifold, then from (12), we
obtain∫

Mn

(
− n2||∇1σ||2

)
dV ≤

∫
Mn

[1

4

n∑
i=1

(hn+1
ii )2 + n1n2f1 + λ

− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)]
dV.(14)

Now, let us assume that Mn is a Riemannian product and the warping function
σ and σ2 must be constant of Mn. Then, from (14), we obtain the inequality
(13).

Conversely, suppose that the inequality (13) holds. Then from (14), we
obtain

0 ≤
∫
Mn

(n2||∇σ||2)dV ≤ 0.

The above condition implies that ||∇σ||2 = 0. This means that σ is a constant
function on Mn. Hence, Mn is simply a Riemannian product of Mn1

1 and Mn2
2 ,

respectively. Thus, Theorem 3.3 is proved. �

From the above theorem we have the following result.
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Corollary 3.4. Let ϕ : Mn = Mn1
1 ×σM

n2
2 → M̃2m(c) be a compact oriented

warped product bi-slant submanifold in the generalized complex space form.
Then, Mn is simply a Riemannian product if and only if

Table 3.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
||H||2 ≥ 6f2

(
n1+n2 cos2 θ2

)
+λ− 4

n2n1n2f1

(2) M(f1, f2) hemi-slant
||H||2 ≥ 6f2n1 cos2 θ1 + λ− 4

n2n1n2f1

(3) M(f1, f2) CR
||H||2 ≥ 6f2n1 + λ− 4

n2n1n2f1

(4) M(f1, f2) slant
||H||2 ≥ 3f2n cos2 θ + λ− 4

n2n1n2f1

(5) M(f1, f2) invariant
||H||2 ≥ 3f2n+ λ− 4

n2n1n2f1

(6) M(f1, f2) anti-
invariant ||H||2 ≥ λ− 4

n2n1n2f1

Let φ be a positive differentiable C∞-differentiable function. Then the Hes-
sian tensor of function φ is a symmetric 2-covariant tensor field on Mn defined
by

Hφ : X(M)× X(M)→ F(M)

such that

Hφ(X,Y ) = HφijX
iY j

for any X,Y ∈ X(M), where Hφij can be expressed by

Hφij =
∂2φ

∂xi∂xj
− Γkij

∂φ

∂xk
.

Let us assume that φ = lnσ. Then as a consequence of Theorem 3.1 and the
above relation, we conclude the following result.

Theorem 3.5. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c) be an isometric immersion of warped product

bi-slant submanifold into M̃2m(c). Then,

n2
traceHφ

σ

≤ n2

4
||H||2 + n1n2f1 + λ− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
.

The following corollary follows from Theorem 3.5.
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Corollary 3.6. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σM

n2
2 → M̃2m(c) be an isometric immersion from warped product

submanifold into M̃2m(c). Then we have the following inequalities:

Table 4.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

3f2
2

(
n1 + n2 cos2 θ2

)
,

(2) M(f1, f2) hemi-slant
n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

3f2
2

(
n1 cos2 θ1

)
,

(3) M(f1, f2) CR
n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

n1
3f2
2 ,

(4) M(f1, f2) slant
n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

3f2
4

(
n cos2 θ

)
,

(5) M(f1, f2) invariant
n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

3n1
f2
2 ,

(6) M(f1, f2) anti-
invariant n2

traceHφ
σ ≤ n2

4 ||H||
2 + n1n2f1 + λ −

3n2
f2
2 ,

4. Non-existence of warped product submanifolds in generalized
complex space forms

In this section we obtain the obstruction to the minimal immersion of warped
product submanifolds in the generalized complex space forms.

Theorem 4.1. For ϕ : Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c), if

n2
∆σ

σ
> n1n2f1 + λ− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
,

then Mn cannot be minimally immersed in M̃2m(c).

Proof. From Theorem 3.1 and the definition of minimality, we have the required
non-existence result. �

Theorem 4.1 gives the following result.

Corollary 4.2. For ϕ : Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c), if
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Table 5.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
n2

∆σ
σ > n1n2f1 + λ − f2

2

(
3n1 +

3n2 cos2 θ2

)
(2) M(f1, f2) hemi-slant

n2
∆σ
σ > n1n2f1 + λ− f2

2 3n1

(3) M(f1, f2) CR
n2

∆σ
σ > n1n2f1 + λ− f2

2 3n1

(4) M(f1, f2) slant
n2

∆σ
σ > n1n2f1 + λ− f2

4 3n cos2 θ

(5) M(f1, f2) invariant
n2

∆σ
σ > n1n2f1 + λ− f2

4 3n

(6) M(f1, f2) anti-
invariant n2

∆σ
σ > n1n2f1 + λ

then Mn cannot be minimally immersed in M̃2m(c).

Proof. From, Table 1 and the definition of minimality, we have the required
non-existence result. �

Further, from Theorem 3.3 and the definition of the minimality we have the
following non-existence result.

Theorem 4.3. For ϕ : Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c), if

f1

f2
<

3

2

(cos2 θ1

n2
+

cos2 θ2

n1

)
+
( 3n2

2n1n2

) λ
f2
,

then Mn cannot be minimally immersed in M̃2m(c).

Proof. From, Theorem 3.3 and the definition of minimality, we have the re-
quired non-existence result. �

Theorem 4.3 yields the following.

Corollary 4.4. Let ϕ : Mn = Mn1
1 ×σM

n2
2 → M̃2m(c) be a compact oriented

warped product submanifold in the generalized complex space form. If

Table 6.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
f1
f2
< 3

2

(
1
n2

+ cos2 θ2
n1

)
+
(

3n2

2n1n2

)
λ
f2

(2) M(f1, f2) hemi-slant
f1
f2
< 3

2
cos2 θ1
n2

+
(

3n2

2n1n2

)
λ
f2
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S.N. M(f1, f2) M Inequality

(3) M(f1, f2) CR
f1
f2
< 3

2n2
+
(

3n2

2n1n2

)
λ
f2

(4) M(f1, f2) slant
f1
f2
< 3n

4n1n2
cos2 θ +

(
3n2

2n1n2

)
λ
f2

(5) M(f1, f2) invariant
f1
f2
< 3n

4n1n2
+
(

3n2

2n1n2

)
λ
f2

(6) M(f1, f2) anti-
invariant f1 <

(
3n2

2n1n2

)
λ

then Mn cannot be minimally immersed in M̃2m(c).

Proof. From Theorem 4.3 with Table 1, we obtain the required result. �

Theorem 3.5 yields the following obstruction result.

Theorem 4.5. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σ M

n2
2 → M̃2m(c) be an isometric immersion of warped product

bi-slant submanifold into M̃2m(c). If

n2
traceHφ

σ
> n1n2f1 + λ− f2

2

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
,

then Mn cannot be minimally immersed in M̃2m(c).

Proof. The application of the definition of minimality to Theorem 3.5 yields
the required result. �

The following corollary follows from Theorem 3.5.

Corollary 4.6. Let M̃2m(c) be the generalized complex space form and ϕ :

Mn = Mn1
1 ×σM

n2
2 → M̃2m(c) be an isometric immersion from warped product

submanifold into M̃2m(c). If

Table 7.

S.N. M(f1, f2) M Inequality

(1) M(f1, f2) semi-slant
n2

traceHφ
σ > n1n2f1 + λ − 3f2

2

(
n1 +

n2 cos2 θ2

)
,

(2) M(f1, f2) hemi-slant
n2

traceHφ
σ > n1n2f1 + λ −

3f2
2

(
n1 cos2 θ1

)
,

(3) M(f1, f2) CR
n2

traceHφ
σ > n1n2f1 + λ− n1

3f2
2 ,
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S.N. M(f1, f2) M Inequality

(4) M(f1, f2) slant
n2

traceHφ
σ > n1n2f1 +λ− 3f2

4

(
n cos2 θ

)
,

(5) M(f1, f2) invariant
n2

traceHφ
σ > n1n2f1 + λ− 3n1

f2
2 ,

(6) M(f1, f2) anti-
invariant n2

traceHφ
σ > n1n2f1 + λ− 3n2

f2
2 ,

Proof. Making use of Table 1 in Theorem 4.5, we have the required result. �
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