*I***-RINGS AND TRIANGULAR MATRIX RINGS**

Kang-Joo Min

ABSTRACT. All rings are assumed to be associative but do not necessarily have an identity. In this paper, we carry out a study of ring theoretic properties of formal triangular matrix rings. Some results are obtained on these rings concerning properties such as being I_0 ring, I-ring, exchange ring.

Throughout this paper all rings are assumed to be associative but do not necessarily have an identity. When a ring has an identity, modules are assumed to be unital. The Jacobson radical of a ring Rwill be denoted by J(R).

Let R and S be rings and $_{R}V_{S}$ a left R right S bimodule. The formal triangular matrix ring $U = \begin{bmatrix} R & V \\ 0 & S \end{bmatrix}$ has as its elements formal matrices $\begin{bmatrix} r & v \\ 0 & s \end{bmatrix}$ where $r \in R, s \in S$ and $v \in V$ with addition defined coordinatewise and multiplication given by $\begin{bmatrix} r & v \\ 0 & s \end{bmatrix} \begin{bmatrix} r' & v' \\ 0 & s' \end{bmatrix} = \begin{bmatrix} rr' & rv' + vs' \\ 0 & ss' \end{bmatrix}$.

LEMMA 1. [4] If R is a ring, the following conditions are equivalent:

- (1) Every left ideal $L \not\subseteq J(R)$ contains a nonzero idempotent.
- (2) Every right ideal $L \nsubseteq J(R)$ contains a nonzero idempotent.
- (3) If $a \notin J(R)$, then xax = x for some $x \neq 0$.

Received by the editors on Dec 3, 2001.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 16D25.

Key words and phrases: exchange ring, I-ring, Jacobian radical.

KANG-JOO MIN

Proof. Given (1), let $a \notin J(R)$. Let L be the left ideal of R generated by a. Every element of L has the form ra + na where $n \in \mathbb{Z}$ and $r \in R$. Let $e \in L$ be a nonzero idempotent in L. Hence e = ra for some $r \in R$. (3) follows with x = rar. Conversely let $L \nsubseteq J(R)$ be a left ideal. There exists $a \in L$ and $a \notin J(R)$. By (3), xax = x for some $x \neq 0$. $xaxa = xa \in L$ is a nonzero idempotent. The proof that (2) \Leftrightarrow (3) is analogous.

DEFINITION 2. [4] A ring R is called an $I_0 - ring$ if it satisfies the conditions of lemma 1. An I_0 -ring in which idempotents can be lifted modulo J(R) is called an I-ring.

The class of *I*-rings is quite large. It obviously contains all division rings, and, more generally, contains all local rings, where in this paper, a ring R will be called local if it has an identity and R/J(R) is a division ring.

PROPOSITION 3. [4] Let R be a ring in which idempotents can be lifted modulo J(R). Then R is an I-ring if and only if R/J(R) is an I-ring.

Let R be a ring and I be a right ideal in R. I is modular if there exists $e \in R$ such that

$$r - er \in I$$
 for all $r \in R$ [3].

It is well known that J(R) is the intersection of all modular maximal right ideals of R.

PROPOSITION 4. The set of modular maximal right ideals of U is given by $\left\{ \begin{bmatrix} I & _{R}V_{S} \\ 0 & K \end{bmatrix} \mid$ either I = R and K is a modular maximal

 $\mathbf{20}$

right ideal of S or I is a modular maximal right ideal of R and K = S

Proof. Let $\begin{bmatrix} I & _RV_S \\ 0 & K \end{bmatrix}$ be a modular maximal right ideal of U. Clearly I is a modular right ideal of R and K is a modular right ideal of S. If $K \neq S$, then choosing a modular maximal right ideal of K' of S with $K \subseteq K'$, we see that $\begin{bmatrix} R & V \\ 0 & K' \end{bmatrix}$ is a modular maximal right ideal of K' of S with $K \subseteq K'$, we see that $\begin{bmatrix} R & V \\ 0 & K' \end{bmatrix}$ is a modular maximal right ideal of U and $\begin{bmatrix} I & _RV_S \\ 0 & K \end{bmatrix} \leq \begin{bmatrix} R & V \\ 0 & K' \end{bmatrix}$. The maximality of $\begin{bmatrix} I & _RV_S \\ 0 & K \end{bmatrix}$ yields I = R and K = K'. If, on the other hand, K = S, then $\begin{bmatrix} I & V \\ 0 & S \end{bmatrix}$ is a modular maximal right ideal of V. Hence I is a modular maximal right ideal of R. Thus any modular maximal right ideal of U has to be either $\begin{bmatrix} R & V \\ 0 & K \end{bmatrix}$ with K a modular maximal right ideal of R. Conversely, right ideals of the above form are clearly modular maximal right ideals of U. □

COROLLARY 5.
$$J(U) = \begin{bmatrix} J(R) & V \\ 0 & J(S) \end{bmatrix}$$

Proof. This is an immediate consequence of Proposition 4. \Box

COROLLARY 6.

- (1) $\begin{bmatrix} r & v \\ 0 & s \end{bmatrix} + J(U) \longrightarrow (r+J(R), s+J(S))$ is a ring isomorphism of U/J(U) with $R/J(R) \times S/J(S)$.
- (2) Idempotents mod J(U) can be lifted in U if and only if idempotents mod J(R) can be lifted in R and idempotents mod J(S) can be lifted in S.

THEOREM 7. $U = \begin{bmatrix} R & V \\ 0 & S \end{bmatrix}$ is an I_0 -ring if and only if R and S are I_0 -rings.

Proof. Assume that U is an I_0 -ring. Let I be a right ideal of R not contained in J(R). $\bar{I} = \begin{bmatrix} I & IV \\ 0 & 0 \end{bmatrix}$ is a right ideal of U with $\bar{I} \nsubseteq J(U)$. Hence there exists an element $\begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix} \in \bar{I}$ with $\begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. $\begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix} \begin{bmatrix} e & v \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} e^2 & ev \\ 0 & 0 \end{bmatrix}$. Hence $e^2 = e$ and ev = v. We see that either $e \neq$ or $v \neq 0$. If e = 0, then ev = v = 0. We conclude that $e \neq 0$. Thus $e \in I$ and $e^2 = e$ in R. Thus I contains a nonzero idempotent. Let K be a right ideal of S such that $K \nsubseteq J(S)$. $\bar{K} = \begin{bmatrix} 0 & 0 \\ 0 & K \end{bmatrix}$ is a right ideal of V and $\bar{K} \nsubseteq J(U)$. There exists an element $0 \neq f \in K$ with

$$\begin{bmatrix} 0 & 0 \\ 0 & f \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & f \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & f \end{bmatrix}, \quad f = f^2$$

K contains a nonzero idempotent. Therefore R and S are I_0 -rings.

Conversely, assume that R and S are I_0 -rings. Let \overline{I} be a right ideal of U with $\overline{I} \nsubseteq J(U)$. Then there exists an element $\begin{bmatrix} a & v \\ 0 & b \end{bmatrix} \in \overline{I}$ with $\begin{bmatrix} a & v \\ 0 & b \end{bmatrix} \notin J(U)$. This means $a \notin J(R)$ or $b \notin J(S)$.

To show that \overline{I} contains a nonzero idempotent, it suffices to show that $\begin{bmatrix} a & v \\ 0 & b \end{bmatrix} U = \begin{bmatrix} a & v \\ 0 & b \end{bmatrix} \begin{bmatrix} R & V \\ 0 & S \end{bmatrix} = \begin{bmatrix} aR & aV + vS \\ 0 & bS \end{bmatrix}$ contains a nonzero idempotent.

If $b \notin J(S)$, then xbx = x for some $x \neq 0$ by Lemma 1. $(bx)^2 = bx \in bS$. Let bx = f. $f \in bS$ and $\begin{bmatrix} 0 & 0 \\ 0 & f \end{bmatrix}$ is a nonzero idempotent in uU where $u = \begin{bmatrix} a & v \\ 0 & b \end{bmatrix}$.

Suppose $a \notin J(R)$. Again by Lemma 1, there exists a nonzero idempotent $e \in R$ of the form e = ax for some $x \in R$. $xax = x \neq 0$ implies $(ax)^2 = e^2 = e$.

$$\begin{bmatrix} e & ev \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ax & axv \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & v \\ 0 & b \end{bmatrix} \begin{bmatrix} x & xv \\ 0 & 0 \end{bmatrix} \in uU$$

and
$$\begin{bmatrix} ax & axv \\ 0 & 0 \end{bmatrix} \begin{bmatrix} ax & axv \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} ax & axv \\ 0 & 0 \end{bmatrix}$$

This shows that V is an I_0 -ring.

COROLLARY 7. $U = \begin{bmatrix} R & V \\ 0 & S \end{bmatrix}$ is an *I*-ring if and only if *R* and *S* are *I*-rings.

Proof. $J(U) = \begin{bmatrix} J(R) & V \\ 0 & J(S) \end{bmatrix}$ by corollary 5. By corollary 6, idempotent mod J(U) can be lifted in U if and only if idempotent mod J(R) can be lifted in R and idempotent mod J(S) can be lifted in S.

By theorem 7, U is an I_0 -ring if and only if R and S are I_0 -rings.

An associative unital ring R is said to be an exchange ring if R_R has the exahange property introduced by Crawlery and Jó nsson[2][5].

If R is a ring without identity, we denote R' the unitalization of R; that is, $R' = R \oplus \mathbb{Z}$ with addition and multiplication defined by (x,n)+(y,m) = (x+y,n+m), and (x,n)(y,m) = (xy+ny+mx,nm) for all $x, y \in R$ and $n, m \in \mathbb{Z}$.

LEMMA 8. [1] Let R a ring without unity and let T be a unital ring containing R as a (two-sided) ideal. Then the following conditions are equivalent for an element $x \in R$;

(1) There exists $e^2 = e \in R$ with $e - x \in T(x - x^2)$.

 \Box

(2) There exists $e^2 = e \in Rx$ with $c \in T$ such that $(1-e)-c(1-x) \in J(R)$.

(3) There exists $e^2 = e \in Rx$ such that T = Re + T(1 - x).

(4) There exists $e^2 = e \in Rx$ such that $1 - e \in T(1 - x)$.

(5) There exists $r, s \in R$ and $e^2 = e \in R$ such that e = rx = s + x - sx.

Let I be a ring without unity and let R be a unital ring containing I as an ideal. Let M_S be a module over a unital ring S such that there exists an isomorphism $\phi : \operatorname{End}(M_S) \to R$. Let $X = M \oplus Y = N_1 \oplus N_2$ (*) be two decomposition of a right S-module X. Denote by π the idempotent in $\operatorname{End}(X)$ with image M and kernel Y, and identify $\operatorname{End}(M)$ with $\pi \operatorname{End}(X)\pi$. We say that (*) is I-admissible if $\pi\tau_2\pi \in \varphi^{-1}(I)$ where $\tau_i \in \operatorname{End}(X)$ is the projection onto N_i determined by the decomposition $X = N_1 \oplus N_2$.

THEOREM 9. [1] Let (I, R) and $\phi : End(M_S) \to R$ be as above. Then the following conditions are equivalent :

(a) For all $x \in I$, there exist $e = e^2 \in I$ and $r, s \in I$ such that e = rx = x + s - sx.

(b) For all *I*-admissible decompositions $X = M \oplus Y = N_1 \oplus N_2$, there exist $N'_i \subseteq N_i$ such that $X = M \oplus N'_1 \oplus N'_2$.

(c) For all $x \in I$, there exist $e = e^2 \in I$ and $r, s \in I$ such that e = xr = s + x - xs.

DEFINITION 10. A ring without unity I is called an exchange ring if it satisfies the equivalent conditions in Theorem 9.

Note that I being an exchange ring is a symmetric condition which does not depend on the particular unital ring where I is embedded as an ideal. EXAMPLE. [1] (1) If I is an ideal of a unital exchange ring, then I is an exchange ring. To see this, take an element $x \in I$. There exist $r, s \in R$ such that e = xr and 1 - e = (1 - x)(1 - s). Clearly $e \in I$ and therefore $s = e - x + xs \in I$. Consequently we can write e = x(re) = x + s - xs, with $re, s \in I$ and condition (c) of Theorem 9 is satisfied.

(2) The radical rings [3] are exactly the exchange rings without nonzero idempotents.

(3) A ring I is said to be π -regular if for all $x \in I$, there exist a positive integer n and $y \in I$ such that $x^n = x^n y x^n$. All the (non-unital) π -regular rings are exchange rings.

THEOREM 11. [1] Let I be an ideal of a (possibly nonunital) ring L. Then L is an exchange ring if and only if I and L/I are exchange rings and idempotents can be lifted modulo I.

THEOREM 12. $U = \begin{bmatrix} R & V \\ 0 & S \end{bmatrix}$ is an exchange ring if and only if R and S are exchange rings.

Proof. Assume that R and S are exchange rings.

$$J(U) = \begin{bmatrix} J(R) & V \\ 0 & J(S) \end{bmatrix}$$

is a radical ring. By example (2), J(U) is an exchange ring.

 $V/J(V) = \begin{bmatrix} R/J(R) & 0\\ 0 & S/J(S) \end{bmatrix}$ is an exchange ring.

Conversely assume that U is an exchange ring. U/J(U) is an exchange ring and $U/J(U) \cong R/J(R) \times S/J(S)$. Therefore R/J(R) and S/J(S) are exchange rings. By Theorem 11 and example (2), R and S are exchange rings.

KANG-JOO MIN

References

- [1] Pere Ara, Extensions of exchange rings, J. of algebra 197 (1997), 409-423.
- [2] P. Crawlery and B. Jónsson, Refinements for infinite direct decompositions of algebraic systems, Pacific J. math 14 (1964), 797-855.
- [3] N. Jacobson, Structure of rings, vol. 5, Amer. Math. Soc., providence, RI, 1964.
- [4] W. K. Nicholson, *I-rings*, Trans. Amer. Math. Soc. 207 (1975), 371-373.
- [5] _____, lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: kjmin@math.cnu.ac.kr