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SELF-DUAL CODES AND ANTIORTHOGONAL

MATRICES OVER GALOIS RINGS

Sunghyu Han*

Abstract. We study self-dual codes over Galois rings using the
building-up construction method. In the construction, the existence
of an antiorthogonal matrix is very important. In this study, we
examine the existence problem of an antiorthogonal matrix over
Galois rings.

1. Introduction

In this study, we are interested in self-dual codes. Self-dual codes
are interesting, because they are closely related to other areas of mathe-
matics, such as block designs, lattices, modular forms, and sphere pack-
ings [4]. Moreover, they are of interest in their own right (see [18], for
example).

There are several approaches to constructing self-dual codes, such as
the gluing vectors approach [3], the balance principle approach [9], the
double circulant approach [5], and the building-up approach [13]. In this
study, we adopt the building-up approach, in which short self-dual codes
are used to construct longer codes.

The first appearance of building-up construction is in Harada’s pa-
per [8]. Kim [10] extended this method and called it “building-up con-
struction.” He also made the converse statement: any binary self-dual
code can be constructed from a shorter self-dual code. Kim and Lee [11]
described the building-up approach for finite fields Fq, where q is a power
of 2 or q ≡ 1 (mod 4). Later, they described the building-up approach
for finite fields Fq, q ≡ 3 (mod 4) [13].
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For Zpm , the building-up construction for p ≡ 1 (mod 4) is given by
Lee and Lee [14]. Then, p ≡ −1 (mod 4) is given by Kim and Lee [13],
and p = 2 is given by Han [6, 7].

Thus, the building-up construction method is completely described
for the finite field Fpr and integer modulo ring Zpm .

The natural next step is the study of Galois rings GR(pm, r). In
GR(pm, r), ifm = 1, thenGR(p1, r) = Fpr , and if r = 1, thenGR(pm, 1) =
Zpm . Therefore, we already have the building-up construction ofGR(pm, r)
for m = 1 or r = 1.

For GR(pm, r), p ≡ 1 (mod 4) with any r, and p ≡ −1 (mod 4) with
even r, the building-up construction method is described, with examples,
in [12]. For GR(pm, r), p ≡ −1 (mod 4) with odd r, the building-up
construction method is described in [13].

The remaining case is GR(2m, r) with m ≥ 2, r ≥ 2, and is the focus
of this study. This paper is organized as follows. In Sect. 2, we state the
basic definitions and facts for self-dual codes over finite chain rings. We
also give the building-up construction method for finite chain rings and
explain Galois rings. The important part of the building-up construction
is the existence of a square matrix U such that UUT = −I, which is
called antiorthogonal. In Sect. 3, we study the existence problem of
antiorthogonal matrices over Galois rings. In Sect. 4, we give examples
of self-dual codes over GR(2m, r) using the building-up construction
method. All computations are performed using Magma [2].

2. Preliminaries

Throughout this paper, let R be a finite commutative ring with iden-
tity 1 ̸= 0. An R-submodule C ≤ Rn is called a linear code of length n
over R. Unless otherwise specified, all codes are assumed to be linear.

We define the usual inner product: for x,y ∈ Rn,

x · y = x1y1 + · · ·+ xnyn.

For a code C of length n over R, let

C⊥ = {x ∈ Rn
∣∣x · c = 0, ∀ c ∈ C}

be the dual code of C. If C ⊆ C⊥, we say that C is self-orthogonal, and
if C = C⊥, then C is self-dual.

A principal ideal ring is a ring in which each ideal is generated by a
single element. A chain ring is a ring in which the ideals are linearly
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ordered. Thus, it follows immediately that a chain ring R is necessarily
a principal ideal ring and that the ideals of the ring R are

{0} = ⟨γe⟩ ⊆ ⟨γe−1⟩ ⊆ · · · ⊆ ⟨γ2⟩ ⊆ ⟨γ⟩ ⊆ R,

for some element γ and some natural number e. The number e is said
to be the nilpotency index of γ.

It is well known [17] that a generator matrix for a code C over a finite
chain ring is permutation-equivalent to the matrix of the form
(2.1)

G =


Ik0 A0,1 A0,2 A0,3 · · · A0,e−1 A0,e

0 γIk1 γA1,2 γA1,3 · · · γA1,e−1 γA1,e

0 0 γ2Ik2 γ2A2,3 · · · γ2A2,e−1 γ2A2,e
...

...
...

...
...

...
0 0 0 0 · · · γe−1Ike−1 γe−1Ae−1,e

 ,

where e is the nilpotency index of γ. The generator matrixG is said to be
in standard form. All generator matrices in standard form for a code C
over a finite chain ring have the same parameters k0, k1, k2, . . . , ke−1 [17,
Theorem 3.3]. We define ki(C) = ki, (i = 0, 1, 2, . . . , e − 1) and k(C) =∑e−1

i=0 ki.

Now, we describe the building-up construction for a finite chain ring [6].

Theorem 2.1. [6] Let R be a finite chain ring, let C0 be a self-dual
code over R of length n with k(C0) = k, and let G0 be a k×n generator
matrix for C0. Let a ≥ 1 be an integer and let X be an a × n matrix
over R such that XXT = −I. Let U be an a × a matrix over R such
that UUT = −I, and let 0 be an a× a zero matrix. Then, the matrix

G =

(
I 0 X

−G0X
T G0X

TU G0

)
generates a self-dual code C of length n+ 2a over R.

The purpose of this study is to investigate the building-up construc-
tion for Galois rings. Therefore, we first provide some basic facts about
Galois rings. Let p be a fixed prime and m be a positive integer. Let
f be a polynomial in Zpm [x] and f̄ be the image of f under the pro-
jection Zpm [x] → Zp[x]. Then, f is called basic irreducible if f̄ is ir-
reducible. Let r be the degree of f . A Galois ring is constructed as
GR(pm, r) = Zpm [x]/(f), where f is a monic basic irreducible polyno-
mial in Zpm [x] of degree r.
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The Galois ring GR(pm, r) is a finite chain ring of length m, and its
ideals are linearly ordered by inclusion,

(2.2) {0} = ⟨pm⟩ ⊂ ⟨pm−1⟩ ⊂ · · · ⊂ ⟨p2⟩ ⊂ ⟨p⟩ ⊂ GR(pm, r).

The following lemma is needed in our study.

Lemma 2.2. [1, Proposition 6.1.7] Let GR(pm, r) be a Galois ring,
where p is a prime and n, r are positive integers. Then:

1. Every subring is of the form GR(pm, s) for some divisor s of r.
Conversely, for every positive divisor s of r there exists a unique
subring of R that is isomorphic to GR(pm, s).

2. Any homomorphic image ( ̸= (0)) of GR(pm, r) is a ring of the form
GR(pℓ, r) for some integer 1 ≤ ℓ ≤ m. Conversely, for each integer
1 ≤ ℓ ≤ m, there are exactly r homomorphisms of GR(pm, r) onto
GR(pℓ, r).

To apply Theorem 2.1 to self-dual codes over GR(pm, r), we should
have an a × a matrix U and an a × n matrix X such that UUT = −I
and XXT = −I. For 1 ≤ a ≤ n, if there exists an a× a matrix U , then
there exists an a×n matrix X such that XXT = −I. The proof is given
below. Let X = [U |O]. Then, XXT = UUT + OOT = −I. Therefore,
the important part of the building-up construction is the existence of
the matrix U .

The square matrix U such that UUT = −I over finite fields is con-
sidered by Massey [15]. He called the matrix U antiorthogonal. Using
the antiorthogonal matrix, he characterized the self-dual codes and con-
structed linear codes with complementary duals (LCD codes). In [16],
Massey considered the existence problem of antiorthogonal matrices over
finite fields. Following Massey’s terminology, we provide the following
definition.

Definition 2.3. A square matrix U over a finite chain ring R is said
to be antiorthogonal if

(2.3) UUT = −I.

3. On the problem of the existence of antiorthogonal matri-
ces over GR(pm, r)

In this section, we examine the existence of an a × a antiorthogonal
matrix U over GR(pm, r). We begin with the following lemmas.
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Lemma 3.1. [12] Let p be an odd prime. Then −1 is a square in
GR(pm, r) if and only if either p ≡ 1 (mod 4) with any r or p ≡ −1
(mod 4) with even r.

Lemma 3.2. [13] Let p ≡ −1 (mod 4) and r be an odd integer. Then
−1 is a two square sum in GR(pm, r).

Proof. See the proof of Proposition 3.3 in [13].

Theorem 3.3. Let p be an odd prime. For the existence of an a× a
antiorthogonal matrix U over GR(pm, r), we have the following.

1. If p ≡ 1 (mod 4) with any r or p ≡ −1 (mod 4) with even r, then
there exists an a× a antiorthogonal matrix U for all a ≥ 1.

2. If p ≡ −1 (mod 4) with odd r, then there exists an a × a an-
tiorthogonal matrix U if and only if a is even.

Proof. We assume that p ≡ 1 (mod 4) with any r or p ≡ −1 (mod 4)
with even r. By Lemma 3.1, there is an element c in GR(pm, r) such
that c2 = −1. Let U be an a × a diagonal matrix with all diagonal
elements c, that is,

U =

c 0
. . .

0 c

 .

Then, UUT = −I. This proves the first statement.
We now assume that p ≡ −1 (mod 4) with odd r. By Lemma 3.2,

there exist α, β such that α2 + β2 = −1 in GR(pm, r). Let

U2 =

(
α β
β −α

)
.

Then, U2U
T
2 = −I. This proves that there is a 2× 2 matrix U such that

UUT = −I. For a = 2t, where t ≥ 1, let

Ua =

U2 0
. . .

0 U2

 .

Then, UaU
T
a = −I.

Finally, we assume that there is an a× a matrix U such that UUT =
−I. Then, det(UUT ) = det(−I), and so (detU)2 = (−1)a. Therefore, a
should be even by Lemma 3.1. This completes the proof.

Therefore, the odd prime case is solved completely for the existence
of an antiorthogonal matrix. Now, we consider the case of p = 2.
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Lemma 3.4. [12] Let p = 2. Then −1 is a square in GR(2m, r) if and
only if m = 1.

Theorem 3.5. For the existence of an a × a antiorthogonal matrix
U over GR(2m, r), we have the following.

1. If m = 1, then there exists an a × a antiorthogonal matrix U for
all a ≥ 1.

2. If m ≥ 2 and r = 1, then there exists an a × a antiorthogonal
matrix U if and only if a is a multiple of 4.

Proof. Suppose that m = 1. Then, GR(2, r) = GF (2r). Since the
a × a identity matrix I is the antiorthogonal matrix, the first state
statement is true. Suppose m ≥ 2 and r = 1. Then, GR(2m, 1) = Z2m .
The second statements is proved in [7, Theorem 4],

By Theorem 3.5, we next consider the case m ≥ 2 and r ≥ 2.

Theorem 3.6. Let m ≥ 2 and r ≥ 2. For the existence of an a × a
matrix U over GR(2m, r) such that UUT = −I, we have the following.

1. If there exists an a× a antiorthogonal matrix U , then a should be
even.

2. If a is a multiple of 4, then there exists an a × a antiorthogonal
matrix U .

Proof. Suppose there exists an a× a matrix U such that UUT = −I.
Then det(UUT ) = det(−I), (detU)2 = (−1)a. Therefore, a should be
even, by Lemma 3.4. This completes the first statement. For the second
statement, note that Z2m ≤ GR(2m, r). It is proved that there is a
4t× 4t antiorthogonal matrix U over Z2m for all t ≥ 1 in [7, Theorem4].
This completes the proof.

Now, the remaining case is that ofm ≥ 2, r ≥ 2, and a = 4t+2(t ≥ 0).

Lemma 3.7. −1 is a two square sum in GR(2m, 2k) for all k ≥ 1 and
for all m ≥ 1.

Proof. First, we prove the theorem for the k = 1 case. Let f(x) =
x2 + x + 1 in Z2m [x]. Then, f(x) is a basic irreducible polynomial.
Therefore, GF (2m, 2) = Z2m [x]/(f(x)). Let w = x + (f(x)). Let α =
w, β = w + 1. Then, α2 + β2 = w2 + (w + 1)2 = w2 + (w2 + 2w + 1) =
(w2+w+1)+(w2+w) = 0+(−1) = −1. Therefore, −1 is a two square
sum in GF (2m, 2). Let k ≥ 2. By Lemma 2.2 (i), GR(2m, 2k) contains
a unique subring R that is isomorphic to GR(2m, 2). Therefore, −1 is a
two square sum in GR(2m, 2k). This completes the proof.
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Table 1. Values of α, β such that α2 + β2 = −1 in
GR(22, r) = Z22 [x]/(f(x))

r f(x) α, β (w = x+ (f(x)))

2 x2 + x+ 1 w,w + 1
3 x3 + x+ 1 -
4 x4 + x+ 1 w2 + w,w2 + w + 1
5 x5 + x2 + 1 -

6 x6 + x4 + x3 + x+ 1 w3 + w2 + w,w3 + w2 + w + 1
7 x7 + x+ 1 -
8 x8 + x4 + x3 + x2 + 1 w7 + w6 + w4 + w2 + w,w7 + w6 + w4 + w2 + w + 1

In Table 1, we give our computational results. By the computation,
we can see that −1 is a two square sum in GR(22, r), r = 2, 4, 6, 8. For
example, if r = 4, then GR(22, 4) is Z22 [x]/(x

4+x+1) and (w2+w)2+
(w2+w+1)2 = −1, where w = x+(x4+x+1). This result is consistent
with Lemma 3.7. In addition, we find that −1 is not a two square sum
in GR(22, r), r = 3, 5, 7.

Theorem 3.8. Let m ≥ 1 and k ≥ 1. Then, there exists an a × a
antiorthogonal matrix U over GR(2m, 2k) if and only if a is even.

Proof. Suppose there is an a×a antiorthogonal matrix U overGR(2m, 2k).
By Theorem 3.6, a should be even. For the converse statement, by
Lemma 3.7, there exist α, β such that α2+β2 = −1 in GR(2m, 2k). Let

U2 =

(
α β
β −α

)
.

Then, U2U
T
2 = −I. This proves that there is a 2× 2 matrix U such that

UUT = −I. For a = 2t, where t ≥ 1, let

Ua =

U2 0
. . .

0 U2

 .

Then, UaU
T
a = −I. This completes the proof.

Now, the remaining case is that of m ≥ 2, r = 2k + 1(k ≥ 1), and
a = 4t+2(t ≥ 0) for the existence of a×a antiorthogonal matrix U over
GR(2m, r).

Lemma 3.9. If −1 is a two square sum in GR(2m, r), then −1 is a
two square sum in GR(2ℓ, r), for all 1 ≤ ℓ ≤ m.
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Table 2. Values of α, β such that α2 + β2 = −1 in
GR(23, r) = Z23 [x]/(f(x))

r f(x) α, β (w = x+ (f(x)))
2 x2 + x+ 1 w,w + 1
3 x3 + x+ 1 -
4 x4 + x+ 1 w2 + w,w2 + 3w + 3
5 x5 + x2 + 1 -
6 x6 + x4 + x3 + x+ 1 w3 + w2 + w + 1, 2w5 + w3 + w2 + 3w + 2

Proof. By Lemma 2.2 (ii), there is a homomorphism of GR(2m, r)
onto GR(2ℓ, r). In fact, we can construct a natural surjective ring homo-
morphism as follows. Let f(x) be a monic basic irreducible polynomial
in Zpm [x] of degree r. Let

ϕ : Zpm [x] → Zpℓ [x]

be a natural projection. We define

Φ : Zpm [x]/(f(x)) → Zpℓ [x]/(f(x))

by

Φ(g(x) + (f(x))) = ϕ(g(x)) + (f(x)).

Clearly, Φ is a surjective ring homomorphism. Suppose that α2 + β2 =
−1 in GR(2m, r). Then, Φ(α2 + β2) = ϕ(−1) in GR(2ℓ, r). Therefore,
Φ(α)2 +Φ(β)2 = −1 in GR(2ℓ, r). This completes the proof.

In Table 2, we give the computational results. Here, we can see
that −1 is a two square sum in GR(23, r), r = 2, 4, 6 and −1 is not a
two square sum in GR(23, r), r = 3, 5. This result is consistent with
Lemma 3.9 and the results shown in Table 1.

Lemma 3.10. −1 is not a two square sum in GR(22, 2k + 1) for k =
1, 2, 3.

Proof. We conducted an exhaustive search. In other words, we checked
whether there is α, β such that α2+β2 = −1 for all α, β ∈ GR(22, 2k+1).
We found that −1 is not a two square sum in GR(22, 2k + 1) for k =
1, 2, 3.

Corollary 3.11. −1 is not a two square sum in GR(2m, 2k+1) for
k = 1, 2, 3 and for all m ≥ 2.

Proof. The proof follows from Lemma 3.9 and Lemma 3.10.
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Table 3. Existence of a × a antiorthogonal matrix U
over GR(pm, r)

p m r −1 : SQ −1 : TSQ Existence of U

1 (mod 4) Yes ∃ (a ≥ 1)

−1 (mod 4)
Even Yes ∃ (a ≥ 1)
Odd No Yes ∃ ⇔ a is even

1 Yes ∃ (a ≥ 1)

1 No No ∃ ⇔ a = 4t(t ≥ 1)
2 2k(k ≥ 1) No Yes ∃ ⇔ a is even

≥ 2 a is odd ⇒ @
2k + 1(k ≥ 1) No ? a = 4t ⇒ ∃(t ≥ 1)

a = 4t+ 2(t ≥ 1) ⇒ ?

Corollary 3.12. There is no 2× 2 matrix U such that UUT = −I
in GR(2m, 2k + 1) for k = 1, 2, 3 and for all m ≥ 2.

Proof. By Corollary 3.11.

From Corollary 3.12, we have the following conjecture.

Conjecture 3.13. There is no 2× 2 matrix U such that UUT = −I
in GR(2m, 2k + 1) for all k ≥ 1 and for all m ≥ 2.

In Table 3, we summarize the existence problem of an a × a an-
tiorthogonal matrix U over GR(pm, r). In Table 3 “SQ” means square
and “TSQ” means two square sum. For example, if p ≡ −1 (mod 4) and
r is odd, then −1 is not a square, but is a two square sum, and there
exists an a×a antiorthogonal matrix U if and only if a is even. We com-
pleted Table 3 except in two places, where we place question marks. One
represents the problem, “Is −1 a two square sum in GR(2m, r), (m ≥
2, r = 2k + 1(k ≥ 1))?” The other represents the problem, “Is there an
a × a antiorthogonal matrix U over GR(2m, r), (m ≥ 2, r = 2k + 1(k ≥
1), a = 4t + 2(t ≥ 0))?” We finish this section by stating our research
problem.

Research Problem: Determine the existence of an a × a matrix U such
that UUT = −I in GR(pm, r), where p = 2, m ≥ 2, r = 2k + 1(k ≥ 1),
and a = 4t+ 2(t ≥ 0).

4. Examples

In this section, we give examples of self-dual codes over GR(2m, r)
using the building-up construction.
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Example 4.1. Let C0 be a self-dual code of length four overGR(22, 2) =
Z22 [x]/(f(x)), where f(x) = x2 + x+ 1, with generator matrix

(4.1) G0 =

(
1 0 w w + 1
0 1 w + 1 3w

)
,

where w = x + (f(x)). The minimum weight of C0 is 3 and the weight
enumerator for C0 is

(4.2) W (C0) = 1 + 60x3 + 195x4.

Let

(4.3) U =

(
w w + 1

w + 1 3w

)
and

(4.4) X =

(
3 2w + 2 1 1

2w + 3 3 2w 2w + 1

)
.

Then, UUT = −I and XXT = −I. By the building-up construction in
Theorem 2.1, we have

(4.5)

G =

 1 0 0 0 3 2w + 2 1 1
0 1 0 0 2w + 3 3 2w 2w + 1
2w 3w 2w + 1 w + 3 1 0 w w + 1

2w + 1 3w + 1 0 w + 2 0 1 w + 1 3w

 ,

which generates a self-dual code C of length eight over GR(22, 2). The
minimum weight of C is 4 and the weight enumerator for C is

(4.6) W (C) = 1 + 90x4 + 480x5 + 5160x6 + 20640x7 + 39165x8.

Example 4.2. Let C0 be a self-dual code of length four overGR(22, 4) =
Z22 [x]/(f(x)), where f(x) = x4 + x+ 1, with generator matrix

(4.7) G0 =

(
1 0 w2 + w w2 + w + 1
0 1 w2 + w + 1 3w2 + 3w

)
,

and w = x + (f(x)). The minimum weight of C0 is 3 and the weight
enumerator for C0 is

(4.8) W (C0) = 1 + 1020x3 + 64515x4.

Let

(4.9) U =

(
w2 + w w2 + w + 1

w2 + w + 1 3w2 + 3w

)
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and
(4.10)

X =

(
3w3 + 3w 2w3 + 3w2 + 2w 3w2 + 2w w3 + 2w2 + 3w + 1
w2 + 2w + 1 3w3 + w2 3w2 + 2w + 3 w3 + w2 + 2w + 3

)
.

Then, UUT = −I and XXT = −I. By the building-up construction in
Theorem 2.1, we have a self-dual code C of length eight over GR(22, 4).
The minimum weight of C is 3 and the weight enumerator for C is
(4.11)
W (C) = 1+15x3+75x4+17670x5+1781370x6+130601595x7+4162566570x8.

Example 4.3. Let C0 be a self-dual code of length four overGR(23, 2) =
Z23 [x]/(f(x)), where f(x) = x2 + x+ 1, with generator matrix

(4.12) G0 =

(
1 0 w w + 1
0 1 w + 1 7w

)
,

where w = x + (f(x)). The minimum weight of C0 is 3 and the weight
enumerator for C0 is

(4.13) W (C) = 1 + 252x3 + 3843x4.

Let

(4.14) U =

(
w w + 1

w + 1 7w

)
and

(4.15) X =

(
6w + 7 5 4w + 1 4w + 4

6 4w + 3 3 4w + 7

)
.

Then, UUT = −I and XXT = −I. By the building-up construction in
Theorem 2.1, we have

(4.16)

G =

(
1 0 0 0 6w + 7 5 4w + 1 4w + 4
0 1 0 0 6 4w + 3 3 4w + 7

w + 5 6w + 7 5w 4w + 6 1 0 w w + 1
7w + 2 4w + 6 7w + 5 1 0 1 w + 1 7w

)
,

which generates a self-dual code C of length eight over GR(23, 2). The
minimum weight of C is 4 and the weight enumerator for C is

(4.17)
W (C) = 1 + 234x4 + 2592x5 + 105480x6 + 1877472x7 + 14791437x8.
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[17] G. H. Norton and A. Sălăgean, On the Hamming distance of linear codes over a

finite chain ring, IEEE Trans. Inform. Theory, 46 (2000), 1060-1067.
[18] E. Rains and N. J. A. Sloane, Self-dual codes. in: Pless V.S. Huffman W.C.

(Eds.) Handbook of Coding Theory, Elsevier, Amsterdam, The Netherlands,
1998.

*
School of Liberal Arts
Korea University of Technology and Education
Cheonan 31253, Republic of Korea
E-mail : sunghyu@koreatech.ac.kr


