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QUASIPOLAR MATRIX RINGS OVER LOCAL RINGS

Jian Cui and Xiaobin Yin

Abstract. A ring R is called quasipolar if for every a ∈ R there exists
p2 = p ∈ R such that p ∈ comm2

R
(a), a + p ∈ U(R) and ap ∈ Rqnil.

The class of quasipolar rings lies properly between the class of strongly
π-regular rings and the class of strongly clean rings. In this paper, we
determine when a 2× 2 matrix over a local ring is quasipolar. Necessary
and sufficient conditions for a 2 × 2 matrix ring to be quasipolar are
obtained.

1. Introduction

Throughout the paper, rings R are associative with unity and modules M
are unitary modules. For an element a ∈ R, la and ra denote the abelian group
endomorphisms of R given by left and right multiplication by a, respectively.
The symbols U(R) and J(R) stand for the group of units and the Jacobson
radical of R. Let Mn(R) be the n× n matrix ring over R and In be the n× n
identity matrix of Mn(R). We write end(M) for the endomorphism ring of a
module M.

Recall that a ring R is called strongly π-regular if for every a ∈ R, the
chain aR ⊇ a2R ⊇ · · · terminates (or equivalently, the chain Ra ⊇ Ra2 ⊇ · · ·
terminates [8]). Clearly, one-sided perfect rings are strongly π-regular. In [15],
Nicholson introduced the notion of a strongly clean ring. An element of a ring
R is called strongly clean if it is the sum of an idempotent and a unit which
commute, and R is called strongly clean if every element of R is strongly clean.
Nicholson [15] proved that any strongly π-regular element is strongly clean by
establishing the following results: for α ∈ end(M), α is strongly π-regular if
and only if there exist α-invariant submodules P and Q such that M = P ⊕Q,
α|P is an isomorphism and α|Q is nilpotent; and α is strongly clean if and only
if there exist α-invariant submodules P and Q such that M = P ⊕Q, α|P and
(1−α)|Q are isomorphisms. Some other notable results on strongly clean rings
can be found in [1, 2, 3, 4, 13, 16, 17], etc.

Following [10], the commutant and double commutant of an element a of
a ring R are defined by commR(a) = {x ∈ R : ax = xa} and comm2

R(a) =
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{x ∈ R : xy = yx for all y ∈ commR(a)}, respectively (if there is no ambiguity,
we use comm(a) and comm2(a) for short). Let Rqnil = {a ∈ R : 1 − ax ∈
U(R) for all x ∈ comm(a)} be the set of all quasinilpotent elements of R. It
is clear that J(R) ⊆ Rqnil. Koliha and Patricio called an element a of a ring
R quasipolar [11] if there exists p2 = p ∈ comm2(a) such that a + p ∈ U(R)
and ap ∈ Rqnil, where p is called a spectral idempotent of a and is denoted
by p = aπ (the spectral idempotent of an element is unique if it exists). The
quasipolar element coincides with the generalized Drazin inverse in any ring
[11]. The notion of a quasipolar ring was introduced by Ying and Chen [18].
A ring R is called quasipolar if every element of R is quasipolar. It was proved
[18] that local rings and strongly π-regular rings are quasipolar, and quasipolar
rings are strongly clean.

In 2004, Wang and Chen [16] proved that there exists a commutative local
ring R such that M2(R) is not strongly clean, which answered a question raised
by Nicholson in [15]. This motivated many authors studied strong cleanness of
matrix rings over local rings ([2, 3, 4, 12, 13, 17]). The quasipolarity of a 2× 2
matrix ring over a commutative local ring was considered in [6].

In this paper, we study when a 2× 2 matrix ring over a general local ring is
quasipolar. Using the decomposition theorem of quasipolar elements provided
in [7], we prove that over a local ring R, A ∈ M2(R) is quasipolar if and only if
either A is invertible or A ∈ (M2(R))qnil or A is similar to a diagonal matrix of
the form

(

u 0
0 j

)

where u ∈ U(R), j ∈ J(R) and lu−rj , lj−ru are injective. This
result is put to use when we establish some criteria for a 2× 2 matrix ring over
a local ring is quasipolar. Moreover, the relationship of strongly clean matrices
and quasipolar matrices over a commutative local ring are discussed.

2. Several lemmas

Let R be a ring. It is well known that J(M2(R)) = M2(J(R)). Recall that
two elements a, b of R are said to be similar if b = u−1au for some u ∈ U(R).

Note that quasipolarity and quasinilpotent property are preserved by iso-
morphisms. So we have the following results immediately.

Lemma 2.1. Let R be a ring, a ∈ R and u ∈ U(R). Then
(1) a is quasipolar if and only if u−1au is quasipolar. In particular, (u−1au)π

= u−1aπu.
(2) a is quasinilpotent if and only if so is u−1au.

The following result is elementary.

Lemma 2.2. Let R be a ring, a ∈ R. Then
(1) a is invertible if and only if a is quasipolar and aπ = 0.
(2) a is quasinilpotent if and only if a is quasipolar and aπ = 1.

It is well known that local rings are projective-free (i.e., any projective mod-
ule over the ring is free of unique rank). According to [5, Proposition 4.5], every
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idempotent matrix over a projective-free ring is similar to a diagonal matrix.
So the following result is obvious.

Lemma 2.3. Let R be a local ring, and E ∈ M2(R) be a non-trivial idempotent.

Then E is similar to the diagonal matrix ( 0 0
0 1 ).

Lemma 2.4. Let R be a nonzero ring. Then Rqnil ∩ U(R) = ∅. In particular,

if R is a local ring, then Rqnil = J(R).

Proof. Assume on the contrary. Let a ∈ Rqnil∩U(R). Then −a−1 ∈ commR(a).
However, a ∈ Rqnil implies that 0 = 1+(−aa−1) ∈ U(R), a contradiction. Thus
Rqnil ∩ U(R) = ∅. Notice that J(R) ⊆ Rqnil for any ring. Hence Rqnil = J(R)
if R is local. �

Yang and Zhou [17, Lemma 4] and Li [12, Lemma 2.4] independently proved
that over a local ring R, if A ∈ M2(R) with neither A nor I2−A is a unit, then
A is similar to a matrix of the form

(

0 j
1 u

)

where j ∈ J(R) and u ∈ 1 + J(R).
We have an analogous result.

Lemma 2.5. Let R be a local ring, and A ∈ M2(R) with A /∈ U(M2(R)) ∪
(M2(R))qnil. Then A is similar to

(

0 j
1 u

)

where j ∈ J(R) and u ∈ U(R).

Proof. Let T = M2(R) and A =
(

a b
c d

)

∈ T. We proceed with the following two
cases.

Case 1. One of b or c is a unit. Note that ( 0 1
1 0 )

−1 ( a b
c d

)

( 0 1
1 0 ) =

(

d c
b a

)

.

Without loss of generality, we assume that c ∈ U(R). Let V =
(

c−1 ac−1

0 1

)

.
Then

V −1AV =

(

c −cac−1

0 1

)(

a b
c d

)(

c−1 ac−1

0 1

)

=

(

0 cb− cac−1d
1 cac−1 + d

)

.

It is easy to see that if cb − cac−1d ∈ U(R), then V −1AV ∈ U(M2(R)), which
implies A is a unit, a contradiction. Thus, cb − cac−1d ∈ J(R). We next
show that cac−1 + d ∈ U(R). If not, then cac−1 + d ∈ J(R). Given any
Y ∈ commT (V

−1AV ), by a routine computation, we obtain that the (i, i)-
entry and (1, 2)-entry of Y (V −1AV ) are in J(R) where i = 1, 2. It follows that
I2 + Y V −1AV is invertible in T. This proves that V −1AV ∈ T qnil, and thus
A ∈ T qnil by Lemma 2.1(2), which contradicts the assumption. So cac−1+ d ∈
U(R).

Case 2. Neither b nor c is a unit. If a, d ∈ J(R), then A ∈ J(T ), and
this contradict A /∈ T qnil. If a, d ∈ U(R), then A ∈ U(T ), contradicting
the assumption. So one of a and d is in J(R) and the other is in U(R).
Without loss of generality, we may assume that a ∈ J(R) and d ∈ U(R). Let
U = ( 1 0

1 1 ) . Then U−1AU =
(

a+b b
c+d−a−b d−b

)

. Since a, b, c ∈ J(R) and d ∈ U(R),

c+ d− a− b ∈ U(R). So we are back to Case 1.
Therefore, A is similar to a matrix of the form

(

0 j
1 u

)

where j ∈ J(R) and
u ∈ U(R). �
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3. Quasipolar matrix rings over noncommutative local rings

In this section, we will develop a criterion for a 2 × 2 matrix ring over a
noncommutative local ring to be quasipolar.

Proposition 3.1. Let R be a local ring, u ∈ U(R) and j ∈ J(R). Then
(1) If the matrix A =

(

u 0
0 j

)

∈ M2(R) is quasipolar, then Aπ = ( 0 0
0 1 ) .

(2) If the matrix A =
(

j 0
0 u

)

∈ M2(R) is quasipolar, then Aπ = ( 1 0
0 0 ) .

Proof. In view of Lemma 2.1, it is enough to prove (1).
Write E = ( 0 0

0 1 ) . Clearly, E
2 = E, A + E ∈ U(M2(R)) and AE = EA ∈

J(M2(R))(⊆ (M2(R))qnil). It follows from Aπ ∈ comm2(A) that AπE = EAπ ,
whence Aπ is diagonal. By the uniqueness of the spectral idempotent and
Lemma 2.2, we get Aπ = E = ( 0 0

0 1 ) . �

Corollary 3.2. Let R be a local ring, A ∈ M2(R) is quasipolar and A /∈
U(M2(R))∪(M2(R))qnil. Then A is diagonal if and only if Aπ is an idempotent

diagonal matrix.

Proof. Suppose that A is a diagonal matrix. The hypothesis A /∈ U(M2(R)) ∪
(M2(R))qnil implies that A is of the form

(

u 0
0 j

)

, where u ∈ U(R) and j ∈ J(R).
By Proposition 3.1, Aπ = ( 0 0

0 1 ) . Conversely, since A
π is non-trivial and AπA =

AAπ , it follows that A is a diagonal matrix. �

Corollary 3.3. Let R be a local ring, u ∈ U(R) and j ∈ J(R). The following

are equivalent:
(1) The matrix

(

j 0
0 u

)

∈ M2(R) is quasipolar.

(2) The matrix
(

u 0
0 j

)

∈ M2(R) is quasipolar.

(3) The endomorphisms lu − rj and lj − ru are injective.

Proof. (1) ⇔ (2). Note that
(

u 0
0 j

)

is similar to
(

j 0
0 u

)

. The result follows by
Lemma 2.1(1).

(2) ⇒ (3). Let A =
(

u 0
0 j

)

. By Proposition 3.1, Aπ = ( 0 0
0 1 ). If (lu−rj)(r) = 0

for some r ∈ R, we let C1 = ( 0 r
0 0 ) . Then AC1 = C1A. So Aπ ∈ comm2(A)

implies that AπC1 = C1A
π, and whence r = 0. Thus lu − rj is injective. If

(lj − ru)(s) = 0, then let C2 = ( 0 0
s 0 ). A similar argument as the above yields

s = 0, and hence lj − ru is injective.
(3) ⇒ (2). Write A =

(

u 0
0 j

)

and E = ( 0 0
0 1 ) . Then E2 = E ∈ comm(A), A+

E ∈ U(M2(R)) and AE ∈ J(M2(R)). Let B = (bij) ∈ M2(R) with B ∈
comm(A). Then we obtain ub12− b12j = 0 and jb21 − b21u = 0. By hypothesis,
b12 = b21 = 0. So EB = BE. This proves E ∈ comm2(A). Thus A is quasipolar
and Aπ = E. �

We now give a characterization of a 2 × 2 matrix over a local ring to be
quasipolar.

Theorem 3.4. Let R be a local ring. Then A ∈ M2(R) is quasipolar if and

only if A is invertible or A ∈ (M2(R))qnil or A is similar to a matrix
(

u 0
0 j

)

with u ∈ U(R), j ∈ J(R) and lu − rj, lj − ru are injective.
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Proof. Write T = M2(R)
In view of Lemma 2.2, A is quasipolar if A ∈ U(T ) or A ∈ T qnil. Suppose

that V −1AV =
(

u 0
0 j

)

for some V ∈ U(T ). Since lu−rj and lj−ru are injective,

by Corollary 3.3 V −1AV is quasipolar. Thus A ∈ T is quasipolar by Lemma
2.1(1).

Conversely, assume that A ∈ T is quasipolar. By Lemma 2.2, we may
assume that A /∈ U(T ) and A /∈ T qnil. Let E = Aπ. In view of Lemma 2.3,
there exists V ∈ U(T ) such that V −1EV = ( 0 0

0 1 )
.
= F . Then by Lemma

2.1(1), F = (V −1AV )π. Note that F (V −1AV ) = (V −1AV )F . Thus V −1AV
is a diagonal matrix. From F + V −1AV ∈ U(T ), we have the (1, 1)-entry of
V −1AV is a unit of R. Note that V −1AV is not invertible. So the (2, 2)-entry
of V −1AV is in J(R), and the rest follows by Corollary 3.3. �

Recall that a local ring R is called bleached [1] if lu − rj and lj − ru of R are
surjective for any j ∈ J(R) and u ∈ U(R). We call a local ring co-bleached if for
any j ∈ J(R) and u ∈ U(R), both lu − rj and lj − ru of R are injective. From
Corollary 3.3, we know that M2(R) is not quasipolar if R is not a co-bleached
local ring.

Proposition 3.5. Let R be a co-bleached local ring and A ∈ M2(R). Then the

following are equivalent:
(1) A is quasipolar in M2(R).
(2) There exists P 2 = P ∈ M2(R) such that P ∈ comm(A), A + P ∈

U(M2(R)) and AP ∈ (M2(R))qnil. In this case, P = Aπ .

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). It suffices to show that P ∈ comm2(A). If A is a unit or

A ∈ (M2(R))qnil, then we are done by Lemma 2.2. Otherwise, P is non-trivial.
In view of Lemma 2.3, there exists V ∈ U(M2(R)) such that V −1PV = ( 1 0

0 0 ).
From PA = AP , one has (V −1PV )(V −1AV ) = (V −1AV )(V −1PV ). So
V −1AV is a diagonal matrix with one entry in U(R) and the other in J(R).
We can assume that V −1AV =

(

u 0
0 j

)

, where u ∈ U(R) and j ∈ J(R).

Let B ∈ M2(R) with B ∈ comm(A). Write V −1BV = (bij). Then
(

b11 b12
b21 b22

)(

u 0
0 j

)

=

(

u 0
0 j

)(

b11 b12
b21 b22

)

.

It follows that ub12 − b12j = 0 and jb21 − b21u = 0. Since R is co-bleached,
we have b12 = b21 = 0. Thus (V −1BV )(V −1PV ) = (V −1PV )(V −1BV ), which
implies that BP = PB. Hence P ∈ comm2(A), and so P = Aπ. �

Combining Proposition 3.5 with [7, Theorem 4.8], we have the following
result immediately.

Corollary 3.6. Let R be a co-bleached local ring, M =R (R⊕R) and α ∈ E =
end(M). The following are equivalent:

(1) α is quasipolar in E.
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(2) M = P ⊕Q where P and Q are α-invariant, α|P is an isomorphism of

end(P ) and α|Q is quasinilpotent in end(Q).

The polynomial ring over a ring R in the indeterminate x is denoted by
R[x]. For a monic polynomial h(x) = xn + an−1x

n−1 + · · ·+ a1x + a0 ∈ R[x],

the matrix Ch =
(

0 −a0

In−1 α

)

is called the companion matrix of h(x), where

α = (−a1,−a2, . . . ,−an−1)
T . A square matrix A over R is called a companion

matrix if A = Ch for a monic polynomial h(x) over R.

Theorem 3.7. Let R be a co-bleached local ring. The following are equivalent:
(1) M2(R) is quasipolar.

(2) For any monic polynomial h(x) of degree 2, the companion matrix Ch ∈
M2(R) is quasipolar.

(3) For any u ∈ U(R) and j ∈ J(R),
(

0 j
1 u

)

is quasipolar.

(4) For any A ∈ M2(R), either A is invertible or A ∈ (M2(R))qnil or A is

similar to a diagonal matrix.

(5) For any u ∈ U(R) and j ∈ J(R), either
(

0 j
1 u

)

∈ M2(R))qnil or the

equation x2 − ux− j = 0 has a solution in U(R) and a solution in J(R).

Proof. Write T = M2(R).
(1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (4). Let A ∈ T be such that A /∈ U(T ) and A /∈ T qnil. By Lemma 2.5,

there exists V ∈ U(T ) satisfying V −1AV =
(

0 j
1 u

)

with j ∈ J(R) and u ∈ U(R).
By Lemma 2.1(1), A is quasipolar. Thus A is similar to a diagonal matrix by
Theorem 3.4.

(4) ⇒ (1). This follows from Theorem 3.4 since R is co-bleached.
(3) ⇒ (5). We may assume that A /∈ T qnil. In view of Theorem 3.4, there

exists V ∈ U(T ) such that V −1AV =
(

µ 0
0 λ

)

where µ ∈ U(R) and λ ∈ J(R).

Write V = ( x y
z w ). Then AV = V

(

µ 0
0 λ

)

implies the following equations:

(i) jz = xµ, (ii) jw = yλ,

(iii) x+ uz = zµ, (iv) y + uw = wλ.

By Eq.(i), x ∈ J(R). So both y and z are in U(R) since V is invertible. By
Eq.(iv), w ∈ U(R) as R is local. Based on Eqs.(iii) and (iv), put

µ′ = zµz−1 = xz−1 + u ∈ U(R) and λ′ = wλw−1 = yw−1 + u ∈ J(R).

Combining Eq.(i) with Eq.(iii), we obtain

(µ′)2 − uµ′ = (xz−1 + u)2 − u(xz−1 + u) = xz−1(x+ uz)z−1 = j,

and by Eqs.(ii) and (iv), one has

(λ′)2 − uλ′ = (yw−1 + u)2 − u(yw−1 + u) = yw−1(y + uw)w−1 = j.

Hence x2 − ux− j = 0 has a solution µ′ ∈ U(R) and a solution λ′ ∈ J(R).
(5) ⇒ (3). Assume that λ1 ∈ U(R) and λ2 ∈ J(R) are two solutions of x2 −

ux−j = 0. Let α =
(

0 1
j u

)

∈ T . Then α can be viewed as the R-homomorphism
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of (R ⊕ R)R. Consider the column vectors v1 = (1, λ1)
T , v2 = (1, λ2)

T , and
let P = v1R, Q = v2R. Then we have (R ⊕ R)R = P ⊕ Q (indeed, for any
r = (r1, r2)

T , r = v1 ·(λ2−λ1)
−1(λ2r1−r2)+v2 ·(λ2−λ1)

−1(r2−λ1r1) ∈ P+Q
and P ∩Q = 0). Since λ2

i − uλi − j = 0 for i = 1, 2, we get

α(vi) = (λi, j + uλi)
T = (1, λi)

Tλi = viλi.

So P and Q are both α-invariant, and α acts as an isomorphism on P and α|Q ∈
J(end(Q)). Hence α =

(

0 1
j u

)

∈ T is quasipolar by Corollary 3.6. Note that
(

0 j
1 u

)

= ( 0 1
1 u )

−1 ( 0 1
j u

)

( 0 1
1 u ). In view of Lemma 2.1(1),

(

0 j
1 u

)

is quasipolar. �

4. Special cases

Commutative local rings are well-known examples of bleached and co-bleach-
ed local rings. In this section, over a commutative local ring, we investigate the
quasipolarity and strong cleanness of a 2 × 2 matrix ring. For a commutative
ring R, the notations detA and trA denote the determinant and the trace of a
square matrix A over R, respectively.

Lemma 4.1. Let R be a commutative local ring and A ∈ M2(R). Then the

following are equivalent:
(1) A ∈ (M2(R))qnil.
(2) detA ∈ J(R) and trA ∈ J(R).
(3) A2 ∈ J(M2(R)).

Proof. (1) ⇒ (2). Since R is local, by Lemma 2.4 detA ∈ J(R). Suppose

that trA ∈ U(R). Let Y =
(

−(trA)−1 0

0 −(trA)−1

)

. Then Y ∈ comm(A). But

det(I2 + AY ) = (trA)−2detA ∈ J(R) implies that I2 + AY /∈ U(M2(R)), this
causes a contradiction since A ∈ (M2(R))qnil. Thus trA ∈ J(R).

(2) ⇒ (3). As both trA and detA belong to J(R), by Caylay-Hamilton
Theorem, we have A2 = trA · A− detA · I2 ∈ J(M2(R)).

(3) ⇒ (1). It is not difficult to check that any element of a ring nilpotent
modulo its Jacobson radical, is quasinilpotent. So the result follows. �

Based on Lemma 2.2(2) and Lemma 4.1, we have the following result.

Corollary 4.2 ([6, Theorem 2.6]). Let R be a commutative local ring and let

A ∈ M2(R) with detA ∈ J(R). Then trA ∈ J(R) if and only if A is quasipolar

and Aπ = I2.

Theorem 4.3. Let R be a commutative local ring. The following are equivalent:
(1) M2(R) is quasipolar.

(2) For any j ∈ J(R) and u ∈ U(R), the equation x2−ux+ j = 0 is solvable

in R.

(3) For any j ∈ J(R), the equation x2 − x+ j = 0 is solvable in R.

(4) For any A ∈ M2(R) with detA ∈ J(R) and A2 /∈ J(M2(R)), the equation

x2 − (trA)x + detA = 0 is solvable.



820 J. CUI AND X. YIN

Proof. Note that for any u ∈ U(R) and j ∈ J(R),
(

0 j
1 u

)

/∈ (M2(R))qnil by
Lemma 4.1. Then (1) ⇔ (2) by Theorem 3.7, and (2) ⇒ (3) is obvious.

(3) ⇒ (2). For any j ∈ J(R) and u ∈ U(R), consider the equation z2 − z +
j
u2 = 0. Note that j

u2 ∈ J(R). Assume that z0 ∈ R is a solution of the above

equation. It is easy to see that uz0 is a root of the equation x2 − ux+ j = 0.
(1) ⇔ (4). Let A ∈ M2(R) with detA ∈ J(R). By Lemma 4.1, A /∈

(M2(R))qnil if and only if trA ∈ U(R) if and only if A2 /∈ J(M2(R)). So
the result follows from [6, Proposition 2.8] and Theorem 3.7. �

According to [13, Theorem 2.8], over a commutative local ring R, M2(R)
is strongly clean if and only if for any j ∈ J(R) and u ∈ U(R), the equation
x2 − ux+ j = 0 is solvable in R. So we get the following result immediately.

Corollary 4.4. Let R be a commutative local ring. Then M2(R) is strongly

clean if and only if M2(R) is quasipolar.

For a commutative local ring R, there exists a strongly clean matrix A ∈
M2(R) which is not quasipolar (see [6, Example 3.2]). Now combining the
above results with results in [6, 13], we observe the following facts.

Remark 4.5. Let R be a commutative local ring and A ∈ M2(R). The following
hold:

(I) If detA ∈ U(R), then A is strongly clean and quasipolar.
(II) detA ∈ J(R).
(1) det(A − I2) ∈ U(R) :
(i) If trA ∈ J(R), then A is strongly clean and quasipolar.
(ii) If trA ∈ U(R), then A is strongly clean, and A is quasipolar if and only

if the equation x2 − (trA)x + detA = 0 is solvable in R.
(2) det(A−I2) ∈ J(R), then A is strongly clean if and only if A is quasipolar

if and only if the equation x2 − (trA)x+ detA = 0 is solvable in R.

Proposition 4.6. (1) A direct product
∏

i Ri is quasipolar if and only if each

ring Ri is quasipolar.

(2) If R is local ring and C2 is the group of order 2, then RC2 is quasipolar.

Proof. (1) This is obvious.
(2) If 2 ∈ J(R), then RC2 is local by [14, Theorem] since C2 is a 2-group.

If 2 ∈ U(R), then RC2
∼= R ⊕R by [9, Proposition 3]. Since R is a quasipolar

ring, so is R⊕R by (1). Hence RC2 is quasipolar for all cases. �

Proposition 4.7. Let R be a commutative local ring. The following are

equivalent:
(1) M2(R) is quasipolar.

(2) M2(R[[x]]) is quasipolar.

(3) For any n ≥ 1, M2(R[x]/(xn)) is quasipolar.

(4) M2(RC2) is quasipolar.
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Proof. Note that R, R[[x]] and R[x]/(xn) are all commutative local rings. Ac-
cording to [3, Theorem 9], if one of M2(R), M2(R[[x]] and M2(R[x]/(xn)) is
strongly clean, then they all do. By Corollary 4.4, (1) ⇔ (2) ⇔ (3).

Next we show that (1) ⇔ (4). If 2 ∈ J(R), then by [3, Theorem 12], M2(R)
is strongly clean if and only if so is M2(RC2). Due to Corollary 4.4, the result
holds for this case. If 2 ∈ U(R), then RC2

∼= R ⊕ R. Thus, M2(RC2) ∼=
M2(R)⊕M2(R). By Proposition 4.6(1), we are done. �
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