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f-CLEAN RINGS AND RINGS HAVING
MANY FULL ELEMENTS

Bingjun Li and Lianggui Feng

Abstract. An associative ring R with identity is called a clean ring if
every element of R is the sum of a unit and an idempotent. In this paper,
we introduce the concept of f -clean rings. We study various properties of
f -clean rings. Let C =

`
A V
W B

´
be a Morita Context ring. We determine

conditions under which the ring C is f -clean. Moreover, we introduce the
concept of rings having many full elements. We investigate characteriza-
tions of this kind of rings and show that rings having many full elements
are closed under matrix rings and Morita Context rings.

1. Introduction

Clean rings were introduced by Nicholson [14]. An element r in a ring R is
said to be clean if it can be written as the sum of a unit and an idempotent in
R. A ring R is called a clean ring if every element of R is clean. Such rings
constitute a subclass of exchange rings in the theory of noncommutative rings.
Following Nicholson [14], R is an exchange ring if and only if for any element a
in R there exists an idempotent e in R such that e ∈ Ra and 1− e ∈ R(1− a).
Semiperfect rings and unit-regular rings are examples of clean rings as shown
by Camillo and Yu [5] and Camillo and Khurana [4]. In recent years, many
authors have studied clean rings and their generalizations such as [1, 13, 16, 17].

In this paper, we extend clean rings and introduce the concept of f -clean
rings. Examples of f -clean rings are given. We study various properties of
f -clean rings. We prove that Mn(R) is f -clean for any f -clean ring R and
get a condition under which the definitions of cleanness and f -cleanness are
equivalent.

A Morita Context (A,B, V,W,ψ, φ) consists two rings A,B, two bimodules
AVB , BWA and a pair of bimodule homomorphisms ψ : V ⊗B W → A, φ :
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W ⊗A V → B, such that ψ(v ⊗ ω)v′ = vφ(ω ⊗ v′), φ(ω ⊗ v)ω′ = ωψ(v ⊗ ω′).
We can form

C =
{(

a v
ω b

)
| a ∈ A, b ∈ B, v ∈ V, ω ∈W

}

and define a multiplication on C as follows:
(
a v
ω b

)(
a′ v′

ω′ b′

)
=

(
aa′ + ψ(v ⊗ ω′) av′ + vb′

ωa′ + bω′ φ(ω ⊗ v′) + bb′

)
.

A routine check shows that, with this multiplication (and entry-wise ad-
dition), C becomes an associative ring. We call C a Morita Context ring.
Obviously, the class of the rings of Morita Contexts includes all 2 × 2 matrix
rings and all formal triangular matrix rings. In recent years, many authors
studied Morita Contexts from different points of view [6, 12]. We obtain the
relationship of f -cleanness between Morita Context ring C and A,B.

Definition 1.1. An element x ∈ R is said to be a full element if there exist
s, t ∈ R such that sxt=1. The set of all full elements of a ring R will be denoted
by K(R). Obviously, invertible elements and one-sided invertible elements are
all in K(R).

Definition 1.2. An element in R is said to be f -clean if it can be written as
the sum of an idempotent and a full element. A ring R is called a f -clean ring
if each element in R is a f -clean element.

Example 1.3. The notion of purely infinite simple rings was introduced by
Ara, Goodearl, and Pardo [3]. A simple unital ring R is purely infinite in
case that it is not a division ring and for each nonzero element x in R, there
exist elements z, t in R such that zxt = 1. The class of purely infinite simple
rings is quite large, one can find various examples in [3, Example 1.3]. Ara [2,
Theorem 1.1] proved that every purely infinite simple ring is an exchange ring.
We do not know whether every purely infinite simple ring is an clean ring. But
for any x in a purely infinite simple ring, we have x = 0 or x ∈ K(R). Hence,
every purely infinite simple ring is a f -clean ring.

A ring R is said to have stable range one provided that for any a, b ∈ R,
aR + bR = R implies that there exists some y ∈ R such that a + by ∈ U(R),
where U(R) denotes the set of all units in R. We say that R satisfies unit 1-
stable range provided that aR+bR = R implies that there exists some u ∈ U(R)
such that a + bu ∈ U(R). Many authors have studied this class of rings such
as [9, 11]. In Section 3, we generalize the concept of rings having unit 1-stable
range to rings having many full elements: A ring R is said to have many full
elements provided that aR+ bR = R implies that there exists some ω ∈ K(R)
such that a+ bω ∈ U(R). We investigate various characterizations of this kind
of rings. We show that A,B have many full elements, so have Mn(A) for any
n ≥ 1 and the Morita Context ring C as defined above.
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Throughout this paper all rings are assumed to be associative with identity
and modules are unitary. J(R) always stands for the Jacobson radical of a ring
R. Mn(R) denotes the n × n matrix ring over the ring R. Tn(R) stands for
n× n upper triangular matrix ring. The notation Rn×1 always stands for the
set 







x1

...
xn




∣∣ x1, . . . , xn ∈ R




,

which is an (Mn(R), R)-bimodule. The notation R1×n stands for the set
{(x1, . . . , xn)|x1, . . . , xn ∈ R}, which is an (R,Mn(R))-bimodule. The trans-
pose of a matrix A will be denoted by AT . GLn(R) denotes the general linear
group of Rn. Let Bij(x) = I2 + xeij(i 6= j, 1 ≤ i, j ≤ 2), [α, β] = αe11 + βe22,
where eij are matrix units and α, β ∈ U(R). π : R → R/J(R) will denote
the natural quotient ring homomorphism from R to R/J(R), and we will write
π(r) = r and R = R/J(R).

2. f-clean rings

Firstly, we get some basic properties of f -clean rings.

Proposition 2.1. (1) Any homomorphic image of a f -clean ring is f -clean.
(2) A direct product R =

∏
Ri of rings {Ri} is f -clean if and only if the

same is true for each Ri.

Proof. (1) is straightforward.
(2) Suppose that each Ri is a f -clean ring. For any x = (xi) ∈ R and each

i, we write xi = ei + wi with e2i = ei and siwiti = 1 for some si, ti ∈ R. Then
x = e + w, where e = (ei) is an idempotent in

∏
Ri and w = (wi) ∈

∏
Ri

with (si)(wi)(ti) = (1) ∈ ∏
Ri. Hence x is f -clean, as required. The converse

follows from (1). ¤

It was proved by Camillo and Yu [5] that the ring R is a clean ring if and
only if R is clean and idempotents can be lifted modulo J(R). We do not know
whether idempotents in f -clean ring can be lifted modulo J(R). But we have
the following:

Proposition 2.2. Let R be a ring. If idempotents can be lifted modulo J(R),
then R is a f -clean ring if and only if R is a f -clean ring.

Proof. One direction is trivial and does not depend on the hypotheses by Propo-
sition 2.1(1).

Conversely, suppose that R is a f -clean ring. Let x ∈ R, then x̄ = ē + w̄
with e2 − e ∈ J(R) and s̄w̄t̄ = 1̄ for some s, t ∈ R. Since idempotents can be
lifted modulo J(R), we may assume e is an idempotent and write x = e+w+r
for some r ∈ J(R). Again, we have swt = 1 + h ∈ 1 + J(R) ⊆ U(R) for
some h ∈ J(R). Therefore, there exist s1, t1 ∈ R such that s1wt1 = 1. Hence
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s1(w + r)t1 = 1 + s1rt1 ∈ 1 + J(R) ⊆ U(R). We have s1(w + r)t1u−1 = 1
for some u ∈ U(R), hence w + r is a full element. Therefore, x is f -clean, as
asserted. ¤

Anderson and Camillo [1] showed that every polynomial ring over a nonzero
commutative ring is not clean. Full elements and invertible elements are the
same when the ring R is commutative, so the concepts of clean ring and f -clean
ring are equivalent for commutative rings. Hence every polynomial ring over a
nonzero commutative ring is also not f -clean. But the following holds:

Proposition 2.3. Let R be a f -clean ring. If idempotents can be lifted modulo
J(R), then R[x]/〈xn+1〉 is a f -clean ring for any n ≥ 1.

Proof. Assume that R is a f -clean ring. Denote x̄ = x+ 〈xn+1〉 in R[x]/〈xn+1〉
by u, then R[x]/〈xn+1〉 = R[u] = R + Ru + · · · + Run with un+1 = 0. It is
not difficult to prove that J(R[u]) = J(R)+ 〈u〉, where 〈u〉 denotes the ideal of
R[u] generated by u. Hence R[u]/J(R[u]) ' R is f -clean by Proposition 2.1.

Now we claim that idempotents can be lifted modulo J(R[u]). Let f +
J(R[u]) be an idempotent in R[u]/J(R[u]), then f = a0 + a1u + · · · + anu

n

for some a0, a1, . . . , an ∈ R. Note that J(R[u]) = J(R) + 〈u〉, thus (a0 +
J(R[u]))2 = a2

0 + J(R[u]) = a0 + J(R[u]). Hence a2
0 − a0 ∈ J(R). Since

idempotents can be lifted modulo J(R), there exists e = e2 ∈ R ⊆ R[u] such
that e − a0 ∈ J(R) ⊆ J(R[u]). Thus f can be lifted to e. The result follows
from Proposition 2.1.

Conversely, assume that R[u] is f -clean. R[u]/J(R[u]) ' R shows that
R/J(R) is f -clean. Note that idempotents can be lifted modulo J(R) by as-
sumption, hence we get that R is f -clean by Proposition 2.2. ¤

Recall that for a ring R with a ring endomorphism α : R → R, the skew
power series ring R[[x;α]] of R is the ring obtained by giving the formal power
series ring over R with the new multiplication xr = α(r)x for all r ∈ R. In
particular, R[[x]] = R[[x, 1R]].

Proposition 2.4. Let α be an endomorphism of R. Then the following state-
ments are equivalent.

(1) R is a f-clean ring.
(2) The formal power series ring R[[x]] of R is a f-clean ring.
(3) The skew power series ring R[[x;α]] of R is a f -clean ring.

Proof. Being an image of R[[x]] and R[[x;α]], R is f -clean when R[[x]] or
R[[x;α]] is f -clean.

(1) ⇒ (3) For any h = a0 + a1x + · · · ∈ R[[x, α]], write a0 = e0 + u0 for
some e0 = e20, u0 ∈ K(R). Assume that s0u0t0 = 1 for some s0, t0 ∈ R and
let h′ = h − e0 = u0 + a1x + · · · . The equation u = (s0 + 0 + · · · )h′(t0 + 0 +
. . .) = 1 + s0a1α(t0)x + · · · shows that u ∈ U(R[[x, α]]), since U(R[[x;α]]) =
{a0 + a1x+ · · · : a0 ∈ U(R)} without any assumption on the endomorphism α.
Hence h′ ∈ K(R[[x, α]]) and h = e0 + h′ with e20 = e0 ∈ R[[x, α]].
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(1) ⇒ (2) Since R[[x]] = R[[x, 1R]], the proof is similar to that of (1) ⇒ (3),
as desired. ¤

Camillo and Khurana [4] showed that any unit-regular ring is clean. Han
and Nicholson [13] proved that every (finite) matrix over a clean ring is clean.

Theorem 2.5. If R is a f-clean ring, then Mn(R) is also a f -clean ring for
any n ≥ 1.

Proof. Suppose that R is f -clean. Given any x ∈ R, we have some idempotent
e and w ∈ K(R) such that x = e+ w. We write swt = 1 for some s, t ∈ R.

Assume that theorem holds for the matrix ring Mk(R), k ≥ 1.
Let

A =
(
a11 a12

a21 a22

)
∈Mk+1(R)

with a11 ∈ R, a12 ∈ R1×k, a21 ∈ Rk×1 and a22 ∈Mk(R).
We have a11 = e+w with e = e2 and swt = 1 for some s, t ∈ R. There also

exist an idempotent matrix E and a full matrix W such that a22 − a21tsa12 =
E +W by hypothesis. We write SWT = Ik for some S, T ∈Mk×k(R).

Therefore, we have

A = diag(e,E) +
(

w a12

a21 W + a21tsa12

)
.

Obviously, diag(e,E) is an idempotent matrix in Mk+1(R).
Let

P =
(

s 0
−Sa21ts S

)
, Q =

(
t −tsa12T
0 T

)
∈Mk+1(R),

and the equation

P

(
w a12

a21 W + a21tsa12

)
Q =

(
1 0
0 In

)
= Ik+1

shows that
( w a12

a21 W+a21tsa12

)
is a full matrix, hence A is f -clean, as desired. ¤

Proposition 2.6. If a ∈ R is a f -clean element, then A = ( a b
0 0 ) is always

f -clean in M2(R) for any b ∈ R.

Proof. If a = e+ w where e = e2 and swt = 1 for some s, t ∈ R. Then we can
write A as

A =
(
e 0
0 1

)
+

(
w b
0 −1

)
.

We also have
(

s 0
0 −1

) (
w b
0 −1

) (
t −tsb
0 1

)
= ( 1 0

0 1 ), hence
(

w b
0 −1

)
is a full element.

Therefore, A is a f -clean element. ¤

Let C be the Morita Context ring as defined in Section 1. We are going
to investigate the f -cleanness between Morita Context ring C and A,B. Our
concern here is the Morita Context rings with zero homomorphisms.
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Theorem 2.7. Let C = ( A V
W B ) be the Morita Context with ψ,ϕ = 0. Then C

is f -clean if and only if A and B are f -clean.

Proof. Assume that C is f -clean with ψ,ϕ = 0, let I = ( 0 V
W B ) , J = ( A V

W 0 ) .
One can check that I, J are ideals of C and C/I ' A, C/J ' B. The f -cleanness
of A,B follows from Proposition 2.1.

Conversely, let A,B both f -clean rings. For any r = ( a v
ω b ) ∈ C, we have

a = e1 + u1 and b = e2 + u2 for some idempotents e1, e2 ∈ R and u1, u2 ∈
K(R). Assume that s1u1t1 = 1, s2u2t2 = 1 for some s1, t1, s2, t2 ∈ R. Let
r =

(
e1 0
0 e2

)
+ ( u1 v

ω u2 ) = E + U . Obviously, E = E2 and the equation
(

s1 0
−s2ωt1s1 s2

)(
u1 v
ω u2

)(
t1 −t1s1vt2
0 t2

)
=

(
1 0
0 1

)

implies that U is a full matrix. Hence r is f -clean, as required. ¤
Proposition 2.8. (1) Let R,S be two rings, and M be an (R,S)-bimodule.
Let E = ( R M

0 S ) be the formal triangular matrix ring. Then E is f-clean ring
if and only if R and S are f -clean rings.

(2) For any n ≥ 1, R is f -clean if and only if the n × n upper triangular
matrix ring Tn(R) are f-clean.

Proof. Formal triangular matrix rings are special cases of the Morita Context
rings with zero morphisms, thus (1) follows by Theorem 2.7.

Let E,A ∈ Tn(R). It is straightforward to calculate that E2 = E then
E2

ii = Eii, and A ∈ K(Tn(R)) if and only if Aii ∈ K(R), where Eii, Aii are
matrix units, 1 ≤ i ≤ n. Hence (2) is also straightforward. ¤

Next we will investigate the equivalence of f -cleanness and cleanness. Yu
[18] call a ring R to be a left quasi-duo ring if every maximal left ideal of R is a
two-sided ideal. Commutative rings, local rings, rings in which every nonunit
has a power that is central are all belong to this class of rings [18]. A ring R is
said to be Dedekind finite if xy = 1 always implies yx = 1 for any x, y ∈ R. A
ring R is called abelian if all idempotents are central.

Theorem 2.9. For a left quasi-duo ring R, the following are equivalent:
(1) R is a clean ring;
(2) R is a f-clean ring.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (1) It suffices to show that ω ∈ K(R) implies that ω ∈ U(R). Let

sωt = 1 for some s, t ∈ R, so s is right invertible. Assume that s is not left
invertible. Then Rs 6= R, and there exists a maximal left ideal M of R such
that Rs ⊆M 6= R. Therefore, M is an ideal by assumption. Note that s ∈M ,
thus we get that sR ⊆ M , contradicting the fact that s is right invertible.
Hence we get ωts = 1, which shows that ω is a right invertible element. In a
similar way, we get that ω ∈ U(R), and the result follows. ¤
Corollary 2.10. Every abelian f -clean ring is a clean ring.
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Proof. It suffices to prove that every abelian ring is Dedekind finite by the proof
Theorem 2.9. Suppose ab = 1, then ba is an idempotent and hence central by
assumption. ba = ba · ab = ab · ab = 1 shows that R is Dedekind finite. Then
the result follows from the proof of Theorem 2.9. ¤

Let R be a ring in which 2 is invertible, Camillo and Yu [5] showed that R
is clean if and only if every element of R is the sum of a unit and a square root
of 1. We get an analogous result for f -clean rings. If G is a group, we denote
the group ring over R by RG. It seems to be difficult to characterize R and G
for which RG is f -clean in general. We here also focus on R with 2 ∈ U(R).

Proposition 2.11. Let R be a ring in which 2 is invertible and G = {1, g} be
a group.

(1) R is f -clean if and only if every element of R is the sum of a full element
and a square root of 1.

(2) RG is f -clean if and only if R is f -clean.

Proof. (1) Suppose R is f -clean and x ∈ R. Then (x + 1)/2 = e+ u for some
e2 = e and u ∈ K(R). So x = (2e− 1)+2u with (2e− 1)2 = 1 and 2u ∈ K(R).

Conversely, if every element of R is the sum of a full element and a square
root of 1. Then given x ∈ R, we have 2x− 1 = t+ w with t2 = 1 and w a full
element in R. So x = (t+ 1)/2 + w/2 with ((t+ 1)/2)2 = (t+ 1)/2 and w/2 a
full element in R, as asserted.

(2) As an image of RG, R is f -clean when RG is f -clean. Conversely, Since
2 ∈ U(R), we have RG ' R × R via the map θ : a + bg 7→ (a + b, a − b) [13,
Proposition 3]. Hence RG is f -clean by Proposition 2.1. ¤

For an idempotent e, we do not know whether the corner ring eRe is again
f -clean for a f -clean ring R. But when e is a central idempotent, we can get
an affirmative answer:

Proposition 2.12. Let R be a f -clean ring and e be a central idempotent in
R. Then eRe is also f-clean.

Proof. We can view eRe as a homomorphic image of R since e is central, hence
the result follows from Proposition 2.1. ¤

Let R be a ring and RVR be an R-R-bimodule which is a ring possibly
without a unity in which (vω)r = v(ωr), (vr)ω = v(rω) and (rv)ω = r(vω)
hold for all v, ω ∈ V and r ∈ R. The ideal extension of R by V is defined to be
the additive abelian group I(R, V ) = R ⊕ V with multiplication (r, v)(s, ω) =
(rs, rω + vs+ vω).

Proposition 2.13. An ideal-extension E = I(R, V ) of R by V is f -clean if R
is f -clean and for any v ∈ R, there exists ω ∈ R such that v + ω + ωv = 0.

Proof. Let s = (r, v) ∈ E. Then r = e + u for some e = e2, u ∈ K(R).
s = (e, 0)+(u, v). Obviously, (e, 0) is an idempotent in E, and we will show that
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(u, v) ∈ K(E). Assume that sut = 1. For svt ∈ V , there exists ω ∈ V such that
svt+ω+ωsvt = 0 by assumption, and one can check that (s, ωs)(u, v)(t, 0) = 1.
Hence (u, v) ∈ K(E) and E is a f -clean ring. ¤

3. Rings having many full elements

Recall that a ring R is said to have stable range one provided that aR+bR =
R implies that there exists some y ∈ R such that a + by ∈ U(R). The most
vital property of rings having stable range one is that stable range one in
endomorphism rings implies cancellation in direct sums: A,B,C are R-modules
such that A⊕B = A⊕ C, and EndR(A) has stable range one, then B ' C.

Goodearl and Mental [11] defined the concept of unit 1-stable range: When-
ever a, b ∈ R satisfy aR + bR = R, there exists a unit u ∈ R such that a + bu
is a unit. By replacing u ∈ U(R) with unit-regular element, Chen [10] defined
the concept of rings with many unit-regular elements, and investigated various
properties of this class of rings.

Given an idempotent e in R, we say that x ∈ R is e-f -clean if x can be
written in the form e+ω for some ω ∈ K(R). Although this idempotent is not
uniquely determined by x, it can help us to classify f -clean elements. Obviously,
elements in K(R) are exactly 0-f -clean elements. In this section, we introduce
a new class of rings: rings having many full elements.

Firstly, we give some elementary properties of full elements, which will be
used repeatedly later.

Lemma 3.1. The following hold for any ring R.
(1) If ω ∈ K(R), then uω and ωu are both in K(R) for any u ∈ U(R).
(2) ω ∈ K(R) if and only if ω ∈ K(R).

Proof. (1) Given ω ∈ K(R) and u ∈ U(R), there exist s, t ∈ R such that
sωt = 1. Then su−1uωt = 1 and sωuu−1t = 1, which imply that uω and ωu
are both in K(R).

(2) Given ω ∈ K(R), there exist s, t ∈ R such that sωt = 1. Thus sωt = 1 ∈
R. Conversely, Given ω ∈ K(R), there exist s, t ∈ R such that sωt = 1. Hence
sωt = 1 + r ∈ U(R) for some r ∈ J(R). Thus sωt(1 + r)−1 = 1, showing that
ω ∈ K(R) ¤

Proposition 3.2. The following statements are equivalent for any ring R :
(1) Whenever a, b ∈ R satisfy aR + bR = R, there exists ω ∈ K(R) such

that a+ bω ∈ U(R).
(2) Whenever a, b ∈ R satisfy aR + bR = R, there exists ω ∈ K(R) such

that a+ bω is left invertible.
(3) Whenever a, b ∈ R satisfy aR + aR = R, there exists ω ∈ K(R) such

that a+ ωb is right invertible.
If R satisfies any of these conditions, we say that R has many full elements.

Proof. (1) ⇒ (2) and (1) ⇒ (3) are trivial.
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(3) ⇒ (1) Given aR + bR = R, then a+ bω = u is right invertible for some
ω ∈ K(R) by assumption. Say uv = 1 for some v ∈ R.

Since vR+(1−vu)R = R, there is ω1 ∈ K(R) such that v+(1−vu)ω1 = ω2

is right invertible.
It is easy to see that uω2 = u(v + (1− vu)ω1) = 1, which implies that ω2 is

a unit in R. Thus u = a+ bω is a unit.
(2) ⇒ (1) Given aR + bR = R, then a + bω = u is left invertible for some

ω ∈ K(R) by assumption. Say vu = 1 for some v ∈ R.
vR + 0R = R implies that we can find ω1 ∈ K(R) such that v + 0ω1 = v is

left invertible. Hence a+ bω ∈ U(R), as asserted. ¤

In view of the proof of Theorem 2.9, if R is a quasi-duo ring, then R has
many full elements if and only if R satisfies unit 1-stable range.

The following two propositions are analogous to [17, Lemma 4.4, Theo-
rem 4.5]. The proofs are also similar, so we omit them here.

Proposition 3.3. Let R be a ring. Then the following are equivalent:
(1) R has many full elements.
(2) Whenever a, b ∈ R satisfy ax + b = 1, there exists ω ∈ K(R) such that

a+ bω ∈ U(R).
(3) Whenever a, b ∈ R satisfy ax + b = 1, there exists y ∈ R such that

a+ by ∈ U(R) and 1− xy ∈ K(R).

Proposition 3.4. Let R be a ring. Then the following statements are equi-
valent:

(1) Whenever a, b ∈ R satisfy ax + b = 1, there exists ω ∈ K(R) such that
a+ bω ∈ U(R).

(2) Whenever a, b ∈ R satisfy ax + b = 1, there exists ω ∈ K(R) such that
x+ ωb ∈ U(R).

Recall that the opposite ring Rop consists of formal elements {aop : a ∈ R}
with addition and multiplication given by

aop + bop = (a+ b)op, aop · bop = (ba)op.

From Proposition 3.4, we see that R has many full elements if and only if
Rop has many full elements. Hence the definition of a ring having many full
elements is left-right symmetric.

Proposition 3.5. Let R be a ring. Then R has many full elements if and only
if so does R.

Proof. Assume that ax + b = 1. Then ax + b = 1 + r ∈ U(R) for some
r ∈ J(R), which implies that ax(1 + r)−1 + b(1 + r)−1 = 1. By the virtue of
Proposition 3.3, there exists ω ∈ K(R) such that a+b(1+r)−1ω ∈ U(R). Thus
a+ b(1 + r)−1ω ∈ U(R) with (1 + r)−1ω ∈ K(R) by Lemma 3.1. Hence R has
many full elements by Proposition 3.3.
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Conversely, Given ax + b = 1 in R. There exists ω ∈ R/J(R) such that
a+ bω = u ∈ R/J(R). Thus a+ bω = u+ r ∈ U(R) for some r ∈ J(R), where
ω is in K(R) by Lemma 3.1, as required. ¤

Example 3.6. Let R be a local ring with 2∈J(R). Then R has many full
elements.

Proof. R = R/J(R) is a division ring since R is local. By the last proposition,
it suffices to show that R has many full elements. Given that ax+ b = 1 in R.
If x 6= 0, we have a + bx−1 = x−1 ∈ U(R), as desired. If x = 0, then b = 1. If
a 6= 1, then a + b(1 − a) = 1 ∈ U(R) with (1 − a) ∈ U(R) ⊆ K(R); If a = 1,
then a+b ·1 ∈ U(R) ⊆ K(R) by assumption. Hence we complete the proof. ¤

Theorem 3.7. The following are equivalent for any ring R :
(1) R has many full elements.
(2) Whenever aR + bR = dR with a, b, d ∈ R, there exist u ∈ U(R) and

ω ∈ K(R) such that au+ bω = d.
(3) Whenever a1R + · · · + amR = dR with m ≥ 2, a1, . . . , am, d ∈ R, there

exist u ∈ U(R) and ω2, . . . , ωm ∈ K(R) such that a1u1+a2ω2+· · ·+amωm = d.

Proof. Both (2) ⇒ (1) and (3) ⇒ (2) are obvious.
(1) ⇒ (2) Since R has many full elements, then R has stable range one by

definition. Given aR + bR = dR with a, b, d ∈ R, the sets {a, b} and {d, 0}
generate the same R-submodule of R2. Therefore there exists U = (uij) ∈
GL2(R) such that (a, b) = (d, 0)U by Chen [9, Lemma 2.1].

Obviously, u11R + u12R = R. There exists some ω ∈ K(R) such that
u11+u12ω = u ∈ U(R), which implies that a+bω = dv, hence av−1+bωv−1 = d
with v−1 ∈ U(R) and ωv−1 ∈ K(R) by Lemma 3.1, as desired.

(2) ⇒ (3) Given a1R+· · ·+amR = dR withm ≥ 2, a1, . . . , am, d ∈ R. Ifm =
2, the result follows from (2). Assume that the result holds for m ≤ k(k ≥ 2).
Let m = k+1, there exist x1, . . . , xk+1 ∈ R such that a1x1+· · ·+ak+1xk+1 = d,
which implies that a1R + · · · + ak−1R + (akxk + ak+1xk+1)R = dR. Then
a1u1 +a2ω2 + · · ·+(akxk +ak+1xk+1)ωk = d for some u1 ∈ U(R), ω2, . . . , ωk ∈
K(R). This implies that (a1u1 + a2ω2)R + · · · + akR + ak+1R = dR. Thus
we have (a1u1 + a2ω2)v1 + · · · + akvk−1 + ak+1vk = a1u1v1 + a2ω2v1 + · · · +
akvk−1 + ak+1vk = d for some v1 ∈ U(R), v2, . . . , vk ∈ K(R). Note that
u1v1 ∈ U(R), ω2v1, v2, . . . , vk ∈ K(R), thus we complete the proof. ¤

Observe that R has many full elements if and only if so does the opposite
ring Rop of R, hence the following statement is immediate.

Corollary 3.8. Let R be a ring. Then the following are equivalent:
(1) R has many full elements.
(2) Whenever Ra1 + · · · + Ram = Rd with m ≥ 2, a1, . . . , am, d ∈ R, there

exist u1 ∈ U(R) and ω2, . . . , ωm ∈ K(R) such that u1a1+ω2a2+· · ·+ωmam = d.
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Next, we investigate the behavior of rings having many full elements under
change of rings. Chen [8, Theorem 2.2] showed that if R satisfies a unit 1-
stable range then so does the n × n matrix ring Mn(R) for any n ≥ 1. Let
T denote the Morita Context (A,B, V,W,ψ, φ) as defined in Section 1. Chen
[6, Theorem 4] also showed that if A and B have many full elements, so does
T . It is shown that the analogous results also hold for rings having many full
elements.

Theorem 3.9. If a ring R has many full elements, then so does Mn(R) for
any n ≥ 1.

Proof. Given BC +D = In in Mn(R), then

A =
(

B D
−In C

)
∈ GL2n(R) with inverse A−1 =

(
C CB − In
In B

)
.

Let A = (Aij)(1 ≤ i, j ≤ 2) with all Aij = (aij
st) ∈ Mn(R)(1 ≤ s, t ≤ n).

Then there exists ξ1 = (x1, . . . , xn, y1, . . . , yn)T ∈ R2n×1 such that Aξ1 =
(1, 0, . . . , 0)T , or equivalently,

a11
11x1 + · · ·+ a11

1nxn + a12
11y1 + · · ·+ a12

1nyn = 1,

· · · · · ·
a11

n1x1 + · · ·+ a11
nnxn + a12

n1y1 + · · ·+ a12
nnyn = 0,

a21
11x1 + · · ·+ a21

1nxn + a22
11y1 + · · ·+ a22

1nyn = 0,
· · · · · ·

a21
n1x1 + · · ·+ a21

nnxn + a22
n1y1 + · · ·+ a22

nnyn = 0.
By Proposition 3.4, we can find some z1 ∈ R such that a11

11 + a11
12x2z1 + · · · +

a11
1nxnz1 + a12

11y1z1 + · · ·+ a12
1nynz1 = u1 ∈ U(R) and 1− x1z1 = ω1 ∈ K(R).

Therefore we obtain that

A




1 0 . . . 0 0 · · · 0
x2z1 1 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
xnz1 0 · · · 1 0 · · · 0
y1z1 0 · · · 0 1 · · · 0

...
...

. . .
...

...
. . .

...
ynz1 0 · · · 0 0 · · · 1




=




u1 a11
12 · · · a11

1n a12
11 · · · a12

1n

a11
21ω1 a11

22 · · · a11
2n a12

21 · · · a12
2n

...
...

. . .
...

...
. . .

...
a11

n1ω1 a11
n2 · · · a11

nn a12
n1 · · · a12

nn

a21
11ω1 a21

12 · · · a21
1n a22

11 · · · a22
1n

...
...

. . .
...

...
. . .

...
a21

n1ω1 a21
n2 · · · a21

nn a22
n1 · · · a22

nn




.
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Moreover, we get

[∗, ∗]A[∗, ∗]B21(∗) =




u1 a11
12 · · · a11

1n a12
11 · · · a12

1n

0 b1122 · · · b112n b1221 · · · b122n
...

...
. . .

...
...

. . .
...

0 b11n2 · · · b11nn b12n1 · · · b12nn

a21
11ω1 a21

12 · · · a21
1n a22

11 · · · a22
1n

...
...

. . .
...

...
. . .

...
a21

n1ω1 a21
n2 · · · a21

nn a22
n1 · · · a22

nn




.

Similarly, we can find ξ2 = (x′1, . . . , x
′
n, y

′
1, . . . , y

′
n)T ∈ R2n×1 such that

[∗, ∗]A[∗, ∗]B21(∗)ξ2 = (0, 1, 0, . . . , 0)T ,

and we can find some z2 ∈ R such that

0× z2 + b1122 + b1123x
′
3z2 + · · ·+ b112nx

′
nz2 + b1212y

′
1z2 + · · ·+ b122ny

′
nz2 = u2 ∈ U(R),

and 1− x′2z2 = ω1 ∈ K(A). Thus we have

[∗, ∗]A[∗, ∗]B21(∗)[∗, ∗]B21(∗) =



u1 ∗ ∗ · · · ∗ a11
12 · · · a1n

12

0 u2 ∗ · · · ∗ b1221 · · · b122n

0 0 c1133 · · · c113n c1231 · · · c123n
...

...
...

. . .
...

...
. . .

...
0 0 c11n3 · · · c11nn c12n1 · · · c12nn

a21
11ω1 a21

12ω2 a21
13 · · · a21

1n a22
11 · · · a22

1n
...

...
...

. . .
...

...
. . .

...
a21

n1ω1 a21
n2ω2 a21

n3 · · · a21
nn a22

n1 · · · a22
nn




.

Likewise, there exist u3, . . . , un ∈ U(R), ω3, . . . , ωn ∈ K(R) such that

A[∗, ∗]B21(∗) =




u1 ∗ ∗ · · · ∗ a11
12 · · · a1n

12

0 u2 ∗ · · · ∗ b1221 · · · b122n

0 0 u3 · · · ∗ c1231 · · · c123n
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · un d12

n1 · · · d12
nn

a21
11ω1 a21

12ω2 a21
13ω3 · · · a21

1nωn a22
11 · · · a22

1n
...

...
...

. . .
...

...
. . .

...
a21

n1ω1 a21
n2ω2 a21

n3ω3 · · · a21
nnωn a22

n1 · · · a22
nn




=
(
A1 A2

A3 A4

)
,

where A′is(1 ≤ i ≤ 4) ∈Mn(R) are corresponding matrix blocks. Let

E = A22 + diag(ω1, . . . , ωn)A−1
1 ×A2.
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Since [∗, ∗]A[∗, ∗]B21(∗) ∈ GL2n(R), we get that E ∈ GLn(R) and

[∗, ∗]A[∗, ∗]B21(∗) = [∗, ∗]B21(W )B12(∗),
where W = −E−1diag(ω1, ω2, . . . , ωn) ∈ K(Mn(R)) by Lemma 3.1. Noting
that for any x ∈ Mn(R), [∗, ∗]B21(x) = B21(y)[∗, ∗] for some y ∈ Mn(R), we
claim that there exists a W ′ ∈ K(Mn(R)) such that

B21(W ′)
(

B D
−In C

)
= [∗, ∗]B12(∗)B21(∗).

Hence C +W ′D ∈ GLn(R). In view of Proposition 3.3, Mn(R) has many full
elements. ¤

Corollary 3.10. Every n× n matrix A over R which has many full elements
is the sum of an invertible matrix and a full matrix.

Proof. R has many full elements, so does Mn(R) by Theorem 3.9. Since
AMn(R) + InMn(R) = Mn(R), there exists some W ′ ∈ K(Mn(R)) such that
A+ InW = U ∈ GLn(R). Hence A = −W + U and the result follows. ¤

Let T denote the Morita Context (A,B, V,W,ψ, φ) as defined in Section 1.

Theorem 3.11. If the rings A and B have many full elements, so does T .

Proof. Assume that F =
(

b1 n1
m1 b2

)
, C = ( c1 n2

m2 c2 ) , and D =
(

d1 n
m d2

)
satisfy

FC +D = ( 1 0
0 1 ) in T . Hence

G=




F D

−
(

1 0
0 1

)
C


=




C CB −
(

1 0
0 1

)

(
1 0
0 1

)
F




−1

∈ GL2(T ).

Thus there are x1 ∈ A, x2 ∈M,y1 ∈ A, y2 ∈M such that

b1x1 + ψ(n1, x2) + d1y1 + ψ(n2, y2) = 1,
m1x1 + b2x2 +m2y1 + d2y2 = 0,

−x1 + ψ(0, x2) + c1y1 + ψ(n, y2) = 0,
0 · x1 − x2 +my1 + c2y2 = 0.

Since A has many full elements by assumption, we can find z1 ∈ A such that
b1 + ψ(n1, x2)z1 + d1y1z1 + ψ(n2, y2)z1 = u1 ∈ U(A) and 1− x1z1 ∈ K(A) by
Proposition 3.4. So we obtain that

G




(
1 0

x2z1 1

) (
0 0
0 0

)

(
y1z1 0
y2z1 0

) (
1 0
0 1

)


 =




(
u1 n1

m1ω1 b1

) (
d1 n2

m2 d2

)

( −ω1 0
0 1

) (
c1 n
m c2

)


 .
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Likewise, we can find m′
2 ∈M,d′2 ∈ B, u2 ∈ U(B) and ω2 ∈ K(B) such that

[∗, ∗]G[∗, ∗]B21(∗) =




(
u1 ∗
0 u2

) (
d1 n2

m′
2 d′2

)

( −ω1 0
0 −ω2

) (
c1 n
m c2

)


 ∈ GL2(T ).

Let

E =
(
c1 n
m c2

)
−

(
ω1 0
0 ω2

) (
u1 ∗
0 u2

)−1 (
d1 n2

m′
2 d′2

)
.

Since [∗, ∗]G[∗, ∗]B21(∗) ∈ GL2(T ), we have E ∈ U(T ). Then

[∗, ∗]G[∗, ∗]B21(∗) = [∗, ∗]B21(W )B12(∗)
with W = −E−1diag(ω1, ω2) ∈ K(T ).

Hence we have W ′ ∈ K(T ) such that

B21(W ′)
(

F D
−In C

)
= [∗, ∗]B12(∗)B21(∗).

Therefore, C +W ′D ∈ U(T ). In view of Proposition 3.3, we conclude that
T has many full elements. ¤
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