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STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS

AND MATRIX RINGS

Juan Huang, Tai Keun Kwak, Yang Lee, and Zhelin Piao

Abstract. An idempotent e of a ring R is called right (resp., left) semi-
central if er = ere (resp., re = ere) for any r ∈ R, and an idempotent e

of R\{0, 1} will be called right (resp., left) quasicentral provided that for

any r ∈ R, there exists an idempotent f = f(e, r) ∈ R\{0, 1} such that
er = erf (resp., re = fre). We show the whole shapes of idempotents

and right (left) semicentral idempotents of upper triangular matrix rings

and polynomial rings. We next prove that every nontrivial idempotent
of the n by n full matrix ring over a principal ideal domain is right and

left quasicentral and, applying this result, we can find many right (left)
quasicentral idempotents but not right (left) semicentral.

1. Introduction

The concept of idempotent arises in a number of places in abstract algebra
(for example, in ring theory, in the theory of projectors, and in the theory
of closure operators). In particular, in ring theory, many kinds of rings are
characterized by idempotents, for example, Boolean rings, semisimple Artinian
rings, von Neumann regular rings, Baer rings, Rickart rings and Abelian rings.
In the studies of such topics we encounter with many types of idempotents.

In this article, we show the whole shapes of idempotents and right (left)
semicentral idempotents of upper triangular matrix rings and polynomial rings
and then study the structure of rings with idempotents which satisfy a gen-
eralized condition of right semicentralness (namely, a right (left) quasicentral
idempotent), showing that every nonzero nonidentity idempotent of the n by n
full matrix ring over a principal ideal domain is both right and left quasicentral.

Throughout this article, every ring is an associative ring with identity unless
otherwise stated. Let R be a ring. Let I(R) = {e ∈ R | e2 = e} and I(R)′ =
I(R)\{0, 1}. We use Z(R), N∗(R) and N(R) to denote the center, the upper
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nilradical (i.e., the sum of all nil ideals) and the set of all nilpotent elements
of R, respectively. It is well-known that N∗(R) ⊆ N(R). Denote the n by n
(n ≥ 2) full (resp., upper triangular) matrix ring over R by Matn(R) (resp.,
Tn(R)). Write Dn(R) = {(aij) ∈ Tn(R) | a11 = · · · = ann} and Vn(R) =
{(aij) ∈ Dn(R) | aij = ai+1,j+1 for all 1 ≤ i ≤ n − 2 with i < j}. In means
the identity matrix in Matn(R) and use Eij for the matrix with (i, j)-entry 1
and zeros elsewhere. R[x] denotes the polynomial ring with an indeterminate
x over R. We use Z (Zn) to denote the ring of integers (modulo n).

2. Structures of matrices and polynomials which are idempotents

In this section we study the structure of idempotents and right semicentral
idempotents in upper triangular matrix rings and polynomial rings. We first
investigate the shape of idempotents in upper triangular matrix rings.

Lemma 2.1. Let R be a ring and n ≥ 2.
(1) If (aij) ∈ I(Tn(R))′, then we have the following:

(i) (e11, . . . , enn) ∈ I(R)n\{(0, . . . , 0), (1, . . . , 1)};
(ii) eiiai,i+1ei+1,i+1 = 0 for all i = 1, . . . , n− 1;
(iii) eii(ai,i+1ai+1,i+2) = (ai,i+1ai+1,i+2)ei+2,i+2 = −eiiai,i+2ei+2,i+2 for

all i = 1, . . . , n− 2;
(iv)

eii

(
k−2∑
s=1

ai,i+sai+s,i+k−1

)
=

(
k−2∑
s=1

ai,i+sai+s,i+k−1

)
ei+k−1,i+k−1

= −eiiai,i+k−1ei+k−1,i+k−1

for all 1 ≤ i ≤ n− (k − 1) and 4 ≤ k ≤ n, where eii = aii.

(2) If (aij) ∈ I(Dn(R))′, then we have the following:

(i) aii ∈ I(R)′, e say;
(ii) eai,i+1e = 0 for all i = 1, . . . , n− 1;
(iii) e(ai,i+1ai+1,i+2)=(ai,i+1ai+1,i+2)e=−eai,i+2e for all i=1, . . . , n− 2;

(iv) e
(∑k−2

s=1 ai,i+sai+s,i+k−1

)
=
(∑k−2

s=1 ai,i+sai+s,i+k−1

)
e = −eai,i+k−1e

for all 1 ≤ i ≤ n− (k − 1) and 4 ≤ k ≤ n.

(3) If (aij) ∈ I(Vn(R))′, then we have the following:

(i) aii ∈ I(R)′, e say;
(ii) ea12e = 0 and ea212 = a212e = −ea13e;

(iii) e
(∑k−2

s=1 a1,1+sa1+s,k

)
=
(∑k−2

s=1 a1,1+sa1+s,k

)
e = −ea1,ke for all 4 ≤

k ≤ n.

Proof. (1) Let (aij) ∈ I(Tn(R))′. Then, clearly,
(i) (e11, . . . , enn) ∈ I(R)n\{(0, . . . , 0), (1, . . . , 1)}.
Since

( eii ai,i+1

0 ei+1,i+1

)
∈ I(T2(R)) for all 1 ≤ i ≤ n−1, we get ai,i+1 = eiiai,i+1+

ai,i+1ei+1,i+1 and so we obtain
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(ii) eiiai,i+1ei+1,i+1 = 0 for all i = 1, . . . , n− 1, by multiplying this equality
by eii on the left.

Since

(
eii ai,i+1 ai,i+2

0 ei+1,i+1 ai+1,i+2

0 0 ei+2,i+2

)
∈ I(T3(R)) for all 1 ≤ i ≤ n− 2, we get ai,i+2 =

eiiai,i+2 + ai,i+1ai+1,i+2 + ai,i+2ei+2,i+2 and so we obtain
(iii) eii(ai,i+1ai+1,i+2) = (ai,i+1ai+1,i+2)ei+2,i+2 = −eiiai,i+2ei+2,i+2 for all

i = 1, . . . , n− 2, by multiplying this equality by eii (resp., ei+2,i+2) on the left
(resp., right).

Since

( eii ai,i+1 ai,i+2 ai,i+3

0 ei+1,i+1 ai+1,i+2 ai+1,i+3

0 0 ei+2,i+2 ai+2,i+3

0 0 0 ei+3,i+3

)
∈ I(T4(R)) for all 1 ≤ i ≤ n − 3, we

get ai,i+3 = eiiai,i+3 + ai,i+1ai+1,i+3 + ai,i+2ai+2,i+3 + ai,i+3ei+3,i+3 and so we
obtain

eii(ai,i+1ai+1,i+3 + ai,i+2ai+2,i+3) = (ai,i+1ai+1,i+3 + ai,i+2ai+2,i+3)ei+3,i+3

= −eiiai,i+3ei+3,i+3

for all i = 1, . . . , n − 3, by multiplying this equality by eii (resp., ei+3,i+3) on
the left (resp., right).

We proceed in this manner. Let i = 1, . . . , n − (k − 1) with 4 ≤ k ≤ n and
(bst) ∈ Tk(R) such that

bst = ast for all i ≤ s, t ≤ i+ k − 1.

Then, since (bst) ∈ I(Tk(R)), we get

ai,i+h = eiiai,i+h + ai,i+1ai+1,i+h + · · ·+ ai,i+h−1ai+h−1,i+h + ai,i+hei+h,i+h,

where h = k − 1. So we obtain
(iv)

eii(ai,i+1ai+1,i+h + · · ·+ ai,i+h−1ai+h−1,i+h)

= (ai,i+1ai+1,i+h + · · ·+ ai,i+h−1ai+h−1,i+h)ei+h,i+h,

by multiplying this equality by eii (resp., ei+h,i+h) on the left (resp., right).
(2) and (3) are clear from (1) and (2), respectively. □

Let R be a ring and e ∈ I(R). By [1], e is called right (resp., left) semicentral
in R if eR = eRe (resp., Re = eRe). The following are easily checked: (i) e is
right (resp., left) semicentral in R if and only if ea = eae (resp., ae = eae) for
all a ∈ R; (ii) e is right semicentral if and only if 1− e is left semicentral; and
(iii) e is central in R if and only if e is both right and left semicentral in R.
For example, in T2(Z2), ( 0 1

0 1 ) is right semicentral but not left semicentral, and
( 1 1
0 0 ) is left semicentral but not right semicentral.

Theorem 2.2. Let R be a ring and (aij) ∈ I(Dn(R)) (n ≥ 2).
(1) aii ∈ I(R).
(2) If aii, e say, is right semicentral in R, then we have the following:

(i) eaij = 0 for all i, j with i ̸= j;
(ii) aij = aije for all i, j;
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(iii) (aij)(bij) = (aij)(eIn)(bij) = (aij)(bij)(eIn) for all (bij) ∈ Dn(R).

(3) aii is right semicentral in R if and only if (aij) is right semicentral in
Dn(R).

Proof. Write E = Dn(R) and e = aii. (1) is clear.
(2) Suppose that e is right semicentral in R. Since A = (aij) ∈ I(E),

eai,i+1e = 0 for all i = 1, . . . , n − 1 by Lemma 2.1(2-ii). Since e is right
semicentral, we get eai,i+1 = eai,i+1e = 0, from which we see that

ai,i+1 = eai,i+1 + ai,i+1e = ai,i+1e for all i = 1, . . . , n− 1.(0)

Since ai,i+2 = eai,i+2 + ai,i+1ai+1,i+2 + ai,i+2e and eai,i+1 = 0, we get

eai,i+2 = eai,i+2 + (eai,i+1)ai+1,i+2 + eai,i+2e = eai,i+2 + eai,i+2e,

and this implies 0 = eai,i+2e = eai,i+2. Inductively we assume that eai,k = 0
for all k = 1, . . . , n−1. Then since ain = eain+ai,i+1ai+1,n+· · ·+ai,n−1an−1,n+
ai,ne, we get

eain = eain + (eai,i+1)ai+1,n + · · ·+ (eai,n−1)an−1,n + eaine = eain + eaine

and this implies 0 = eaine = eain for all i = 1, . . . , n − 1. Therefore we now
have

eaij = 0 for all i, j with i ̸= j.(i)

Note that ai,i+2 = eai,i+2+ai,i+1ai+1,i+2+ai,i+2e = eai,i+2+(ai,i+1e)ai+1,i+2+
ai,i+2e = ai,i+2e by (0) and (i). Now, inductively, we obtain

ai,i+h = eai,i+h + ai,i+1ai+1,i+h + · · ·+ ai,i+h−1ai+h−1,i+h + ai,i+he

= eai,i+h + (ai,i+1e)ai+1,i+h + · · ·+ (ai,i+h−1e)ai+h−1,i+h + ai,i+he

= ai,i+he

by (0) and (i), assuming that ai,i+s = ai,i+se for all s = 1, . . . , h−1. Therefore

aij = aije for all i, j.(ii)

Lastly, for any B = (bij) ∈ E,

AB = (aije)(bij) = (aij)(eIn)(bij) = (aij)(ebij)

= (aij)(ebije) = (aij)(ebij)(eIn)

= (aij)(eIn)(bij)(eIn) = AB(eIn)

by (i), (ii), and the hypothesis that e is right semicentral in R.
(3) Let e be right semicentral in R. Then we have that for all B ∈ Dn(R),

AB = AB(eIn) = AB(eaij) = AB(eIn)(aij) = A(eIn)B(aij) = ABA

by (i) and (iii) of (2).
Conversely if A is right semicentral in E, then e is also right semicentral in

R, through the computation that A(rIn) = A(rIn)A for all r ∈ R. □
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A ring is usually called Abelian if every idempotent is central. By Theorem
2.2(2-i,ii), if (aij) ∈ I(Dn(R)) with e = aii ∈ Z(R), then aij = aije = eaij = 0
for all i, j with i ̸= j. Thus (aij) = eIn and so we obtain the following.

Corollary 2.3 ([6, Lemma 2]). Let R be an Abelian ring. Then Dn(R) is an
Abelian ring in which every idempotent is of the form eIn with e ∈ I(R).

Theorem 2.2(3) is not valid for Tn(R) (n ≥ 2) as we see in the result (1) of
the following remark.

Remark 2.4. (1) Let R0 be any ring and R = R3
0. Consider a matrix A =(

(1,1,0) (1,0,0)
0 (0,1,1)

)
in T2(R). Then A ∈ I(T2(R)) and note that (1, 1, 0) and (0, 1, 1)

are central idempotents in R. Let B =
(
0 0
0 (1,0,0)

)
∈ T2(R). Then AB =

(1, 0, 0)E12 but AB ̸= 0 = ABA. Hence A is not right semicentral.
(2) For any ring R, Tn(R) contains right (left) semicentral nonzero non-

identity idempotents. Let e ∈ I(R) (resp., f ∈ I(R)) be right (resp., left)
semicentral in R. Consider A = e(E1n + E2n + · · · + Enn) ∈ Tn(R). Then
A ∈ I(Tn(R))′ and, for all B = (bij) ∈ Tn(R), we have

AB = ebnn(E1n + E2n + · · ·+ Enn) = ebnne(E1n + E2n + · · ·+ Enn)

= ebnn(E1n + E2n + · · ·+ Enn)e(E1n + E2n + · · ·+ Enn) = ABA

since e is right semicentral. Thus A is right semicentral in Tn(R). Next consider
A′ = f(E11 + E12 + · · ·+ E1n) ∈ Tn(R). Then A′ is similarly shown to be left
semicentral in Tn(R).

For any ring R, it is easy to check that Vn(R) is isomorphic to R[x]/(xn),
where (xn) = R[x]xn.

Theorem 2.5. (1) Let R be a ring and f(x) =
∑m

i=0 aix
i ∈ R[x]. If f(x) ∈

I(R[x])′, then we have the following:

(i) a0 ∈ I(R)′ (e say), ea1e = 0 and ea21 = a21e = −ea2e;

(ii) e
(∑k

s+t=3 asat

)
=
(∑k

s+t=3 asat

)
e = −eake for all 3 ≤ k ≤ m.

(2) In (1), a0 = e is right semicentral in R if and only if f(x) is right
semicentral in R[x].

(3) Let R be a ring and e ∈ I(R). If e is right semicentral but not central in
R, then there exists h(x) =

∑n
k=0 ckx

k ∈ I(R[x]) with c0 = e such that h(x) is
right semicentral in R[x] but h(x) /∈ R.

Proof. (1) Note first that
∑m

i=0 aix
i ∈ I(R[x])′ implies

m∑
i=0

āix̄
i ∈ I(R[x]/(xm+1))′,

whence (eij) ∈ I(Vm+1(R))′ ⊂ I(Dm+1(R))′ because
∑m

i=0 aix
i ∈ I(R[x])′

is equivalent to (eij) ∈ I(Vm+1(R))′ ⊂ I(Dm+1(R))′, where eii = a0 and
e1,1+s = as for all s = 1, . . . ,m. So we have the result by Lemma 2.1(3).
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(2) Let a0 be right semicentral in R. Then we have eas = 0 for all s =
1, . . . ,m and ai = aie for all i, by (1) and Theorem 2.2(2), from which we see
that for all g(x) =

∑n
j=0 bjx

j ∈ R[x],

f(x)g(x) = (

m∑
i=0

aiex
i)(

n∑
j=0

bjx
j) = (

m∑
i=0

aix
i)(

n∑
j=0

ebjx
j)

= (

m∑
i=0

aix
i)(

n∑
j=0

ebjex
j) = (

m∑
i=0

aix
i)(

n∑
j=0

ebjx
j)e

= (

m∑
i=0

aix
i)(

n∑
j=0

ebjx
j)(

m∑
i=0

eaix
i)

= (

m∑
i=0

aix
i)(

n∑
j=0

ebjex
j)(

m∑
i=0

aix
i) = f(x)g(x)f(x)

since e is right semicentral. Thus f(x) is right semicentral.
Conversely if f(x) is right semicentral in R[x], then a0 is also right semicen-

tral in R, through the computation that f(x)r = f(x)rf(x) for all r ∈ R.
(3) Suppose the e is right semicentral in R but not central in R. Then

ea ̸= ae for some a ∈ R. Note that ea = eae and (1− e)ae ̸= 0. For any ℓ ≥ 1,

set hℓ(x) =
∑ℓ

k=0 ckx
k such that c0 = e and ck = (1 − e)ae for all 1 ≤ k ≤ ℓ.

Then hℓ(x) ∈ I(R[x])′ and, moreover, hℓ(x) is right semicentral in R[x] by (2)
since e is right semicentral in R. But hℓ(x) /∈ R. □

Note. Properties of the case of left semicentral idempotents can be also ob-
tained by symmetry in Theorem 2.2 and Theorem 2.5.

Recall that, for a ring R, the following conditions are equivalent: (1) R
is Abelian; (2) R[x] is Abelian; (3) Every idempotent of R[x] is in R ([2,
Proposition 2.4]). The following elaborates upon Theorem 2.5(2).

Remark 2.6. Let R be a ring and f(x) =
∑m

i=0 aix
i ∈ I(R[x]). Then a0 ∈ I(R)

clearly. Here if a0 ∈ Z(R), then f(x) = a0 by the proof of [7, Lemma 8].
Thus one may naturally ask whether this result also holds for the case of a0
being right semicentral but not central. However the answer is not affirmative
as follows. Let R = T2(Z2). Then ( 0 1

0 1 ) is right semicentral but not left
semicentral in R as above. Following the construction in the proof of Theorem
2.5(3), let f(x) = a0 + (1− a0)ba0x ∈ I(R[x])′, where a0 = ( 0 1

0 1 ) and b = E12.
Then f(x) is right semicentral in R[x] by Theorem 2.5(2), but f(x) = ( 0 1

0 1 ) +
( 0 1
0 0 )x /∈ R.

Let A be an algebra (with or without identity) over a commutative ring
S. Due to Dorroh [4], the Dorroh extension of A by S is the Abelian group
A× S with multiplication given by (r1, s1)(r2, s2) = (r1r2 + s1r2 + s2r1, s1s2)
for ri ∈ A and si ∈ S. We use A ×dor S to denote the Dorroh extension of A
by S. Note 1D = (0, 1). In the following we deal with the case of 1 ∈ A.
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Proposition 2.7. Let R be a ring of characteristic 2 that is an algebra over a
commutative ring S. Then we have the following for D = R×dor S.

(1) (i) I(D) = I(R)× I(S) and I(R) = {e+ s | (e, s) ∈ I(D)}.
(ii) I(D)′ = {(e1, 0), (e2, 1) | e1, e2 ∈ I(R)\{0}} when I(S)′ = ∅; and
I(D)′ = {(e1, 0), (e2, 1), (e3, s) | e1, e2 ∈ I(R)\{0}, e3 ∈ I(R), s ∈ I(S)′}

when I(S)′ ̸= ∅.
(2) Let e ∈ I(R). Then e is left semicentral in R if and only if (e, 1) is a

right semicentral idempotent in D.

Proof. (1) (i) Note that s ∈ S is identified with s · 1 ∈ R, where 1 = 1R, the
identity of R, and so R = {r + s | (r, s) ∈ D}. Now, if (r, s) ∈ I(D), then
(r, s)2 = (r, s) implies r2 = r, s2 = s because the characteristic of R is 2, and
hence r ∈ I(R) and s ∈ I(S), showing that I(D) ⊆ I(R) × I(S). Conversely,
if (e, t) ∈ I(R) × I(S), then (e, t)2 = (e, t) and so I(R) × I(S) ⊆ I(D). Thus
I(D) = I(R)× I(S).

Next, if e ∈ I(R), then (e, 0) ∈ I(D), noting e = e+0 with 0 ∈ S. Conversely,
if (e, s) ∈ I(D), then e ∈ I(R) and s ∈ I(S) as above, from which we see
e+ s ∈ I(R).

(ii) is obtained from the fact that 1D = (0, 1).
(2) By (1-i), (e, 1) ∈ I(D). For (a, b) ∈ D, we have (e, 1)(a, b) = ((1 + e)a+

eb, b). Suppose that e is left semicentral. Then (1 − e)re = 0 for all r ∈ R,
from which we see that

(e, 1)(a, b)(e, 1) = ((1− e)a+ eb, b)(e, 1)

= ((1− e)ae+ eb+ eb+ (1− e)a+ eb, b)

= ((1 + e)a+ eb, b) = (e, 1)(a, b),

using the hypothesis that the characteristic of R is 2.
Suppose that (e, 1) is right semicentral in D. Then

(e, 1)(r, 1)(e, 1) = (e, 1)(r, 1)

for all r ∈ R. So we have ere+re+er+r+e = er+r+e since the characteristic
of R is 2, entailing and so ere− re = ere+ re = 0. □

An element u of a ring R is called regular if ur = 0 and su = 0 for some
r, s ∈ R imply r = s = 0, i.e., u is not a zero divisor in R.

Proposition 2.8. Let S be a multiplicatively closed subset of a ring R. Suppose
that S consists of central regular elements of R and let e = u−1a ∈ I(S−1R),
where a ∈ R and u ∈ S. Then we have the following assertions.

(1) a = ea = ae = eae.
(2) e is right semicentral in S−1R if and only if aru = ara for any r ∈ R.

Proof. (1) From u−1a = (u−1a)2 = u−2a2, we obtain a = u−1a2 = (u−1a)a =
a(u−1a) = ea = ae, and a = eae follows.

(2) Let e be right semicentral in S−1R. Then, for any v−1r ∈ S−1R,
e(v−1r) = e(v−1r)e and this yields v−1aru−1 = v−1arau−2, so that aru = ara.
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Conversely assume the necessity. Then aru = ara implies av−1r = u−1av−1ra
for any v ∈ S, from which see that e(v−1r) = u−1a(v−1r) = u−1a(v−1r)u−1a =
e(v−1r)e. □

In Proposition 2.8, one may ask whether I(S−1R) = I(R). But the answer
is negative by the following.

Example 2.9. Let A = Z⟨x, y⟩, the free algebra generated by the noncom-
muting indeterminates x, y over Z. Next let I be the ideal of A generated by
yx − xy − 1 and R0 = A/I. Set R = T2(R0) and consider the multiplica-

tively closed subset S =
{(

f 0
0 f

)
∈ R | 0 ̸= f ∈ Z

}
of R. Then S consists of

central regular elements in R. Let a = ( n g
0 0 ) ∈ R and u = ( n 0

0 n ) ∈ R, where
n ∈ Z\{0, 1,−1} and g ∈ R0\Z. Then

u−1a =

(
n−1 0
0 n−1

)(
n g
0 0

)
=

(
1 n−1g
0 0

)
∈ I(S−1R)\I(R),

from which we see I(R) ⊊ I(S−1R).

We end this section by arguing about a property of the difference of two
right semicentral idempotents.

Remark 2.10. Let e, f be right semicentral idempotents of a ring R. Then
ef, fe ∈ I(R) and (e − f)2 ∈ I(R). For, (ef)2 = (efe)f = (ef)f = ef ,
(fe)2 = (fef)e = (fe)e = fe, and (e − f)4 = (e − ef − fe + f)2 = e − ef −
efe+ef−efe+efef+efe−ef−fe+fef+fefe−fef+fe−fef−fe+f =
e− ef − ef + ef − ef + ef + ef − ef − fe+ fe+ fe− fe+ fe− fe− fe+ f =
e− ef − fe+ f = (e− f)2. In this situation, if (e− f)2 = 0, then e = ef and
f = fe through a simple computation. One may ask whether e − f ∈ I(R).
But the answer is negative. Consider R = T2(A) over any ring A. It is easily
checked that e = ( 0 1

0 1 ) and f = ( 0 0
0 1 ) are right semicentral idempotents in R.

But e− f = E12 /∈ I(R).

3. Right quasicentral idempotents and right quasi-Abelian rings

In this section we study the structure of rings with idempotents which satisfy
a generalized condition of semicentralness.

Lemma 3.1. A ring is Abelian if and only if every idempotent is right semi-
central if and only if every idempotent is left semicentral.

Proof. Let R be a ring and e2 = e, r ∈ R. Suppose that every idempotent
of R is right semicentral. Then er = ere and (1 − e)r = (1 − e)r(1 − e)
for every e ∈ I(R). Then, for all r ∈ R, 0 = (1 − e)r − (1 − e)r(1 − e) =
r− er− r+ er+ re− ere = re− ere = re− er; hence R is Abelian. The proof
for the case of left semicentral is similar. Other directions are evident. □

Let I be an ideal of a ring R, and suppose that every idempotent of R/I
can be lifted to a right semicentral idempotent of R. Then every idempotent
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of R/I is right semicentral and thus R/I is Abelian by Lemma 3.1. Moreover,
motivated by this lemma, we give the following definition.

Definition 3.2. Let R be a ring and e ∈ I(R)′. Then e is called right qua-
sicentral (resp., left quasicentral) provided that for any r ∈ R, there exists
f = f(e, r) ∈ I(R)′ such that er = erf (resp., re = fre), and e is called
quasicentral if e is both right and left quasicentral.

It is evident that for a nonzero nonidentity idempotent e, if e is right (resp.,
left) semicentral, then e is right (resp., left) quasicentral. But there exist right
quasicentral idempotents but not right semicentral.

Remark 3.3. (1) ( 1 1
0 0 ) is quasicentral in Mat2(Z) by help of Example 3.5 to

follow; but(
1 1
0 0

)(
0 1
0 0

)
=

(
0 1
0 0

)
̸= 0 =

(
1 1
0 0

)(
0 1
0 0

)(
1 1
0 0

)
and (

1 0
−1 0

)(
1 1
0 0

)
=

(
1 1
−1 −1

)
̸= 0 =

(
1 1
0 0

)(
1 0
−1 0

)(
1 1
0 0

)
,

so that ( 1 1
0 0 ) is neither right nor left semicentral.

(2) Let R be a ring and (aij) ∈ I(T2(R))′ be such that a11 ∈ I(R)′ (resp.,
a22 ∈ I(R)′) is right (resp., left) quasicentral in R. Moreover (aij)(bij) =
(aij)(bij)(eE22) (resp., (bij)(aij) = (fE11)(bij)(aij)) for all (bij) ∈ ( 0 R

0 0 ), where
e = e(a11, b12), f = f(a22, b12) ∈ I(R)′ satisfying a11b12 = a11b12e and b12a22 =
fb12a22. For

(aij)(bij) =

(
0 a11b12
0 0

)
=

(
0 a11b12e
0 0

)
=

(
0 a11b12
0 0

)(
0 0
0 e

)
= (aij)(bij)(eE22)

and

(bij)(aij) =

(
0 b12a22
0 0

)
=

(
0 fb12a22
0 0

)
=

(
f 0
0 0

)(
0 b12a22
0 0

)
= (fE11)(bij)(aij),

noting that eE22 and fE11 are idempotents. Thus (aij) is quasicentral in
T2(R). But if a11 (resp., a22) is not right (resp., left) semicentral, then (aij) is
not right (resp., left) semicentral.

The following is a main result of our article.

Theorem 3.4. Every nontrivial idempotent of Matn(P ) over a principal ideal
domain P is quasicentral for n ≥ 2.
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Proof. Let R = Matn(P ) and E ∈ I(R)′. Then EA /∈ U(R) for any A ∈ R,
where U(R) is the group of all units in R. Whence, letting EA ̸= 0, there exist
X,Y ∈ U(R) such that

EA = XDY, where D =

k∑
i=1

αiEii with k < n and 0 ̸= αi ∈ P,

by Smith normal form theorem in linear algebra. Let F = Y −1CY , where

C =
∑k

i=1 Eii. Then F ∈ I(R)′ and EAF = XDY F = XDY = EA. Next, by
symmetry, it can be also shown that AE = F ′AE for some F ′ ∈ I(R)′.

Therefore every nontrivial idempotent of Matn(P ) is quasicentral. □

In the following we provide an actual manner to find nontrivial idempotents
in Mat2(P ), based on Theorem 3.4.

Example 3.5. Let P be a principal ideal domain but not a field and R =
Matn(P ). By [8, Lemma 2.3(2)], I(R)′ is the union of the following two sets:{
E1 =

(
1 0
0 0

)
, E2 =

(
0 0
0 1

)
, E3 =

(
1 f
0 0

)
, E4 =

(
1 0
g 0

)
,

E5 =

(
0 f
0 1

)
, E6 =

(
0 0
g 1

)
| f ̸= 0, g ̸= 0

}
and {

E7 =

(
a b
c 1− a

)
| a /∈ {0, 1} and a(1− a) = bc

}
.

We will show that for any Ei and A ∈ R, there exists F ∈ I(R)′ such that
EiA = EiAF . Let K be the quotient field of P . Since EiA is not a unit, the
row vectors of EiA are linearly dependent over K.

Case 1. If EiA is of the form
( y1 0
y2 0

)
∈ R, then EiA = EiAE1. If EiA is of

the form
( 0 y3

0 y4

)
∈ R, then EiA = EiAE2.

So it suffices to consider the following cases.

Case 2. EiA = ( s t
0 0 ) with s ̸= 0 and t ̸= 0.

(Subcase 1) If t | s (s = tg say), then EiA = EiAE6. If s | t (t = sf say),
then EiA = EiAE3.

(Subcase 2) t ∤ s and s ∤ t: We claim that there exists F =
(
a b
c 1−a

)
∈ I(R)′,

with a /∈ {0, 1} and a(1− a) = bc, such that EiA = EiAF .
We can let s−1t = s−1

1 t1 in K such that gcd(s1, t1) = 1, letting s = s1k and
t = t1k with s1, t1 /∈ {0, 1} and k = gcd(s, t) > 1. So we can find m,n ∈ P
such that s1n+ t1m = 1, from which we see

t−1
1 s1(t1n) + s−1

1 t1(s1m) = s1n+ t1m = 1.

Next set
a = s1n, b = s−1ta = s−1

1 t1a = t1n ∈ P,

and
c = t−1s(1− a) = t−1

1 s1(1− s1n) = t−1
1 s1t1m = s1m ∈ P.
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Then F =
(
a b
c 1−a

)
=
(

s1n t1n
s1m 1−s1n

)
∈ I(Mat2(P ))′ with s1n /∈ {0, 1}, and we

have

EiA =

(
s t
0 0

)
=

(
sa+ tc sb+ t(1− a)

0 0

)
= EiAF

since sa+tc = sa+t(t−1s(1−a)) = s and sb+t(1−a) = s(s−1ta)+t(1−a) = t.
This argument is also applicable to Subcase 1 in which s1 = 1 or t1 = 1. If

s1 = 1, then, for any p ∈ P with t1p /∈ {0, 1}, we have s1(1 − t1p) + t1p = 1
such that s1(1− t1p) /∈ {0, 1}. If t1 = 1, then, for any q ∈ P with s1q /∈ {0, 1},
we have s1q + t1(1− s1q) = 1 such that t1(1− s1q) /∈ {0, 1}. Consequently we
can take s1n /∈ {0, 1} in any case.

Case 3. EiA = ( 0 0
u v ) with u ̸= 0 and v ̸= 0.

(Subcase 1) If u | v or v | u, then EiA = EiAE3 or EiA = EiAE6 similarly.
(Subcase 2) u ∤ v and v ∤ u: We apply the argument of (2) to this case. We

can let v−1u = v−1
1 u1 such that gcd(u1, v1) = 1, and so we can find m,n ∈ P

such that u1n+ v1m = 1, from which we see

v−1
1 u1(v1n) + u−1

1 v1(u1m) = u1n+ v1m = 1.

Next set

a = u1n, b = u−1va = u−1
1 v1a = v1n ∈ P,

and

c = v−1u(1− a) = v−1
1 u1(1− u1n) = v−1

1 u1v1m = u1m ∈ P.

Then F =
(
a b
c 1−a

)
= ( u1n v1n

u1m 1−u1n ) ∈ I(Mat2(P ))′ with u1n /∈ {0, 1}, and we
have

EiA =

(
0 0
u v

)
=

(
0 0

ua+ vc ub+ v(1− a)

)
= EiAF

since ua+vc = ua+v(v−1u(1−a)) = u and ub+v(1−a) = u(u−1va)+v(1−a) =
v.

This argument is also applicable to Subcase 1 in which u1 = 1 or v1 = 1, by
a similar manner to one of Case 2.

Case 4. EiA =
(

α β
wα wβ

)
with α, β ∈ P\{0} and 0 ̸= w ∈ K. We can find

F = ( p1 p2
p3 p4 ) ∈ I(R)′ such that

(
α β
0 0

)
=
(
α β
0 0

)
( p1 p2
p3 p4 ), by the argument of Case

2, entailing α = αp1 + βp3 and β = αp2 + βp4. From this, we obtain

EiAF =

(
α β
wα wβ

)(
p1 p2
p3 p4

)
=

(
αp1 + βp3 αp2 + βp4

w(αp1 + βp3) w(αp2 + βp4)

)
=

(
α β
wα wβ

)
= EiA.

From the results above, we now conclude that every nontrivial idempotent
of Mat2(P ) is right quasicentral. The case of left quasicentral idempotents can
be also obtained by symmetrically arguments.
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Next we argue about a property of right (left) semicentral idempotents of
semiprime rings, by which we can find quasicentral idempotents but not right
(left) semicentral.

Remark 3.6. In a semiprime ring, every right (or left) semicentral idempotent is
easily shown to be central. By help of this fact, we can find many quasicentral
idempotents which are not semicentral. Consider R = Matn(P ) (n ≥ 2) over
any principal ideal domain P . Then every noncentral idempotent e of R is
quasicentral by Theorem 3.4. Assuming that e is right (or left) semicentral, we
have that e is central since R is (semi)prime, a contradiction. Therefore e is
neither right nor left semicentral.

Following [2], a ring R is called right (resp., left) quasi-Abelian provided that
either I(R)′ is empty, or else for any (e, a) ∈ I(R)′×R (resp., (a, e) ∈ R×I(R)′)
there exists (b, f) ∈ R×I(R)′ (resp., (f, b) ∈ I(R)′×R) such that ea = bf (resp.,
ae = fb). R is called quasi-Abelian if it is both right and left quasi-Abelian.
Note that a non-Abelian ring R (i.e., ∅ ≠ I(R)′ ⊈ Z(R)) is right (resp., left)
quasi-Abelian if and only if every e ∈ I(R)′ is right (resp., left) quasicentral,
by the argument above. Hence, the quasicentralness is not left-right symmetric
by [2, Example 1.5]. Right (left) quasi-Abelian rings are directly finite by
[2, Theorem 1.9(1)] and there exists a domain R over which Mat2(R) is not
directly finite by [10, Theorem 1.0]. But if R is a principal ideal domain, then
Matn(R) (n ≥ 2) is quasi-Abelian by Theorem 3.4, providing of quasi-Abelian
ring which is not Abelian. Furthermore, Theorem 3.4 is compared with the fact
that for a domain R, Tn(R) is right quasi-Abelian for all n ≥ 2 if and only if
R is a division ring ([2, Theorem 2.1]). Thus T2(Z) is not right quasi-Abelian,
but Matn(Z) (n ≥ 2) is quasi-Abelian by Theorem 3.4, from which we see that
the class of right quasi-Abelian rings is not closed under subrings.

Finally, we consider the quasi-Abelian property in other cases that occur
frequently in noncommutative ring theory. Note that a ring R is Abelian if
and only if Dn(R) is Abelian for any n ≥ 2 if and only if Dn(R) is Abelian for
some n ≥ 2, by [6, Lemma 2]. We consider a condition under which this result
can be extended to the case of right quasi-Abelian.

Proposition 3.7. Let R be a ring such that I(R)′ is orthogonal. Then Dn(R)
is right quasi-Abelian for some n ≥ 2 if and only if R is Abelian.

Proof. Let Dn(R) be right quasi-Abelian for some n ≥ 2. Assume on the
contrary that there exist e ∈ I(R)′ and r ∈ R such that er(1−e) ̸= 0, a say. Let
E = (e + a)In. Then E ∈ I(Dn(R))′. Let A = E1n ∈ Dn(R). Since Dn(R) is
right quasi-Abelian, EA = EAF for some F = (fij) ∈ I(Dn(R))′. Let f = fii.
Then clearly f ∈ I(R)′. From EA = EAF , we get e+er(1−e) = ef+er(1−e)f ;
hence f ̸= e and f ̸= 1− e. Since I(R)′ is orthogonal, ef = 0 and (1− e)f = 0,
entailing e+ a = 0, a contradiction. Thus R is Abelian. The converse is clear
by [6, Lemma 2]. □
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We next observe some methods of constructing (right quasi-)Abelian rings
through the factorization. We start with the fact that the class of right quasi-
Abelian rings is not closed under factor rings. A ring R is called regular if for
any a ∈ R there exists b ∈ R such that a = aba (see [5]). Directly finite regular
rings are quasi-Abelian by [2, Theorem 1.9(2)], but there exists a directly finite
regular ring R with a right and left primitive ideal P such that R/P is not
directly finite (hence not right quasi-Abelian) by [5, Example 5.11].

An ideal I of a ring R is said to be idempotent-lifting if idempotents in R/I
can be lifted to R. The Jacobson radical of a ring R is denoted by J(R).

Proposition 3.8. (1) Let R be a right quasi-Abelian ring and I be an ideal of R
such that I ⊆ J(R). If I is idempotent-lifting, then R/I is right quasi-Abelian.

(2) Let R be a right quasi-Abelian ring. If I is a nil ideal of R, then R/I is
right quasi-Abelian.

(3) Let R be a ring and n ≥ 2. If Dn(R) (n ≥ 2) is right quasi-Abelian, then
so is R.

(4) Let R be a commutative ring and M be a maximal ideal of R. Then
Matn(R/M) is quasi-Abelian for any n ≥ 2.

Proof. (1) This is clear from [2, Theorem 2.2(1)]. (2) is clear from [9, Propo-
sition 3.6.1] and (1). (3) is proved by (2) and the fact that the factor ring
Dn(R)/I, by the nil ideal I = {(aij) ∈ Dn(R) | aii = 0} of Dn(R), is isomor-
phic to R. (4) is shown by [2, Theorem 1.9(4)] since R/M is a field. □

Note that the right quasi-Abelian property does not go up to polynomial
rings by [2, Proposition 2.5(1)]. Following [3], a ring R is called NR if N(R)
forms a subring. A ring R is NR if and only if N(R) is additively closed
([11, Theorem 2.1]).

Proposition 3.9. (1) Let R be a commutative ring and M be a maximal ideal
of R. Then Matn(R/M)[x] is quasi-Abelian for n ≥ 2.

(2) Let R be an NR ring and I be an ideal of R with N∗(R) ⊆ I. If I is
idempotent-lifting, then R[x]/I[x] is an Abelian ring.

Proof. (1) Note first that (R/M)[x] is a principal ideal domain, hence

Matn(R/M)[x](∼= Matn((R/M)[x]))

is quasi-Abelian for n ≥ 2 by Theorem 3.4.
(2) Since R is NR, R/N∗(R) is an Abelian ring by [11, Proposition 3.1].

Write R̄ = R/I. Let f̄ ∈ I(R̄). Since I is idempotent-lifting, f̄ = ē for some
e ∈ I(R). Since R/N∗(R) is Abelian, we have er − re ∈ N∗(R) for all r ∈ R,
entailing er − re ∈ I by hypothesis. Thus f̄ r̄ = ēr̄ = r̄ē = r̄f̄ in R̄, so that R̄
is Abelian. Therefore R[x]/I[x] (∼= (R/I)[x]) is Abelian by [7, Lemma 8]. □
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