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ON A SPECIAL CLASS OF MATRIX RINGS

Arnab Bhattacharjee

Abstract. In this paper, we continue to explore an idea presented in [3]

and introduce a new class of matrix rings called staircase matrix rings
which has applications in noncommutative ring theory. We show that

these rings preserve the notions of reduced, symmetric, reversible, IFP,

reflexive, abelian rings, etc.

1. Introduction

Throughout this paper, all rings are associative with identity unless other-
wise mentioned. For a ring R and a positive integer n, Z(R) denotes the center
of R, U(R) denotes the set of units of R, Mn(R) denotes the ring of n× n full
matrices over R, and In denotes the n× n identity matrix. The set of positive
integers is denoted by N.

A ring R is called reduced if it has no nonzero nilpotent elements. A reduced
ring may or may not be commutative. Lambek [13] called a ring R symmetric
if for a, b, c in R, abc = 0 implies acb = 0 (equivalently, abc = 0 implies
bac = 0). Due to Cohn [6], a ring R is called reversible if for a, b in R, ab = 0
implies ba = 0. It is easy to see that both commutative and reduced rings are
symmetric, and symmetric rings are reversible. Bell [2] introduced the notion
of insertion-of-factors-property (in short, IFP) for rings. A ring R is called
IFP [2] if for a, b in R, ab = 0 implies aRb = 0. IFP rings are also called
semicommutative [8] in the literature. Due to Mason [14], a ring R is called
reflexive if for a, b in R, aRb = 0 implies bRa = 0. Interestingly, a ring R
is reversible if and only if it is both IFP and reflexive [12, Proposition 2.2].
However, there exist non-reflexive IFP rings by [12, Example 2.3(1)]. A ring R
is called abelian if each idempotent in R is central. IFP rings are abelian [8],
but a reflexive ring need not be so [12].

A quick review of the literature (see [7, 11, 12]) reveals that none of the
above mentioned properties (except the reflexive property) is preserved by the
full matrix rings. As a matter of fact these properties (including the reflexive
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property) are not even preserved by any of the known (non-trivial) subrings of
the full matrix rings, including the (upper) triangular matrix rings. Thus it is
natural to search for a class of matrix rings which preserves all the aforemen-
tioned properties of its base ring. This serves as our main motivation to explore
conditions under which certain (non-trivial) subrings of the full matrix rings
preserve the properties of its base rings, and thereby to introduce a new class
of matrix rings called staircase matrix rings which does so. These rings also
help us to generate examples and counter-examples of many existing classes of
rings.

2. Staircase matrix rings

For a ring R and for n ≥ 1, assume that pk ∈ Z(R), where 1 ≤ k < 2n, and
that p2n = 1. Consider the following subset of M2n(R):

S2n(R) =

{
(xij) : xij =



ai if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

aj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkak if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 2n

}
.

A typical element of S2n(R) has the form

2n∑
k=1

pkak a1 0 0 ··· 0 0 0

0
2n∑
k=2

pkak 0 0 ··· 0 0 0

0 a2

2n∑
k=3

pkak a3 ··· 0 0 0

0 0 0
2n∑
k=4

pkak ··· 0 0 0

0 0 0 a4 ··· 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 ···
2n∑

k=2n−2

pkak 0 0

0 0 0 0 ··· a2n−2

2n∑
k=2n−1

pkak a2n−1

0 0 0 0 ··· 0 0 a2n



,

where ai ∈ R for 1 ≤ i ≤ 2n.

Lemma 1. Let R be a ring. For n ≥ 1, assume that pk ∈ Z(R), where
1 ≤ k < 2n, and that p2n = 1. Then S2n(R) is a subring of M2n(R).
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Proof. We have I2n ∈ S2n(R). Let A = (xij) and B = (yij) ∈ S2n(R), where

xij =



ai if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

aj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkak if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 2n, and

yij =



bi if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

bj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkbk if i = j

0 otherwise

,

bi ∈ R for 1 ≤ i ≤ 2n. Then

xij − yij =



ai − bi if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

aj − bj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pk(ak − bk) if i = j

0 otherwise

and so A−B ∈ S2n(R). For i = 2k − 1, j = 2k, where 1 ≤ k ≤ n, we have

2n∑
ℓ=1

xiℓyℓj =

(
2n∑

m=i

pmam

)
bi + ai

(
2n∑

m=i+1

pmbm

)
= di (say).

For i = 2k + 1, j = 2k, where 1 ≤ k ≤ n− 1, we have

2n∑
ℓ=1

xiℓyℓj = aj

 2n∑
m=j

pmbm

+

 2n∑
m=j+1

pmbm

 bj

= dj (say).

For i = j = 2k − 1, where 1 ≤ k ≤ n, we have

2n∑
ℓ=1

xiℓyℓi =

(
2n∑

m=i

pmam

)(
2n∑

m=i

pmbm

)

=

(
piai +

2n∑
m=i+1

pmam

)(
pibi +

2n∑
m=i+1

pmbm

)
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= pi

[(
piai +

2n∑
m=i+1

pmam

)
bi + ai

(
2n∑

m=i+1

pmbm

)]

+

(
2n∑

m=i+1

pmam

)(
2n∑

m=i+1

pmbm

)

= pi

[(
2n∑

m=i

pmam

)
bi + ai

(
2n∑

m=i+1

pmbm

)]

+

(
2n∑

m=i+1

pmam

)(
2n∑

m=i+1

pmbm

)

= pidi +

(
2n∑

m=i+1

pmam

)(
2n∑

m=i+1

pmbm

)

as pk ∈ Z(R) for 1 ≤ k < 2n and p2n = 1. Similarly, for i = j = 2k, where
1 ≤ k ≤ n− 1, we have

2n∑
ℓ=1

xjℓyℓj =

 2n∑
m=j

pmam

 2n∑
m=j

pmbm


= pj

aj
 2n∑

m=j

pmbm

+

 2n∑
m=j+1

pmbm

 bj


+

 2n∑
m=j+1

pmam

 2n∑
m=j+1

pmbm


= pjdj +

 2n∑
m=j+1

pmam

 2n∑
m=j+1

pmbm

 .

Thus

2n∑
ℓ=1

xiℓyℓj =



di if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

dj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkdk if i = j

0 otherwise

,

where d2n = a2nb2n. This shows that AB ∈ S2n(R) and hence S2n(R) is a
subring of M2n(R). □
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Theorem 2. Let R be a ring. For n ≥ 1, assume that pk ∈ Z(R) ∩ U(R),
where 1 ≤ k < 2n, and that p2n = 1. Let A = (xij) ∈ S2n(R), where

xij =



ai if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

aj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkak if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 2n. Then we have the following.

(1) A = 0 if and only if xii = 0 for all 1 ≤ i ≤ 2n.
(2) The following conditions are equivalent :

(a) ai ∈ Z(R) for all 1 ≤ i ≤ 2n.
(b) xii ∈ Z(R) for all 1 ≤ i ≤ 2n.
(c) A ∈ Z(S2n(R)).

Proof. (1) If A = 0, then ai = 0 for all 1 ≤ i ≤ 2n and so xii = 0 for all
1 ≤ i ≤ 2n. Conversely, let xii = 0 for all 1 ≤ i ≤ 2n. Since p2n = 1, a2n = 0.
For 1 < k ≤ 2n, assume that ai = 0 for all k ≤ i ≤ 2n. Then xjj = 0, where
j = k− 1, yields pk−1ak−1 = 0. By assumption, pk−1 ∈ U(R) and so ak−1 = 0.
By induction, ai = 0 for all 1 ≤ i ≤ 2n and hence A = 0.

(2) (a) ⇒ (b) is straightforward as Z(R) is a subring of R.
(b) ⇒ (a) Let xii ∈ Z(R) for all 1 ≤ i ≤ 2n. Since p2n = 1, a2n ∈ Z(R). For
1 < k ≤ 2n, assume that ai ∈ Z(R) for all k ≤ i ≤ 2n. Then xjj ∈ Z(R), where
j = k − 1, yields pk−1ak−1 ∈ Z(R) as Z(R) is a subring of R and pi ∈ Z(R)
for all 1 ≤ i < 2n. Since pk−1 ∈ Z(R) ∩ U(R), for any r ∈ R, we have
pk−1r = rpk−1, which yields rp−1

k−1 = p−1
k−1r. This shows that p

−1
k−1 ∈ Z(R) and

consequently, ak−1 = p−1
k−1(pk−1ak−1) ∈ Z(R). Hence by induction, ai ∈ Z(R)

for all 1 ≤ i ≤ 2n.
(a) ⇒ (c) Let ai ∈ Z(R) for all 1 ≤ i ≤ 2n. To show A ∈ Z(S2n(R)). From
(b), we have xii ∈ Z(R) for all 1 ≤ i ≤ 2n. Let B = (yij) ∈ S2n(R), where

yij =



bi if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

bj if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1
2n∑
k=i

pkbk if i = j

0 otherwise

,

bi ∈ R for 1 ≤ i ≤ 2n. For i = 2k − 1, j = 2k, where 1 ≤ k ≤ n, we have

2n∑
ℓ=1

yiℓxℓj =

(
2n∑

m=i

pmbm

)
ai + bi

(
2n∑

m=i+1

pmam

)

= pibiai +

(
2n∑

m=i+1

pmbm

)
ai + bi

(
2n∑

m=i+1

pmam

)
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=

(
2n∑

m=i

pmam

)
bi + ai

(
2n∑

m=i+1

pmbm

)
=

2n∑
ℓ=1

xiℓyℓj

as ai, pi ∈ Z(R) for all 1 ≤ i ≤ 2n. Similarly, for i = 2k + 1, j = 2k, where
1 ≤ k ≤ n− 1, we have

2n∑
ℓ=1

yiℓxℓj = bj

 2n∑
m=j

pmam

+

 2n∑
m=j+1

pmbm

 aj

= aj

 2n∑
m=j

pmbm

+

 2n∑
m=j+1

pmbm

 bj =

2n∑
ℓ=1

xiℓyℓj .

Therefore AB = BA and so A ∈ Z(S2n(R)).
(c) ⇒ (a) Let A ∈ Z(S2n(R)). For r ∈ R, we have A(rI2n) = (rI2n)A, yielding
xiir = rxii for all 1 ≤ i ≤ 2n. Thus xii ∈ Z(R) and hence ai ∈ Z(R) for all
1 ≤ i ≤ 2n. □

For a ring R and for n ≥ 1, assume that pk ∈ Z(R), where 1 ≤ k ≤ 2n, and
that p2n+1 = 1. Consider the following subset of M2n+1(R):

S2n+1(R) =

{
(xij) : xij =



ai if i = 2k, j = 2k + 1, 1 ≤ k ≤ n

aj if i = 2k, j = 2k − 1, 1 ≤ k ≤ n
2n+1∑
k=i

pkak if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 2n+ 1

}
.

A typical element of S2n+1(R) has the form

2n+1∑
k=1

pkak 0 0 0 0 ··· 0 0 0

a1

2n+1∑
k=2

pkak a2 0 0 ··· 0 0 0

0 0
2n+1∑
k=3

pkak 0 0 ··· 0 0 0

0 0 a3

2n+1∑
k=4

pkak a4 ··· 0 0 0

0 0 0 0
2n+1∑
k=5

pkak ··· 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 ···
2n+1∑

k=2n−1

pkak 0 0

0 0 0 0 0 ··· a2n−1

2n+1∑
k=2n

pkak a2n

0 0 0 0 0 ··· 0 0 a2n+1



,
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where ai ∈ R for 1 ≤ i ≤ 2n+ 1.

Lemma 3. Let R be a ring. For n ≥ 1, assume that pk ∈ Z(R), where
1 ≤ k ≤ 2n, and that p2n+1 = 1. Then S2n+1(R) is a subring of M2n+1(R).

Proof. It is similar to the proof of Lemma 1. □

Proposition 4. Let R be a ring. For n ≥ 1, assume that pk ∈ Z(R) ∩ U(R),
where 1 ≤ k ≤ 2n, and that p2n+1 = 1. Let A = (xij) ∈ S2n+1(R), where

xij =



ai if i = 2k, j = 2k + 1, 1 ≤ k ≤ n

aj if i = 2k, j = 2k − 1, 1 ≤ k ≤ n
2n+1∑
k=i

pkak if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 2n+ 1. Then we have the following.

(1) A = 0 if and only if xii = 0 for all 1 ≤ i ≤ 2n+ 1.
(2) The following conditions are equivalent :

(a) ai ∈ Z(R) for all 1 ≤ i ≤ 2n+ 1.
(b) xii ∈ Z(R) for all 1 ≤ i ≤ 2n+ 1.
(c) A ∈ Z(S2n+1(R)).

Proof. It is similar to the proof of Theorem 2. □

Definition 5. Based on Lemmas 1 and 3, for a ring R and for pk ∈ Z(R),
where 1 ≤ k < n and pn = 1, we call Sn(R) as the n× n staircase matrix ring
over R generated by p1, p2, . . ., pn−1, where n ≥ 2.

Theorem 2 and Proposition 4 lead us to the following proposition.

Proposition 6. Let R be a ring. For n ≥ 2, assume that pk ∈ Z(R) ∩ U(R),
where 1 ≤ k < n, and that pn = 1. Suppose that A = (xij) ∈ Sn(R). Then we
have the following.

(1) A = 0 if and only if xii = 0 for all 1 ≤ i ≤ n.
(2) A ∈ Z(Sn(R)) if and only if xii ∈ Z(R) for all 1 ≤ i ≤ n.

3. Staircase matrix rings over some classes of rings

In this section, we study the staircase matrix rings over several existing
classes of rings.

Theorem 7. Let R be a ring. For n ≥ 2, assume that pk ∈ Z(R) ∩ U(R),
where 1 ≤ k < n, and that pn = 1. Then

(1) R is commutative if and only if Sn(R) is commutative.
(2) R is reduced if and only if Sn(R) is reduced.
(3) R is symmetric if and only if Sn(R) is symmetric.
(4) R is reversible if and only if Sn(R) is reversible.
(5) R is IFP if and only if Sn(R) is IFP.
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(6) R is reflexive if and only if Sn(R) is reflexive.
(7) R is abelian if and only if Sn(R) is abelian.

Proof. (1) It is clear from Theorem 2(2) and Proposition 4(2).
(2) Let R be a reduced ring and let A = (xij) ∈ Sn(R) such that Ak = 0 for

some k ∈ N. Then xk
ii = 0 for all 1 ≤ i ≤ n. Since R is reduced, xii = 0 for

all 1 ≤ i ≤ n and thus by Proposition 6(1), A = 0. Hence Sn(R) is reduced.
Converse is straightforward as a subring of a reduced ring is reduced.

(3) Let R be a symmetric ring and let A = (xij), B = (yij), C = (zij) ∈
Sn(R) such that ABC = 0. Then xiiyiizii = 0 for all 1 ≤ i ≤ n and as R is
symmetric, xiiziiyii = 0 for all 1 ≤ i ≤ n. Thus by Proposition 6(1), ACB = 0
and hence Sn(R) is symmetric. Converse is straightforward as a subring of a
symmetric ring is symmetric.

(4) It is similar to (3).
(5) Let R be an IFP ring and let A = (xij), B = (yij) ∈ Sn(R) such that

AB = 0. Then xiiyii = 0 for all 1 ≤ i ≤ n and as R is IFP, xiiRyii = 0 for
all 1 ≤ i ≤ n. Thus for any (rij) ∈ Sn(R), xiiriiyii = 0 and so by Proposition
6(1), A(rij)B = 0, yielding ASn(R)B = 0. Hence Sn(R) is IFP. Converse is
straightforward as a subring of an IFP ring is IFP.

(6) Let R be a reflexive ring and let A = (xij), B = (yij) ∈ Sn(R) such that
ASn(R)B = 0. For any r ∈ R, we have rIn ∈ Sn(R) and so A(rIn)B = 0,
yielding xiiryii = 0 for all 1 ≤ i ≤ n. Thus for each i with 1 ≤ i ≤ n,
xiiRyii = 0 and as R is reflexive, yiiRxii = 0. Then for any (rij) ∈ Sn(R),
yiiriixii = 0 for all 1 ≤ i ≤ n and so by Proposition 6(1), B(rij)A = 0. Thus
BSn(R)A = 0 and hence Sn(R) is reflexive. Conversely, let Sn(R) be a reflexive
ring and let a, b ∈ R such that aRb = 0. Then for any (rij) ∈ Sn(R), we have
ariib = 0 for all 1 ≤ i ≤ n and so by Proposition 6(1), (aIn)(rij)(bIn) = 0,
yielding (aIn)Sn(R)(bIn) = 0. Since Sn(R) is reflexive, (bIn)Sn(R)(aIn) = 0.
Then for any r ∈ R, we have (bIn)(rIn)(aIn) = 0, yielding bra = 0. Thus
bRa = 0 and hence R is reflexive.

(7) Let R be an abelian ring and let E = (eij) ∈ Sn(R) such that E2 = E.
Then e2ii = eii for all 1 ≤ i ≤ n. Since R is abelian, eii ∈ Z(R) for all 1 ≤ i ≤ n
and thus by Proposition 6(2), E ∈ Z(Sn(R)). Hence Sn(R) is abelian. Converse
is straightforward as a subring of an abelian ring is abelian. □

Definition 8. Following the literature, a ring R is called

(1) central reduced [1] if every nilpotent in R is central,
(2) right (resp., left) central symmetric [9, 10] if for a, b, c in R, abc = 0

implies acb ∈ Z(R) (resp., bac ∈ Z(R)),
(3) central reversible [10] if for a, b in R, ab = 0 implies ba ∈ Z(R),
(4) central IFP [15] if for a, b in R, ab = 0 implies aRb ⊆ Z(R),
(5) central reflexive [4] if for a, b in R, aRb = 0 implies bRa ⊆ Z(R).

We change over from “a central semicommutative ring” in [15] to “a central
IFP ring”, so as to keep consistency with other related definitions.
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Note that a central reduced ring is both right and left central symmetric, by
[9, Lemma 2.5] and [10, Lemma 2.3], and every right (left) central symmetric
ring is central reversible [10, Lemma 2.7] as well as central IFP [9, Lemma 2.9],
however, a central reversible ring need not be central IFP and vice versa, by
[5, Example 2.1] and [9, Example 2.6]. Interestingly, both central reversible and
central IFP rings are abelian, by [9, Lemma 2.7] and [15, Lemma 2.6]. Also
every central reversible ring is central reflexive [4, Proposition 2.3], however,
an IFP ring need not be central reflexive by a simple computation.

Applying the method used in the proof of Proposition 7, upon using Propo-
sition 6(2), we have the following.

Proposition 9. Let R be a ring. For n ≥ 2, assume that pk ∈ Z(R) ∩ U(R),
where 1 ≤ k < n, and that pn = 1. Then

(1) R is central reduced if and only if Sn(R) is central reduced.
(2) R is right (left) central symmetric if and only if Sn(R) is right (left)

central symmetric.
(3) R is central reversible if and only if Sn(R) is central reversible.
(4) R is central IFP if and only if Sn(R) is central IFP.
(5) R is central reflexive if and only if Sn(R) is central reflexive.

4. Concluding remarks

For a ring R and for n ≥ 1, consider the following subset of M2n(R):

S∗
2n(R) =

{
(xij) : xij =


a2i if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

a2j if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1

a2i−1 if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 4n− 1

}
.

A typical element of S∗
2n(R) has the form

a1 a2 0 0 · · · 0 0 0

0 a3 0 0 · · · 0 0 0

0 a4 a5 a6 · · · 0 0 0

0 0 0 a7 · · · 0 0 0

0 0 0 a8 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · a4n−5 0 0

0 0 0 0 · · · a4n−4 a4n−3 a4n−2

0 0 0 0 · · · 0 0 a4n−1



,
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where ai ∈ R for 1 ≤ i ≤ 4n− 1.

Lemma 10. Let R be a ring and let n ≥ 1. Then S∗
2n(R) is a subring of

M2n(R).

Proof. We have I2n ∈ S∗
2n(R). Let A = (xij) and B = (yij) ∈ S∗

2n(R), where

xij =


a2i if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

a2j if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1

a2i−1 if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 4n− 1, and

yij =


b2i if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

b2j if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1

b2i−1 if i = j

0 otherwise

,

bi ∈ R for 1 ≤ i ≤ 4n− 1. Then

xij − yij =


a2i − b2i if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

a2j − b2j if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1

a2i−1 − b2i−1 if i = j

0 otherwise

and

2n∑
ℓ=1

xiℓyℓj =


a2i−1b2i + a2ib2i+1 if i = 2k − 1, j = 2k, 1 ≤ k ≤ n

a2jb2j−1 + a2j+1b2j if i = 2k + 1, j = 2k, 1 ≤ k ≤ n− 1

a2i−1b2i−1 if i = j

0 otherwise

.

Thus A−B, AB ∈ S∗
2n(R) and hence S∗

2n(R) is a subring of M2n(R). □

For a ring R and for n ≥ 1, if pk ∈ Z(R), where 1 ≤ k < 2n, and if p2n = 1,
then it is clear from Lemmas 1 and 10 that S2n(R) is a subring of S∗

2n(R).
Next we show that the properties mentioned in Section 3 are not preserved by
S∗
2n(R), in general.

Example 11. Let Z2 denote the ring of integers modulo 2. For n ≥ 1, consider
the ring S∗

2n(Z2). Let Eij denote the matrix with (i, j)-th entry 1 and other
entries 0. Clearly, E11 ∈ S∗

2n(Z2) such that E2
11 = E11, however, E11E12 = E12

and E12E11 = 0, entailing E11 /∈ Z(S∗
2n(Z2)). Thus S∗

2n(Z2) is not abelian and
hence it is not (central) reduced, (right or left central) symmetric, (central) re-
versible, and (central) IFP. Also for any (rij) ∈ S∗

2n(Z2), we have E12(rij)E11 =
0, yielding E12S∗

2n(Z2)E11 = 0, however, E11E12 = E12 /∈ Z(S∗
2n(Z2)). This



ON A SPECIAL CLASS OF MATRIX RINGS 277

shows that E11S∗
2n(Z2)E12 ⊈ Z(S∗

2n(Z2)), entailing S∗
2n(Z2) is not (central)

reflexive.

For a ring R and for n ≥ 1, consider the following subset of M2n+1(R):

S∗
2n+1(R) =

{
(xij) : xij =


a2i if i = 2k, j = 2k + 1, 1 ≤ k ≤ n

a2j if i = 2k, j = 2k − 1, 1 ≤ k ≤ n

a2i−1 if i = j

0 otherwise

,

ai ∈ R for 1 ≤ i ≤ 4n+ 1

}
.

A typical element of S∗
2n+1(R) has the form

a1 0 0 0 0 · · · 0 0 0

a2 a3 a4 0 0 · · · 0 0 0

0 0 a5 0 0 · · · 0 0 0

0 0 a6 a7 a8 · · · 0 0 0

0 0 0 0 a9 · · · 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 0 0 · · · a4n−3 0 0

0 0 0 0 0 · · · a4n−2 a4n−1 a4n

0 0 0 0 0 · · · 0 0 a4n+1



,

where ai ∈ R for 1 ≤ i ≤ 4n+ 1.

Lemma 12. Let R be a ring and let n ≥ 1. Then S∗
2n+1(R) is a subring of

M2n+1(R).

Proof. It is similar to the proof of Lemma 10. □

For a ring R and for n ≥ 1, if pk ∈ Z(R), where 1 ≤ k ≤ 2n, and if p2n+1 = 1,
then it is clear from Lemmas 3 and 12 that S2n+1(R) is a subring of S∗

2n+1(R).
Next we show that the properties mentioned in Section 3 are not preserved by
S∗
2n+1(R), in general.

Example 13. For n ≥ 1, consider the ring S∗
2n+1(Z2). Clearly, E11∈S∗

2n+1(Z2)
such that E2

11 = E11, however, E11 /∈ Z(S∗
2n+1(Z2)) as E11E21 = 0 and

E21E11 = E21. Thus S∗
2n+1(Z2) is not abelian. Also E11S∗

2n+1(Z2)E21 = 0,
but E21E11 = E21 /∈ Z(S∗

2n+1(Z2)). This shows that E21S∗
2n+1(Z2)E11 ⊈

Z(S∗
2n+1(Z2)) and so S∗

2n+1(Z2) is not central reflexive.
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Remark 14. For a ring R and for n ≥ 2, if pk ∈ Z(R), where 1 ≤ k < n,
and if pn = 1, then from Lemmas 1, 3, 10 and 12, we see that Sn(R) is a
subring of S∗

n(R). Though the elements of both the rings are visually similar
but structurally they are different as shown by Propositions 7, 9 and Examples
11, 13. Examples 11 and 13 also demonstrate that the conditions imposed in
defining Sn(R) are not superfluous.
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