QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS

JIAN CUI AND XIAOBIN YIN

ABSTRACT. A ring R is called quasipolar if for every $a \in R$ there exists $p^2 = p \in R$ such that $p \in \operatorname{comm}_R^2(a)$, $a + p \in U(R)$ and $ap \in R^{\operatorname{qnil}}$. The class of quasipolar rings lies properly between the class of strongly π -regular rings and the class of strongly clean rings. In this paper, we determine when a 2 × 2 matrix over a local ring is quasipolar. Necessary and sufficient conditions for a 2 × 2 matrix ring to be quasipolar are obtained.

1. Introduction

Throughout the paper, rings R are associative with unity and modules M are unitary modules. For an element $a \in R$, l_a and r_a denote the abelian group endomorphisms of R given by left and right multiplication by a, respectively. The symbols U(R) and J(R) stand for the group of units and the Jacobson radical of R. Let $M_n(R)$ be the $n \times n$ matrix ring over R and I_n be the $n \times n$ identity matrix of $M_n(R)$. We write end(M) for the endomorphism ring of a module M.

Recall that a ring R is called *strongly* π -regular if for every $a \in R$, the chain $aR \supseteq a^2R \supseteq \cdots$ terminates (or equivalently, the chain $Ra \supseteq Ra^2 \supseteq \cdots$ terminates [8]). Clearly, one-sided perfect rings are strongly π -regular. In [15], Nicholson introduced the notion of a strongly clean ring. An element of a ring R is called *strongly clean* if it is the sum of an idempotent and a unit which commute, and R is called *strongly clean* if every element of R is strongly clean. Nicholson [15] proved that any strongly π -regular element is strongly clean by establishing the following results: for $\alpha \in \text{end}(M)$, α is strongly π -regular if and only if there exist α -invariant submodules P and Q such that $M = P \oplus Q$, $\alpha|_P$ is an isomorphism and $\alpha|_Q$ is nilpotent; and α is strongly clean if and only if there exist α -invariant submodules P and Q such that $M = P \oplus Q$, $\alpha|_P$ and $(1-\alpha)|_Q$ are isomorphisms. Some other notable results on strongly clean rings can be found in [1, 2, 3, 4, 13, 16, 17], etc.

Following [10], the commutant and double commutant of an element a of a ring R are defined by $\operatorname{comm}_R(a) = \{x \in R : ax = xa\}$ and $\operatorname{comm}_R^2(a) =$

 $\bigodot 2014$ Korean Mathematical Society

Received April 22, 2013.

²⁰¹⁰ Mathematics Subject Classification. 16U99, 16N99, 15A09.

Key words and phrases. quasipolar ring, matrix ring, strongly clean ring, local ring.

⁸¹³

 $\{x \in R : xy = yx \text{ for all } y \in \operatorname{comm}_R(a)\}$, respectively (if there is no ambiguity, we use $\operatorname{comm}(a)$ and $\operatorname{comm}^2(a)$ for short). Let $R^{\operatorname{qnil}} = \{a \in R : 1 - ax \in U(R) \text{ for all } x \in \operatorname{comm}(a)\}$ be the set of all quasinilpotent elements of R. It is clear that $J(R) \subseteq R^{\operatorname{qnil}}$. Koliha and Patricio called an element a of a ring R quasipolar [11] if there exists $p^2 = p \in \operatorname{comm}^2(a)$ such that $a + p \in U(R)$ and $ap \in R^{\operatorname{qnil}}$, where p is called a *spectral idempotent* of a and is denoted by $p = a^{\pi}$ (the spectral idempotent of an element is unique if it exists). The quasipolar element coincides with the generalized Drazin inverse in any ring [11]. The notion of a quasipolar ring was introduced by Ying and Chen [18]. A ring R is called quasipolar if every element of R is quasipolar. It was proved [18] that local rings and strongly π -regular rings are quasipolar, and quasipolar rings are strongly clean.

In 2004, Wang and Chen [16] proved that there exists a commutative local ring R such that $M_2(R)$ is not strongly clean, which answered a question raised by Nicholson in [15]. This motivated many authors studied strong cleanness of matrix rings over local rings ([2, 3, 4, 12, 13, 17]). The quasipolarity of a 2×2 matrix ring over a commutative local ring was considered in [6].

In this paper, we study when a 2×2 matrix ring over a general local ring is quasipolar. Using the decomposition theorem of quasipolar elements provided in [7], we prove that over a local ring $R, A \in M_2(R)$ is quasipolar if and only if either A is invertible or $A \in (M_2(R))^{qnil}$ or A is similar to a diagonal matrix of the form $\begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$ where $u \in U(R), j \in J(R)$ and $l_u - r_j, l_j - r_u$ are injective. This result is put to use when we establish some criteria for a 2×2 matrix ring over a local ring is quasipolar. Moreover, the relationship of strongly clean matrices and quasipolar matrices over a commutative local ring are discussed.

2. Several lemmas

Let R be a ring. It is well known that $J(M_2(R)) = M_2(J(R))$. Recall that two elements a, b of R are said to be *similar* if $b = u^{-1}au$ for some $u \in U(R)$.

Note that quasipolarity and quasinilpotent property are preserved by isomorphisms. So we have the following results immediately.

Lemma 2.1. Let R be a ring, $a \in R$ and $u \in U(R)$. Then

(1) a is quasipolar if and only if $u^{-1}au$ is quasipolar. In particular, $(u^{-1}au)^{\pi} = u^{-1}a^{\pi}u$.

(2) a is quasinilpotent if and only if so is $u^{-1}au$.

The following result is elementary.

Lemma 2.2. Let R be a ring, $a \in R$. Then

- (1) a is invertible if and only if a is quasipolar and $a^{\pi} = 0$.
- (2) a is quasinilpotent if and only if a is quasipolar and $a^{\pi} = 1$.

It is well known that local rings are projective-free (i.e., any projective module over the ring is free of unique rank). According to [5, Proposition 4.5], every idempotent matrix over a projective-free ring is similar to a diagonal matrix. So the following result is obvious.

Lemma 2.3. Let R be a local ring, and $E \in M_2(R)$ be a non-trivial idempotent. Then E is similar to the diagonal matrix $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Lemma 2.4. Let R be a nonzero ring. Then $R^{qnil} \cap U(R) = \emptyset$. In particular, if R is a local ring, then $R^{qnil} = J(R)$.

Proof. Assume on the contrary. Let $a \in R^{\text{qnil}} \cap U(R)$. Then $-a^{-1} \in \text{comm}_R(a)$. However, $a \in R^{\text{qnil}}$ implies that $0 = 1 + (-aa^{-1}) \in U(R)$, a contradiction. Thus $R^{\text{qnil}} \cap U(R) = \emptyset$. Notice that $J(R) \subseteq R^{\text{qnil}}$ for any ring. Hence $R^{\text{qnil}} = J(R)$ if R is local.

Yang and Zhou [17, Lemma 4] and Li [12, Lemma 2.4] independently proved that over a local ring R, if $A \in M_2(R)$ with neither A nor $I_2 - A$ is a unit, then A is similar to a matrix of the form $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ where $j \in J(R)$ and $u \in 1 + J(R)$. We have an analogous result.

Lemma 2.5. Let R be a local ring, and $A \in M_2(R)$ with $A \notin U(M_2(R)) \cup (M_2(R))^{\text{qnil}}$. Then A is similar to $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ where $j \in J(R)$ and $u \in U(R)$.

Proof. Let $T = M_2(R)$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in T$. We proceed with the following two cases.

Case 1. One of *b* or *c* is a unit. Note that $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} d & c \\ b & a \end{pmatrix}$. Without loss of generality, we assume that $c \in U(R)$. Let $V = \begin{pmatrix} c^{-1} & ac^{-1} \\ 0 & 1 \end{pmatrix}$. Then

$$V^{-1}AV = \begin{pmatrix} c & -cac^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} c^{-1} & ac^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & cb - cac^{-1}d \\ 1 & cac^{-1} + d \end{pmatrix}.$$

It is easy to see that if $cb - cac^{-1}d \in U(R)$, then $V^{-1}AV \in U(M_2(R))$, which implies A is a unit, a contradiction. Thus, $cb - cac^{-1}d \in J(R)$. We next show that $cac^{-1} + d \in U(R)$. If not, then $cac^{-1} + d \in J(R)$. Given any $Y \in \text{comm}_T(V^{-1}AV)$, by a routine computation, we obtain that the (i, i)entry and (1, 2)-entry of $Y(V^{-1}AV)$ are in J(R) where i = 1, 2. It follows that $I_2 + YV^{-1}AV$ is invertible in T. This proves that $V^{-1}AV \in T^{\text{qnil}}$, and thus $A \in T^{\text{qnil}}$ by Lemma 2.1(2), which contradicts the assumption. So $cac^{-1} + d \in U(R)$.

Case 2. Neither b nor c is a unit. If $a, d \in J(R)$, then $A \in J(T)$, and this contradict $A \notin T^{\text{qnil}}$. If $a, d \in U(R)$, then $A \in U(T)$, contradicting the assumption. So one of a and d is in J(R) and the other is in U(R). Without loss of generality, we may assume that $a \in J(R)$ and $d \in U(R)$. Let $U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Then $U^{-1}AU = \begin{pmatrix} a+b & b \\ c+d-a-b & d-b \end{pmatrix}$. Since $a, b, c \in J(R)$ and $d \in U(R)$, $c + d - a - b \in U(R)$. So we are back to Case 1.

Therefore, A is similar to a matrix of the form $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ where $j \in J(R)$ and $u \in U(R)$.

3. Quasipolar matrix rings over noncommutative local rings

In this section, we will develop a criterion for a 2×2 matrix ring over a noncommutative local ring to be quasipolar.

Proposition 3.1. Let R be a local ring, $u \in U(R)$ and $j \in J(R)$. Then

- (1) If the matrix $A = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix} \in M_2(R)$ is quasipolar, then $A^{\pi} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. (2) If the matrix $A = \begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix} \in M_2(R)$ is quasipolar, then $A^{\pi} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Proof. In view of Lemma 2.1, it is enough to prove (1).

Write $E = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Clearly, $E^2 = E$, $A + E \in U(M_2(R))$ and $AE = EA \in$ $J(M_2(R))(\subseteq (M_2(R))^{\text{qnil}})$. It follows from $A^{\pi} \in \text{comm}^2(A)$ that $A^{\pi}E = EA^{\pi}$, whence A^{π} is diagonal. By the uniqueness of the spectral idempotent and Lemma 2.2, we get $A^{\pi} = E = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Corollary 3.2. Let R be a local ring, $A \in M_2(R)$ is quasipolar and $A \notin$ $U(M_2(R)) \cup (M_2(R))^{\text{qnil}}$. Then A is diagonal if and only if A^{π} is an idempotent diagonal matrix.

Proof. Suppose that A is a diagonal matrix. The hypothesis $A \notin U(M_2(R)) \cup$ $(M_2(R))^{\text{qnil}}$ implies that A is of the form $\begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$, where $u \in U(R)$ and $j \in J(R)$. By Proposition 3.1, $A^{\pi} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Conversely, since A^{π} is non-trivial and $A^{\pi}A =$ AA^{π} , it follows that A is a diagonal matrix.

Corollary 3.3. Let R be a local ring, $u \in U(R)$ and $j \in J(R)$. The following are equivalent:

- (1) The matrix $\begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix} \in M_2(R)$ is quasipolar. (2) The matrix $\begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix} \in M_2(R)$ is quasipolar. (3) The endomorphisms $l_u r_j$ and $l_j r_u$ are injective.

Proof. (1) \Leftrightarrow (2). Note that $\begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$ is similar to $\begin{pmatrix} j & 0 \\ 0 & u \end{pmatrix}$. The result follows by Lemma 2.1(1).

 $(2) \Rightarrow (3).$ Let $A = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$. By Proposition 3.1, $A^{\pi} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. If $(l_u - r_j)(r) = 0$ for some $r \in R$, we let $C_1 = \begin{pmatrix} 0 & r \\ 0 & 0 \end{pmatrix}$. Then $AC_1 = C_1 A$. So $A^{\pi} \in \text{comm}^2(A)$ implies that $A^{\pi}C_1 = C_1 A^{\pi}$, and whence r = 0. Thus $l_u - r_j$ is injective. If $(l_j - r_u)(s) = 0$, then let $C_2 = \begin{pmatrix} 0 & 0 \\ s & 0 \end{pmatrix}$. A similar argument as the above yields s = 0, and hence $l_i - r_u$ is injective.

(3) \Rightarrow (2). Write $A = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$ and $E = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Then $E^2 = E \in \text{comm}(A)$, $A + E \in U(M_2(R))$ and $AE \in J(M_2(R))$. Let $B = (b_{ij}) \in M_2(R)$ with $B \in C$ $\operatorname{comm}(A)$. Then we obtain $ub_{12} - b_{12}j = 0$ and $jb_{21} - b_{21}u = 0$. By hypothesis, $b_{12} = b_{21} = 0$. So EB = BE. This proves $E \in \text{comm}^2(A)$. Thus A is quasipolar and $A^{\pi} = E$.

We now give a characterization of a 2×2 matrix over a local ring to be quasipolar.

Theorem 3.4. Let R be a local ring. Then $A \in M_2(R)$ is quasipolar if and only if A is invertible or $A \in (M_2(R))^{\text{qnil}}$ or A is similar to a matrix $\begin{pmatrix} u & 0 \\ 0 & i \end{pmatrix}$ with $u \in U(R)$, $j \in J(R)$ and $l_u - r_j$, $l_j - r_u$ are injective.

Proof. Write $T = M_2(R)$

In view of Lemma 2.2, A is quasipolar if $A \in U(T)$ or $A \in T^{\text{qnil}}$. Suppose that $V^{-1}AV = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$ for some $V \in U(T)$. Since $l_u - r_j$ and $l_j - r_u$ are injective, by Corollary 3.3 $V^{-1}AV$ is quasipolar. Thus $A \in T$ is quasipolar by Lemma 2.1(1).

Conversely, assume that $A \in T$ is quasipolar. By Lemma 2.2, we may assume that $A \notin U(T)$ and $A \notin T^{\text{qnil}}$. Let $E = A^{\pi}$. In view of Lemma 2.3, there exists $V \in U(T)$ such that $V^{-1}EV = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \doteq F$. Then by Lemma 2.1(1), $F = (V^{-1}AV)^{\pi}$. Note that $F(V^{-1}AV) = (V^{-1}AV)F$. Thus $V^{-1}AV$ is a diagonal matrix. From $F + V^{-1}AV \in U(T)$, we have the (1, 1)-entry of $V^{-1}AV$ is a unit of R. Note that $V^{-1}AV$ is not invertible. So the (2, 2)-entry of $V^{-1}AV$ is in J(R), and the rest follows by Corollary 3.3. \square

Recall that a local ring R is called *bleached* [1] if $l_u - r_j$ and $l_j - r_u$ of R are surjective for any $j \in J(R)$ and $u \in U(R)$. We call a local ring *co-bleached* if for any $j \in J(R)$ and $u \in U(R)$, both $l_u - r_j$ and $l_j - r_u$ of R are injective. From Corollary 3.3, we know that $M_2(R)$ is not quasipolar if R is not a co-bleached local ring.

Proposition 3.5. Let R be a co-bleached local ring and $A \in M_2(R)$. Then the following are equivalent:

(1) A is quasipolar in $M_2(R)$.

(2) There exists $P^2 = P \in M_2(R)$ such that $P \in \text{comm}(A), A + P \in$ $U(M_2(R))$ and $AP \in (M_2(R))^{\text{qnil}}$. In this case, $P = A^{\pi}$.

Proof. $(1) \Rightarrow (2)$ is clear.

(2) \Rightarrow (1). It suffices to show that $P \in \text{comm}^2(A)$. If A is a unit or $A \in (M_2(R))^{\text{qnil}}$, then we are done by Lemma 2.2. Otherwise, P is non-trivial. In view of Lemma 2.3, there exists $V \in U(M_2(R))$ such that $V^{-1}PV = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. From PA = AP, one has $(V^{-1}PV)(V^{-1}AV) = (V^{-1}AV)(V^{-1}PV)$. So $V^{-1}AV$ is a diagonal matrix with one entry in U(R) and the other in J(R). We can assume that $V^{-1}AV = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix}$, where $u \in U(R)$ and $j \in J(R)$. Let $B \in M_2(R)$ with $B \in \text{comm}(A)$. Write $V^{-1}BV = (b_{ij})$. Then

$$\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix} = \begin{pmatrix} u & 0 \\ 0 & j \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

It follows that $ub_{12} - b_{12}j = 0$ and $jb_{21} - b_{21}u = 0$. Since R is co-bleached, we have $b_{12} = b_{21} = 0$. Thus $(V^{-1}BV)(V^{-1}PV) = (V^{-1}PV)(V^{-1}BV)$, which implies that BP = PB. Hence $P \in \text{comm}^2(A)$, and so $P = A^{\pi}$.

Combining Proposition 3.5 with [7, Theorem 4.8], we have the following result immediately.

Corollary 3.6. Let R be a co-bleached local ring, $M =_R (R \oplus R)$ and $\alpha \in E =$ end(M). The following are equivalent:

(1) α is quasipolar in E.

(2) $M = P \oplus Q$ where P and Q are α -invariant, $\alpha|_P$ is an isomorphism of end(P) and $\alpha|_Q$ is quasinilpotent in end(Q).

The polynomial ring over a ring R in the indeterminate x is denoted by R[x]. For a monic polynomial $h(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in R[x]$, the matrix $C_h = \begin{pmatrix} 0 & -a_0 \\ I_{n-1} & \alpha \end{pmatrix}$ is called the *companion matrix* of h(x), where $\alpha = (-a_1, -a_2, \dots, -a_{n-1})^T$. A square matrix A over R is called a *companion* matrix if $A = C_h$ for a monic polynomial h(x) over R.

Theorem 3.7. Let R be a co-bleached local ring. The following are equivalent: (1) $M_2(R)$ is quasipolar.

(2) For any monic polynomial h(x) of degree 2, the companion matrix $C_h \in$ $M_2(R)$ is quasipolar.

(3) For any $u \in U(R)$ and $j \in J(R)$, $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ is quasipolar.

(4) For any $A \in M_2(R)$, either A is invertible or $A \in (M_2(R))^{\text{qnil}}$ or A is similar to a diagonal matrix.

(5) For any $u \in U(R)$ and $j \in J(R)$, either $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix} \in M_2(R)$ and for the equation $x^2 - ux - j = 0$ has a solution in U(R) and a solution in J(R).

Proof. Write $T = M_2(R)$.

 $(1) \Rightarrow (2) \Rightarrow (3)$ is clear.

(3) \Rightarrow (4). Let $A \in T$ be such that $A \notin U(T)$ and $A \notin T^{\text{quil}}$. By Lemma 2.5, there exists $V \in U(T)$ satisfying $V^{-1}AV = \begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ with $j \in J(R)$ and $u \in U(R)$. By Lemma 2.1(1), A is quasipolar. Thus A is similar to a diagonal matrix by Theorem 3.4.

 $(4) \Rightarrow (1)$. This follows from Theorem 3.4 since R is co-bleached.

(3) \Rightarrow (5). We may assume that $A \notin T^{\text{qnil}}$. In view of Theorem 3.4, there exists $V \in U(T)$ such that $V^{-1}AV = \begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$ where $\mu \in U(R)$ and $\lambda \in J(R)$. Write $V = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. Then $AV = V \begin{pmatrix} \mu & 0 \\ 0 & \lambda \end{pmatrix}$ implies the following equations:

(i)	$jz = x\mu,$	(ii)	$jw = y\lambda,$
(iii)	$x + uz = z\mu,$	(iv)	$y + uw = w\lambda.$

By Eq.(i), $x \in J(R)$. So both y and z are in U(R) since V is invertible. By Eq.(iv), $w \in U(R)$ as R is local. Based on Eqs.(iii) and (iv), put

$$\mu' = z\mu z^{-1} = xz^{-1} + u \in U(R) \text{ and } \lambda' = w\lambda w^{-1} = yw^{-1} + u \in J(R).$$

Combining Eq.(i) with Eq.(iii), we obtain

$$(\mu')^2 - u\mu' = (xz^{-1} + u)^2 - u(xz^{-1} + u) = xz^{-1}(x + uz)z^{-1} = j,$$

and by Eqs.(ii) and (iv), one has

$$(\lambda')^2 - u\lambda' = (yw^{-1} + u)^2 - u(yw^{-1} + u) = yw^{-1}(y + uw)w^{-1} = j$$

Hence $x^2 - ux - j = 0$ has a solution $\mu' \in U(R)$ and a solution $\lambda' \in J(R)$. (5) \Rightarrow (3). Assume that $\lambda_1 \in U(R)$ and $\lambda_2 \in J(R)$ are two solutions of $x^2 - x^2 = 1$

ux-j=0. Let $\alpha = \begin{pmatrix} 0 & 1 \\ j & u \end{pmatrix} \in T$. Then α can be viewed as the *R*-homomorphism

818

of $(R \oplus R)_R$. Consider the column vectors $v_1 = (1, \lambda_1)^T$, $v_2 = (1, \lambda_2)^T$, and let $P = v_1 R$, $Q = v_2 R$. Then we have $(R \oplus R)_R = P \oplus Q$ (indeed, for any $r = (r_1, r_2)^T$, $r = v_1 \cdot (\lambda_2 - \lambda_1)^{-1} (\lambda_2 r_1 - r_2) + v_2 \cdot (\lambda_2 - \lambda_1)^{-1} (r_2 - \lambda_1 r_1) \in P + Q$ and $P \cap Q = 0$). Since $\lambda_i^2 - u\lambda_i - j = 0$ for i = 1, 2, we get

$$\alpha(v_i) = (\lambda_i, j + u\lambda_i)^T = (1, \lambda_i)^T \lambda_i = v_i \lambda_i.$$

So *P* and *Q* are both α -invariant, and α acts as an isomorphism on *P* and $\alpha|_Q \in J(\text{end}(Q))$. Hence $\alpha = \begin{pmatrix} 0 & 1 \\ j & u \end{pmatrix} \in T$ is quasipolar by Corollary 3.6. Note that $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & u \end{pmatrix}^{-1} \begin{pmatrix} 0 & 1 \\ j & u \end{pmatrix}$. In view of Lemma 2.1(1), $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix}$ is quasipolar. \Box

4. Special cases

Commutative local rings are well-known examples of bleached and co-bleached local rings. In this section, over a commutative local ring, we investigate the quasipolarity and strong cleanness of a 2×2 matrix ring. For a commutative ring R, the notations detA and trA denote the determinant and the trace of a square matrix A over R, respectively.

Lemma 4.1. Let R be a commutative local ring and $A \in M_2(R)$. Then the following are equivalent:

- (1) $A \in (M_2(R))^{\text{qnil}}$.
- (2) det $A \in J(R)$ and tr $A \in J(R)$.
- (3) $A^2 \in J(M_2(R)).$

Proof. (1) \Rightarrow (2). Since R is local, by Lemma 2.4 det $A \in J(R)$. Suppose that $\operatorname{tr} A \in U(R)$. Let $Y = \begin{pmatrix} -(\operatorname{tr} A)^{-1} & 0 \\ 0 & -(\operatorname{tr} A)^{-1} \end{pmatrix}$. Then $Y \in \operatorname{comm}(A)$. But $\det(I_2 + AY) = (\operatorname{tr} A)^{-2} \det A \in J(R)$ implies that $I_2 + AY \notin U(M_2(R))$, this causes a contradiction since $A \in (M_2(R))^{\operatorname{qnil}}$. Thus $\operatorname{tr} A \in J(R)$.

 $(2) \Rightarrow (3)$. As both trA and detA belong to J(R), by Caylay-Hamilton Theorem, we have $A^2 = \operatorname{tr} A \cdot A - \operatorname{det} A \cdot I_2 \in J(M_2(R))$.

 $(3) \Rightarrow (1)$. It is not difficult to check that any element of a ring nilpotent modulo its Jacobson radical, is quasinilpotent. So the result follows. \Box

Based on Lemma 2.2(2) and Lemma 4.1, we have the following result.

Corollary 4.2 ([6, Theorem 2.6]). Let R be a commutative local ring and let $A \in M_2(R)$ with det $A \in J(R)$. Then $\operatorname{tr} A \in J(R)$ if and only if A is quasipolar and $A^{\pi} = I_2$.

Theorem 4.3. Let R be a commutative local ring. The following are equivalent: (1) $M_2(R)$ is quasipolar.

(2) For any $j \in J(R)$ and $u \in U(R)$, the equation $x^2 - ux + j = 0$ is solvable in R.

(3) For any $j \in J(R)$, the equation $x^2 - x + j = 0$ is solvable in R.

(4) For any $A \in M_2(R)$ with $\det A \in J(R)$ and $A^2 \notin J(M_2(R))$, the equation $x^2 - (\operatorname{tr} A)x + \det A = 0$ is solvable.

Proof. Note that for any $u \in U(R)$ and $j \in J(R)$, $\begin{pmatrix} 0 & j \\ 1 & u \end{pmatrix} \notin (M_2(R))^{\text{qnil}}$ by Lemma 4.1. Then $(1) \Leftrightarrow (2)$ by Theorem 3.7, and $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (2)$. For any $j \in J(R)$ and $u \in U(R)$, consider the equation $z^2 - z + \frac{j}{u^2} = 0$. Note that $\frac{j}{u^2} \in J(R)$. Assume that $z_0 \in R$ is a solution of the above equation. It is easy to see that uz_0 is a root of the equation $x^2 - ux + j = 0$.

(1) \Leftrightarrow (4). Let $A \in M_2(R)$ with det $A \in J(R)$. By Lemma 4.1, $A \notin (M_2(R))^{\text{qnil}}$ if and only if $\text{tr} A \in U(R)$ if and only if $A^2 \notin J(M_2(R))$. So the result follows from [6, Proposition 2.8] and Theorem 3.7.

According to [13, Theorem 2.8], over a commutative local ring R, $M_2(R)$ is strongly clean if and only if for any $j \in J(R)$ and $u \in U(R)$, the equation $x^2 - ux + j = 0$ is solvable in R. So we get the following result immediately.

Corollary 4.4. Let R be a commutative local ring. Then $M_2(R)$ is strongly clean if and only if $M_2(R)$ is quasipolar.

For a commutative local ring R, there exists a strongly clean matrix $A \in M_2(R)$ which is not quasipolar (see [6, Example 3.2]). Now combining the above results with results in [6, 13], we observe the following facts.

Remark 4.5. Let R be a commutative local ring and $A \in M_2(R)$. The following hold:

(I) If $\det A \in U(R)$, then A is strongly clean and quasipolar.

(II) $\det A \in J(R)$.

(1) $\det(A - I_2) \in U(R) :$

(i) If $tr A \in J(R)$, then A is strongly clean and quasipolar.

(ii) If $\operatorname{tr} A \in U(R)$, then A is strongly clean, and A is quasipolar if and only if the equation $x^2 - (\operatorname{tr} A)x + \operatorname{det} A = 0$ is solvable in R.

(2) $\det(A-I_2) \in J(R)$, then A is strongly clean if and only if A is quasipolar if and only if the equation $x^2 - (\operatorname{tr} A)x + \det A = 0$ is solvable in R.

Proposition 4.6. (1) A direct product $\prod_i R_i$ is quasipolar if and only if each ring R_i is quasipolar.

(2) If R is local ring and C_2 is the group of order 2, then RC_2 is quasipolar.

Proof. (1) This is obvious.

(2) If $2 \in J(R)$, then RC_2 is local by [14, Theorem] since C_2 is a 2-group. If $2 \in U(R)$, then $RC_2 \cong R \oplus R$ by [9, Proposition 3]. Since R is a quasipolar ring, so is $R \oplus R$ by (1). Hence RC_2 is quasipolar for all cases.

Proposition 4.7. Let R be a commutative local ring. The following are equivalent:

- (1) $M_2(R)$ is quasipolar.
- (2) $M_2(R[[x]])$ is quasipolar.
- (3) For any $n \ge 1$, $M_2(R[x]/(x^n))$ is quasipolar.
- (4) $M_2(RC_2)$ is quasipolar.

Proof. Note that R, R[[x]] and $R[x]/(x^n)$ are all commutative local rings. According to [3, Theorem 9], if one of $M_2(R)$, $M_2(R[[x]])$ and $M_2(R[x]/(x^n))$ is strongly clean, then they all do. By Corollary 4.4, $(1) \Leftrightarrow (2) \Leftrightarrow (3)$.

Next we show that (1) \Leftrightarrow (4). If $2 \in J(R)$, then by [3, Theorem 12], $M_2(R)$ is strongly clean if and only if so is $M_2(RC_2)$. Due to Corollary 4.4, the result holds for this case. If $2 \in U(R)$, then $RC_2 \cong R \oplus R$. Thus, $M_2(RC_2) \cong M_2(R) \oplus M_2(R)$. By Proposition 4.6(1), we are done.

Acknowledgments. The authors are highly grateful to the anonymous referee for his/her insights and valuable comments. This research was supported by the National Natural Science Foundation of China (No. 11326062), and Anhui Provincial Natural Science Foundation (No. 1408085QA01).

References

- G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean triangular matrix rings over local rings, J. Algebra 312 (2007), no. 2, 773–797.
- [2] _____, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281–296.
- [3] J. Chen, X. Yang, and Y. Zhou, When is the 2×2 matrix ring over a commutative local ring strongly clean?, J. Algebra 301 (2006), no. 1, 280–293.
- [4] _____, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006), no. 10, 3659–3674.
- [5] P. M. Cohn, Free Rings and Their Relations, 2nd edn, Academic Press, 1985.
- [6] J. Cui and J. Chen, When is a 2×2 matrix ring over a commutative local ring quasipolar?, Comm. Algebra 39 (2011), no. 9, 3212–3221.
- [7] _____, Characterizations of quasipolar rings, Comm. Algebra 41 (2013), no. 9, 3207– 3217.
- [8] M. F. Dischinger, Sur les anneaux fortement π-réguliers, C. R. Math. Acad. Sci. Paris 283 (1976), no. 8, 571–573.
- [9] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001), no. 6, 2589–2595.
- [10] R. E. Harte, On quasinilpotents in rings, Panam. Math. J. 1 (1991), 10-16.
- [11] J. J. Koliha and P. Patricio, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), no. 1, 137–152.
- [12] B. Li, Strongly clean matrix rings over noncommutative local rings, Bull. korean Math. Soc. 46 (2009), no. 1, 71–78.
- [13] Y. Li, Strongly clean matrix rings over local rings, J. Algebra 312 (2007), no. 1, 397-404.
- [14] W. K. Nicholson, Local group rings, Canad. Math. Bull. 15 (1972), 137-138.
- [15] _____, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999), no. 8, 3583–3592.
- [16] Z. Wang and J. Chen, On two open problems about strongly clean rings, Bull. Aust. Math. Soc. 70 (2004), no. 2, 279–282.
- [17] X. Yang and Y. Zhou, Strong cleanness of the 2×2 matrix ring over a general local ring, J. Algebra **320** (2008), no. 6, 2280–2290.
- [18] Z. Ying and J. Chen, On quasipolar rings, Algebra Colloq. 19 (2012), no. 4, 683-692.

JIAN CUI DEPARTMENT OF MATHEMATICS ANHUI NORMAL UNIVERSITY WUHU 241000, P. R. CHINA *E-mail address:* cui368@mail.ahnu.edu.cn

XIAOBIN YIN DEPARTMENT OF MATHEMATICS ANHUI NORMAL UNIVERSITY WUHU 241000, P. R. CHINA *E-mail address*: xbyinzh@mail.ahnu.edu.cn

822