• Title/Summary/Keyword: matrix rings

Search Result 114, Processing Time 0.031 seconds

ON A GENERALIZATION OF THE MCCOY CONDITION

  • Jeon, Young-Cheol;Kim, Hong-Kee;Kim, Nam-Kyun;Kwak, Tai-Keun;Lee, Yang;Yeo, Dong-Eun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1269-1282
    • /
    • 2010
  • We in this note consider a new concept, so called $\pi$-McCoy, which unifies McCoy rings and IFP rings. The classes of McCoy rings and IFP rings do not contain full matrix rings and upper (lower) triangular matrix rings, but the class of $\pi$-McCoy rings contain upper (lower) triangular matrix rings and many kinds of full matrix rings. We first study the basic structure of $\pi$-McCoy rings, observing the relations among $\pi$-McCoy rings, Abelian rings, 2-primal rings, directly finite rings, and ($\pi-$)regular rings. It is proved that the n by n full matrix rings ($n\geq2$) over reduced rings are not $\pi$-McCoy, finding $\pi$-McCoy matrix rings over non-reduced rings. It is shown that the $\pi$-McCoyness is preserved by polynomial rings (when they are of bounded index of nilpotency) and classical quotient rings. Several kinds of extensions of $\pi$-McCoy rings are also examined.

ON A SPECIAL CLASS OF MATRIX RINGS

  • Arnab Bhattacharjee
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.267-278
    • /
    • 2024
  • In this paper, we continue to explore an idea presented in [3] and introduce a new class of matrix rings called staircase matrix rings which has applications in noncommutative ring theory. We show that these rings preserve the notions of reduced, symmetric, reversible, IFP, reflexive, abelian rings, etc.

I-RINGS AND TRIANGULAR MATRIX RINGS

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.2
    • /
    • pp.19-26
    • /
    • 2001
  • All rings are assumed to be associative but do not necessarily have an identity. In this paper, we carry out a study of ring theoretic properties of formal triangular matrix rings. Some results are obtained on these rings concerning properties such as being $I_0$-ring, I-ring, exchange ring.

  • PDF

Structures Related to Right Duo Factor Rings

  • Chen, Hongying;Lee, Yang;Piao, Zhelin
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.11-21
    • /
    • 2021
  • We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

f-CLEAN RINGS AND RINGS HAVING MANY FULL ELEMENTS

  • Li, Bingjun;Feng, Lianggui
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.247-261
    • /
    • 2010
  • An associative ring R with identity is called a clean ring if every element of R is the sum of a unit and an idempotent. In this paper, we introduce the concept of f-clean rings. We study various properties of f-clean rings. Let C = $\(\array{A\;V\\W\;B}\)$ be a Morita Context ring. We determine conditions under which the ring C is f-clean. Moreover, we introduce the concept of rings having many full elements. We investigate characterizations of this kind of rings and show that rings having many full elements are closed under matrix rings and Morita Context rings.

QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS

  • Cui, Jian;Yin, Xiaobin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.813-822
    • /
    • 2014
  • A ring R is called quasipolar if for every a 2 R there exists $p^2=p{\in}R$ such that $p{\in}comm^2{_R}(a)$, $ a+p{\in}U(R)$ and $ap{\in}R^{qnil}$. The class of quasipolar rings lies properly between the class of strongly ${\pi}$-regular rings and the class of strongly clean rings. In this paper, we determine when a $2{\times}2$ matrix over a local ring is quasipolar. Necessary and sufficient conditions for a $2{\times}2$ matrix ring to be quasipolar are obtained.

ON GENERALIZED TRIANGULAR MATRIX RINGS

  • Chun, Jang Ho;Park, June Won
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.259-270
    • /
    • 2014
  • For a generalized triangular matrix ring $$T=\[\array{R\;M\\0\;S}]$$, over rings R and S having only the idempotents 0 and 1 and over an (R, S)-bimodule M, we characterize all homomorphisms ${\alpha}$'s and all ${\alpha}$-derivations of T. Some of the homomorphisms are compositions of an inner homomorphism and an extended or a twisted homomorphism.

STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS

  • Juan Huang;Tai Keun Kwak;Yang Lee;Zhelin Piao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1321-1334
    • /
    • 2023
  • An idempotent e of a ring R is called right (resp., left) semicentral if er = ere (resp., re = ere) for any r ∈ R, and an idempotent e of R∖{0, 1} will be called right (resp., left) quasicentral provided that for any r ∈ R, there exists an idempotent f = f(e, r) ∈ R∖{0, 1} such that er = erf (resp., re = fre). We show the whole shapes of idempotents and right (left) semicentral idempotents of upper triangular matrix rings and polynomial rings. We next prove that every nontrivial idempotent of the n by n full matrix ring over a principal ideal domain is right and left quasicentral and, applying this result, we can find many right (left) quasicentral idempotents but not right (left) semicentral.