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ON A GENERALIZATION OF THE MCCOY CONDITION

Young Cheol Jeon, Hong Kee Kim, Nam Kyun Kim, Tai Keun Kwak,
Yang Lee, and Dong Eun Yeo

Abstract. We in this note consider a new concept, so called π-McCoy,
which unifies McCoy rings and IFP rings. The classes of McCoy rings and
IFP rings do not contain full matrix rings and upper (lower) triangular
matrix rings, but the class of π-McCoy rings contain upper (lower) trian-
gular matrix rings and many kinds of full matrix rings. We first study the
basic structure of π-McCoy rings, observing the relations among π-McCoy
rings, Abelian rings, 2-primal rings, directly finite rings, and (π-)regular
rings. It is proved that the n by n full matrix rings (n ≥ 2) over reduced
rings are not π-McCoy, finding π-McCoy matrix rings over non-reduced
rings. It is shown that the π-McCoyness is preserved by polynomial rings
(when they are of bounded index of nilpotency) and classical quotient
rings. Several kinds of extensions of π-McCoy rings are also examined.

1. Basic properties of π-McCoy rings

Throughout this note every ring is associative with identity unless otherwise
stated. We use R[x] to denote the polynomial ring with an indeterminate x
over R. Denote the n by n full matrix ring over R by Matn(R) and the n by
n upper (resp. lower) triangular matrix ring over R by Un(R) (resp. Ln(R)).
Note Matn(R)[x] ∼= Matn(R[x]) and we will use this freely. Use Eij for the
matrix with (i, j)-entry 1 and elsewhere 0. Zn denotes the ring of integers
modulo n. The set of all nilpotent elements in R is written by N(R), and
N∗(R) denotes the prime radical of R.

McCoy [10] obtained the following in 1957. Given a commutative ring R

(†) f(x)g(x) = 0 implies f(x)c = 0 for some nonzero c ∈ R,
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where f(x) and g(x) are nonzero polynomials in R[x]. Based on this result,
Nielsen [11] called a ring R (possibly non-commutative) right McCoy when
the equation f(x)g(x) = 0 implies f(x)c = 0 for some nonzero c ∈ R, where
f(x), g(x) are nonzero polynomials in R[x]. Left McCoy rings are defined sim-
ilarly. If a ring is both left and right McCoy, then the ring is called a McCoy
ring.

Due to Cohn [5], a ring R is called reversible if ab = 0 implies ba = 0 for
a, b ∈ R. Anderson and Camillo [1], observing the rings whose zero products
commute, used the term ZC2 for what is called reversible. Reversible rings are
McCoy by Nielsen [11, Theorem 2]. A ring R is called reduced if N(R) = 0.
Reduced rings are reversible via a simple computation, and commutative rings
are clearly reversible; hence they are McCoy. We use these facts freely.

We consider the following condition that is a generalization of the condition
(†) (we see below). Given a ring R consider a condition

(∗) f(x)g(x) ∈ N(R[x]) implies f(x)c ∈ N(R[x]) for some nonzero c ∈ R,

where f(x) and g(x) are nonzero polynomials in R[x].

Proposition 1.1. (1) The condition (∗) is left-right symmetric.
(2) McCoy rings satisfy the condition (∗).

Proof. (1) Let R be a ring satisfying the condition (∗). Say f(x)g(x) ∈ N(R[x])
for nonzero polynomials f(x), g(x) in R[x]. Then g(x)f(x) ∈ N(R[x]). Since
R satisfies the condition (∗), g(x)c ∈ N(R[x]) for some nonzero c ∈ R and so
cg(x) ∈ N(R[x]). The converse can be proved similarly.

(2) Let R be a McCoy ring and f(x)g(x) ∈ N(R[x]) for nonzero polyno-
mials f(x), g(x) in R[x]. Say that (f(x)g(x))n = 0 and (f(x)g(x))n−1 6= 0
for some n ≥ 1. Then there exists m ≥ 1 such that (g(x)f(x))m = 0 and
(g(x)f(x))m−1 6= 0.

Case 1. f(x)g(x) = 0 and g(x)f(x) = 0
Since R is right McCoy, there exist a, b ∈ R\0 such that f(x)a = 0 and

g(x)b = 0.

Case 2. f(x)g(x) = 0 and g(x)f(x) 6= 0
Since R is McCoy and f(x)g(x) = 0, there exist a, b ∈ R\0 such that f(x)a =

0 and bg(x) = 0.

Case 3. f(x)g(x) 6= 0 and g(x)f(x) = 0
Since R is McCoy and g(x)f(x) = 0, there exist a, b ∈ R\0 such that af(x) =

0 and g(x)b = 0.

Case 4. f(x)g(x) 6= 0 (then n ≥ 2) and g(x)f(x) 6= 0 (then m ≥ 2)
Suppose that f(x)g(x) 6= 0 and g(x)f(x) 6= 0, and assume on the contrary

that f(x)α 6= 0 and g(x)α 6= 0 for any nonzero α ∈ R.
When n=2 we get (g(x)f(x))n−1 6= 0, and so we put n ≥ 3. If (g(x)f(x))n−1

= 0, then g(x)((f(x)g(x))n−2f(x)) = 0 implies g(x)c = 0 for some c ∈ R\0
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since R is right McCoy and (f(x)g(x))n−2f(x) 6= 0, a contradiction, entailing
(g(x)f(x))n−1 6= 0. So g(x)(f(x)g(x))n−1 is either zero or nonzero, considering
(f(x)g(x))n = 0.

If g(x)(f(x)g(x))n−1 6= 0, then f(x)d = 0 for some d ∈ R\0 since R is right
McCoy and 0 = (f(x)g(x))n = f(x)(g(x)(f(x)g(x))n−1), a contradiction. So
g(x)(f(x)g(x))n−1 = 0.

If g(x)(f(x)g(x))n−1 = 0, then g(x)e = 0 for some e ∈ R\0 since R is right
McCoy and (f(x)g(x))n−1 6= 0, a contradiction. So g(x)(f(x)g(x))n−1 6= 0.

In any situation of Case 4, we meet a contradiction. Therefore f(x)α = 0
for some α ∈ R\0 or g(x)β = 0 for some β ∈ R\0.

By Cases 1, 2, 3 and 4, f(x)α ∈ N(R[x]) or βg(x) ∈ N(R[x]) for some
α, β ∈ R\0. Thus R satisfis the condition (∗) by (1). ¤

Based on Proposition 1.1, a ring will be called π-McCoy if it satisfies the con-
dition (∗). McCoy rings are π-McCoy by Proposition 1.1(2); but the converse
need not be true by the arguments, to follow. Note that the McCoyness is not
left-right symmetric by [11, 4. Final remarks], comparing with the symmetry
of the π-McCoyness.

In the following we see basic examples for π-McCoy rings.

Lemma 1.2. (1) Let R be a ring. If there exists a nonzero ideal I of R such
that I[x] ⊆ N(R[x]), then R is π-McCoy.

(2) Every non-semiprime ring is π-McCoy.
(3) Let R be a ring with a nonzero nilpotent ideal. Then Matn(R) (n ≥ 1)

is π-McCoy.
(4) Let R be any ring. Un(R) and Ln(R) are π-McCoy when n ≥ 2.
(5) Let R, S be rings. For a bimodule RMS (resp. SMR) ( R M

0 S ) (resp.
( R 0

M S )) is π-McCoy.
(6) Let R be a ring and n be any positive integer. Then R[x]/(xn) is a

π-McCoy ring, where (xn) is the ideal generated by xn.
(7) Let R be a ring with a nonzero central element a ∈ N(R). Then Matn(R)

is π-McCoy.

Proof. (1) Let 0 6= f ∈ R[x]. If f ∈ I[x], then fr ∈ N(R[x]) for all r ∈ R. If
f /∈ I[x], then fs ∈ I[x] ⊆ N(R[x]) for all nonzero s ∈ I. Thus R is π-McCoy.

(2) Let R be a ring with N∗(R) 6= 0. Since 0 6= N∗(R)[x] = N∗(R[x]) ⊆
N(R[x]), R is π-McCoy by (1).

The rings mentioned in (3), (4), (5) and (6) are non-semiprime and so they
are π-McCoy by (2).

(7) Let M = Matn(R) and m = (mij) ∈ M with mii = a for all i and
elsewhere zero. Then MmM [x] is a nonzero nilpotent ideal of M [x] and so M
is π-McCoy by (2). ¤

There exist many semiprime rings which are not π-McCoy by Theorem 1.4
below. Matn(Zm2) is π-McCoy by Lemma 1.2(7) for every positive integer



1272 Y. C. JEON, H. K. KIM, N. K. KIM, T. K. KWAK, Y. LEE, AND D. E. YEO

m ≥ 2. However there are non-π-McCoy matrix rings (e.g., Matn(Zp) with p
prime) by Theorem 1.4, to follow.

Un(R) and Ln(R) (n ≥ 2) are π-McCoy by Lemma 1.2(4). However the
following shows that Un(R) and Ln(R) are both neither left nor right McCoy
when n ≥ 2.

Example 1.3. Let R be any ring and set U = Un(R). For the case of n = 2k
(k = 1, 2, . . .), let

f(x) = (E11 + · · ·+ E(2k−1)(2k−1)) + (−E12 − · · · − E(2k−1)(2k))x,

g(x) = (E22 + · · ·+ E(2k)(2k)) + (E12 + · · ·+ E(2k−1)(2k))x

be in U [x]. For the case of n = 2k + 1 (k = 1, 2, . . .), let

f(x) = (E11 + E33 + · · ·+ E(2k+1)(2k+1)) + (−E12 − · · · − E(2k+1)(2k))x,

g(x) = (E22 + · · ·+ E(2k)(2k)) + (E12 + · · ·+ E(2k+1)(2k))x

be in U [x]. Then f(x)g(x) = 0. Assuming f(x)M = 0 for M ∈ Un(R),
we get M = 0 by the coefficients of f(x); hence Un(R) is not right McCoy.
Taking similar polynomials, we can also conclude that Un(R) is not left McCoy.
Similarly Ln(R) is neither left nor right McCoy.

From Lemma 1.2(4) one may conjecture that the n by n full matrix ring
over any ring is π-McCoy for n ≥ 2. In the following we see that matrix rings
need not be π-McCoy.

Theorem 1.4. Let R be a reduced ring. Then the n by n full matrix ring over
R is not π-McCoy when n ≥ 2.

Proof. Let S = Matn(R) with n ≥ 2 and we will proceed by induction on n to
show the non-π-McCoyness of S. Considering polynomials

f =




1 x · · · xn−1

xn xn+1 · · · x2n−1

...
... · · · ...

xn(n−1) xn(n−1)+1 · · · xn2−1


 and g =




x x · · · x
−1 −1 · · · −1
0 0 · · · 0
...

... · · · ...
0 0 · · · 0




in S[x], we have fg = 0. Let C = (cij) ∈ S such that fC ∈ N(S[x]), say
(fC)k = 0. Note

fC =




h11 h12 · · · h1n

h11x
n h12x

n · · · h1nxn

...
... · · · ...

h11x
n(n−1) h12x

n(n−1) · · · h1nxn(n−1)


 ,

where h1j =
∑n

i=1 cijx
i−1 ∈ R[x] for j ∈ {1, 2, . . . , n}. The (1, 1)-entry of

(fC)k is

hk
11 + hk−2

11 h12h11x
n + · · ·+ hk−2

11 h1nh11x
(n−1)n + · · · = ck

11 + xh = 0
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for some h ∈ R[x] and so c11 = 0 by the reducedness of R, entailing h11 =
c21x+ · · ·+ cn1x

n−1. Note vk < v(k− 1)+n for each v ∈ {1, 2, . . . , n− 1}, and
so the degree of the first term in any polynomial in

{hk−2
11 h12h11x

n, . . . , hk−2
11 h1nh11x

(n−1)n, . . .}
is larger than the degree of hk

11. Assuming that c11 = · · · = cs1 = 0 for s ∈
{1, 2, . . . , n}, we have that the (1, 1)-entry of (fC)k is ck

(s+1)1x
sk + xsk+1p = 0

for some p ∈ R[x] and so c(s+1)1 = 0 by the reducedness of R. Inductively we
finally obtain c11 = · · · = cn1 = 0, entailing

(∗) fC =




0 h12 · · · h1n

0 h12x
n · · · h1nxn

...
... · · · ...

0 h12x
n(n−1) · · · h1nxn(n−1)


 .

Next assume that cij = 0 for all i ∈ {1, 2, . . . , n} and j ∈ {1, . . . , s}, based on
the matrix (∗). Then we will show that ci(s+1) = 0 for all i ∈ {1, 2, . . . , n}.
Note that the (1, s + 1)-entry of (fC)k is

(hk
1(s+1)x

sn + hk−2
1(s+1)h1(s+2)h1(s+1)x

(s+1)n + · · ·
+ hk−2

1(s+1)h1nh1(s+1)x
(n−1)n)x(k−2)sn + · · ·

= ck
1(s+1)x

(k−1)sn + x(k−1)sn+1w = 0

for some w ∈ R[x] and so c1(s+1) = 0 by the reducedness of R, entailing
h1(s+1) = c2(s+1)x + · · ·+ cn(s+1)x

n−1. By the same method as the case of the
(1, 1)-entry, we obtain c1(s+1) = · · · = cn(s+1) = 0. Now the induction gives
that all cij ’s are zero, concluding that S is not π-McCoy. ¤

By Lemma 1.2(3), if R is non-semiprime, then Matn(R) (n ≥ 2) is π-McCoy.
Note that reduced rings are semiprime. From Theorem 1.4 one may suspect
that the n by n matrix ring over a semiprime ring is not π-McCoy for n ≥ 2.
However the following example erases the possibility.

Example 1.5. Let S be a reduced ring, n be a positive integer and Rn be the
2n by 2n upper triangular matrix ring over S. Define a map σ : Rn → Rn+1

by A 7→ ( A 0
0 A ), then Rn can be considered as a subring of Rn+1 via σ (i.e.,

A = σ(A) for A ∈ Rn). Notice that D = {Rn, σnm}, with σnm = σm−n

whenever n ≤ m, is a direct system over I = {1, 2, . . .}. Set R = lim−→Rn be the
direct limit of D. Then R is a semiprime ring by the method in [8, Example
1.2]. Consider the following two-sided ideal

I = {A ∈ R | the diagonal entries of A are zero}.
Now let J = Matn(I) and f(x) = A0 + A1x + · · ·+ Amxm ∈ J [x]. Then there
exists k ≥ 1 such that Ai ∈ Rk for all i = 0, 1, . . . , m; hence f(x) is nilpotent,
entailing that J [x] is nil. By Lemma 1.2(1), Matn(R) (n ≥ 2) is π-McCoy.
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Note. Let R be a right McCoy ring and suppose that 0 6= f(x) =
∑m

i=0 aix
i,

0 6= g(x) ∈ R[x] satisfy f(x)g(x) = 0. Then since R is right McCoy, there is
0 6= c ∈ R with f(x)c = 0; hence (

∑m
i=0 Rai)c = 0 and so

∑m
i=0 Rai contains

no right regular element (of course
∑m

i=0 Rai $ R). Thus if there exist 0 6=
f(x) =

∑m
i=0 aix

i, 0 6= g(x) ∈ R[x] with f(x)g(x) = 0 and
∑m

i=0 Rai contains
a right regular element, then R cannot be right McCoy.

In the following we show by Note that any n by n (n ≥ 2) full matrix ring
is neither left nor right McCoy over any ring.

Proposition 1.6. Let R be any ring. Matn(R) (n ≥ 2) is neither left nor right
McCoy.

Proof. Let R be any ring and M = Matn(R) for any n ≥ 2. For the case of
n = 2k (k = 1, 2, . . .), let

f(x) = (E12 + · · ·+ E(2k−1)(2k)) + (E11 + · · ·+ E(2k−1)(2k−1))x,

g(x) = (E12 + · · ·+ E(2k−1)(2k)) + (−E22 − · · · − E(2k)(2k))x

in M [x]. For the case of n = 2k + 1 (k = 1, 2, . . .), let

f(x) = (E12 + · · ·+ E(2k+1)(2k)) + (E11 + E33 + · · ·+ E(2k+1)(2k+1))x,

g(x) = (E12 + · · ·+ E(2k+1)(2k)) + (−E22 − · · · − E(2k)(2k))x

in M [x]. Then we get f(x)g(x) = 0, but
∑1

i=0 Mai contains the identity; hence
M is not right McCoy by Note. Similarly we also conclude that M is not left
McCoy. ¤

Due to Bell [2], a ring R is called IFP if ab = 0 implies aRb = 0. A ring R
is called 2-primal if N∗(R) = N(R), according to Birkenmeier et al. [3]. Note
that a ring R is 2-primal if and only if R/N∗(R) is reduced. It can be easily
checked that reversible rings are IFP and IFP rings are 2-primal.

Proposition 1.7. 2-primal rings are π-McCoy.

Proof. Let R be a 2-primal ring. If N∗(R) = 0, then R is reduced and so R is
(π-)McCoy. If N∗(R) 6= 0, then R is also π-McCoy by Lemma 1.2(2). ¤

Using the construction in Section 3 in [11], there can be an IFP ring that is
not one-sided McCoy. A ring is called Abelian if every idempotent is central.
Note that IFP rings are Abelian. The ring in [4, Theorem 7.1] is McCoy but
not Abelain. Thus McCoy rings also need not be IFP. By Proposition 1.7, the
concept of π-McCoyness unifies IFP rings and McCoy rings.

The converse of Proposition 1.7 need not hold. The π-McCoy ring R in
Example 1.5 is not 2-primal by [8, Example 1.2]. It is natural to ask whether
2-primal rings are one-sided McCoy. However the answer is negative as can be
seen by upper triangular matrix rings over reduced rings. Consider U = Un(R)
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(n ≥ 2) over a reduced ring R. Then U is 2-primal since N(U) = N∗(U). But
U is neither left nor right McCoy by Example 1.3.

A ring R is called directly finite if ab = 1 implies ba = 1 for a, b ∈ R. 2-
primal rings and right McCoy rings are directly finite by [3, Proposition 2.10]
and [4, Theorem 5.2], respectively. So one may conjecture that π-McCoy rings
are directly finite. However the following erases the possibility.

Example 1.8. Let F be a field and V be an infinite dimensional vector
space over F with a basis {v1, v2, . . . }. Consider the endomorphism ring
R = EndF (V) and define f, g ∈ R such that fv1 = 0, fvj = vj−1 for j = 2, 3, . . .
and gvi = vi+1 for i = 1, 2, . . .. Then fg = 1 but gf 6= 1. Now consider Un(R)
for n ≥ 2. Then Un(R) is π-McCoy by Lemma 1.2(4). Take a = (aij) and
b = (bij) in Un(R) such that aii = f for all i, elsewhere zero, and bii = g for all
i, elsewhere zero. Then ab = 1 but ba 6= 1; hence Un(R) is not directly finite.

Abelian rings are clearly directly finite and so one may ask whether Abelian
rings are π-McCoy. But the following gives a negative answer.

Example 1.9. There exists an Abelian ring that is not π-McCoy.
Let A be the 3 by 3 full matrix ring over the power series ring F [[t]] over a

field F . Let

B = {M = (mij) ∈ A | mij ∈ tF [[t]] for 1 ≤ i, j ≤ 2 and

mij = 0 for i = 3 or j = 3}
and

C = {M = (mij) ∈ A | mii ∈ F and mij = 0 for i 6= j}.
Let R be the subring of A generated by B and C. Let F = Z2. Note that every
element of R is of the form( a+f1 f2 0

f3 a+f4 0
0 0 a

)
for some a ∈ F and fi ∈ tF [[t]] (i = 1, 2, 3, 4).

Consider two polynomials over R

f(x) =




t tx 0
tx2 tx3 0
0 0 0


 and g(x) =




tx tx 0
−t −t 0
0 0 0


 ∈ R[x].

Then f(x)g(x) = 0 but there cannot exist r ∈ R such that f(x)r ∈ N(R[x]),
concluding that R is not π-McCoy.

Next we will show that R is Abelian. Let e2 = e for e =
( a+f1 f2 0

f3 a+f4 0
0 0 a

)
∈ R.

Then we get a2 = a and

f2
1 + f2f3 = f1,(1)

f1f2 + f2f4 = f2,(2)

f1f3 + f3f4 = f3,(3)

f2f3 + f2
4 = f4.(4)
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(f1 + f4)f2 = f2 from (2), and so f2 = 0 since fi’s are in tF [[t]]. Then f1 = 0
follows from (1), entailing f3 = 0 = f4 from (3) and (4). Consequently we have
that every idempotent of R is of the form e =

(
a 0 0
0 a 0
0 0 a

)
∈ R. Thus R is Abelian.

A ring R is called (von Neumann) regular if for each a ∈ R there exists
x ∈ R such that a = axa. Note that a ring R is Abelian regular if and only if R
is reduced regular [6, Theorem 3.2]. Consequently a regular ring R is reduced
if and only if R is reversible if and only if R is Abelian if and only if R is
2-primal. Recall that the class of π-McCoy rings contains both McCoy rings
and 2-primal rings. So one may hope that regular π-McCoy rings are both
McCoy and 2-primal. But in the following we see a negative case.

Example 1.10. Let S be an Abelian regular ring, n be a positive integer, and
Rn be the 2n by 2n full matrix ring over S. Define a map σ : Rn → Rn+1

by A 7→ ( A 0
0 A ), then Rn can be considered as a subring of Rn+1 via σ (i.e.,

A = σ(A) for A ∈ Rn). Notice that D = {Rn, σnm}, with σnm = σm−n

whenever n ≤ m, is a direct system over I = {1, 2, . . .}. Set R = lim−→Rn be the
direct limit of D.

For f(x), g(x) ∈ R[x] with f(x)g(x) = 0, assume on the contrary that there
exists 0 6= c ∈ R with f(x)c = 0. There exists m ≥ 1 such that f(x), g(x), c ∈
Rm[x]. However Proposition 1.6 implies that Rm cannot be neither left nor
right McCoy, a contradiction. Thus R is not right McCoy. Similarly R is not
left McCoy. Next it is clear that R is not 2-primal since E12 + E21 is not
nilpotent.

Now we claim that R is π-McCoy. Assume f(x)g(x) ∈ N(R[x]) for 0 6=
f(x), g(x) ∈ R[x]. Then there exists k ≥ 1 such that f(x), g(x) ∈ Rk[x], and so
we consider the matrix E1(2k+1) in Rk+1. It then follows (f(x)E1(2k+1))2

k+1
= 0,

obtaining that R is π-McCoy.

Lastly in this section we observe subrings and homomorphic images of π-
McCoy rings.

Proposition 1.11. (1) The class of π-McCoy rings is not closed under sub-
rings.

(2) The class of π-McCoy rings is not closed under homomorphic images.

Proof. (1) Let R be the ring, in Theorem 1.4, which is not π-McCoy. Next
consider U2(R). Then U2(R) is π-McCoy by Lemma 1.2(4), but R is a subring
of U2(R).

(2) Let R be the ring of quaternions with integer coefficients. Then R is a
domain, so (π-)McCoy. However for any odd prime integer q, the ring R/qR
is isomorphic to Mat2(Zq) by the argument in [7, Exercise 2A]. Thus R/qR is
not π-McCoy by Theorem 1.4 when q ∈ {3, 5, 11}. ¤

Let S be a reduced ring and set A = Un(S), B = Matn(S) for n ≥ 2. Then
R = ( A B

0 B ) is π-McCoy by Lemma 1.2(4); but R
I
∼= Matn(S) is not π-McCoy
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by Theorem 1.4 when I = ( A B
0 0 ). This ring is another counterexample for

Proposition 1.11(2).

2. More examples of π-McCoy rings

In this section we examine several kinds of extensions of π-McCoy rings. We
first consider the case of classical quotient rings. A ring R is called right Ore
if given a, b ∈ R with b regular there exist a1, b1 ∈ R with b1 regular such that
ab1 = ba1. It is well-known that R is a right Ore ring if and only if the classical
right quotient ring of R exists.

Theorem 2.1. Let R be a right Ore ring with its classical right quotient ring
Q. If R is π-McCoy, then so is Q.

Proof. Denote the set of all regular elements in R by C(R). We use [9, Propo-
sition 2.1.16] freely. Suppose F (x)G(x) ∈ N(Q[x]) for F (x), G(x) ∈ Q[x]\0.
Say that (F (x)G(x))k = 0 and (F (x)G(x))k−1 6= 0 for some k ≥ 1. We can
write F (x) =

∑m
i=0 aiu

−1xi and G(x) =
∑n

j=0 bjv
−1xj for some ai’s, bj ’s in R

and u, v ∈ C(R).

Case 1. F (x)G(x) = 0 and G(x)F (x) = 0

Consider F (x)G(x) = 0. Since R is right Ore, u−1bj = b′ju
−1
1 (j = 1, . . . , n)

for some b′j ∈ R and u1 ∈ C(R). Letting f(x) =
∑m

i=0 aix
i and g1(x) =∑n

j=0 b′jx
j , we have f(x)g1(x) = 0. Since R is π-McCoy, there exists α ∈ R\0

with f(x)α ∈ N(R[x]) ⊆ N(Q[x]) and hence

F (x)uα = f(x)u−1uα = f(x)α ∈ N(Q[x])

for some nonzero uα ∈ Q.
For the case of G(x)F (x) = 0, a similar computation finds nonzero vβ ∈ Q

such that G(x)vβ ∈ N(Q[x]).

Case 2. F (x)G(x) = 0 and G(x)F (x) 6= 0
Note that G(x)F (x)G(x) = 0 and F (x)G(x)F (x) = 0. Letting H(x) =

G(x)F (x), we have H(x)G(x) = 0 and F (x)H(x) = 0 with H(x) 6= 0. Say
H(x) =

∑`
s=0 csw

−1xs with cs’s in R and w ∈ C(R).
Consider H(x)G(x) = 0. Since R is right Ore, w−1bj = djw

−1
1 for some dj ’s

in R and w1 ∈ C(R). Letting h(x) =
∑`

s=0 csx
s and g2(x) =

∑n
j=0 djx

j , we
have h(x)g2(x) = 0. Since R is π-McCoy, there exists γ ∈ R\0 with γg2(x) ∈
N(R[x]) ⊆ N(Q[x]). Note g2(x)γ ∈ N(Q[x]) and

w−1G(x)w1γ = g2(x)w−1
1 w1γ = g2(x)γ ∈ N(Q[x]).

It then follows that G(x)w1γw−1 ∈ N(Q[x]) for some nonzero w1γw−1 ∈ Q.
For the case of F (x)H(x) = 0, the computation in Case 1 finds nonzero

q ∈ Q such that F (x)q ∈ N(Q[x]).

Case 3. F (x)G(x) 6= 0 and G(x)F (x) = 0
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Note that F (x)G(x)F (x) = 0 and G(x)F (x)G(x) = 0. Letting I(x) =
F (x)G(x), we have I(x)F (x) = 0 and G(x)I(x) = 0 with I(x) 6= 0.

Then the computation in Case 2 gives q1, q2 ∈ Q\0 such that F (x)q1,
G(x)q2 ∈ N(Q[x]).

Case 4. F (x)G(x) 6= 0 and G(x)F (x) 6= 0
Suppose F (x)G(x) 6= 0 and G(x)F (x) 6= 0. Then there exist k ≥ 2 and

h ≥ 2 such that (F (x)G(x))k = 0, (F (x)G(x))k−1 6= 0, (G(x)F (x))h = 0 and
(G(x)F (x))h−1 6= 0.

Assume on the contrary that F (x)α /∈ N(Q[x]) and G(x)α /∈ N(Q[x]) for
any nonzero α ∈ Q.

Since R is right Ore, u−1bj = b′ju
−1
1 and v−1ai = a′iv

−1
1 for some a′i, b

′
j ∈ R

and u1, v1 ∈ C(R). Letting f(x) =
∑m

i=0 aix
i, f1(x) =

∑m
i=0 a′ix

i, g(x) =∑n
j=0 bjx

j and g1(x) =
∑n

j=0 b′jx
j , we obtain F (x)G(x) = f(x)g1(x)(vu1)−1

and G(x)F (x) = g(x)f1(x)(uv1)−1. Let v2 = uv1 and u2 = vu1. Also since R
is right Ore, u−1

2 (F (x)G(x))k−1 = A(x)u−1
3 and v−1

2 (G(x)F (x))h−1 = B(x)v−1
3

for some A(x), B(x) ∈ R[x] and some u3, v3 ∈ C(R). Here A(x) and B(x) are
both nonzero because (F (x)G(x))k−1 and (G(x)F (x))h−1 are both nonzero.
Notice that

f(x)g1(x)A(x) = f(x)g1(x)u−1
2 (F (x)G(x))k−1u3 = (F (x)G(x))ku3 = 0

and

g(x)f1(x)B(x) = g(x)f1(x)v−1
2 (G(x)F (x))h−1v3 = (G(x)F (x))hv3 = 0.

But A(x) and B(x) are both nonzero. So there are β, γ ∈ R\0 such that
f(x)g1(x)β ∈ N(R[x]) and g(x)f1(x)γ ∈ N(R[x]), since R is π-McCoy. Note
that

g1(x)β = g1(x)u−1
2 u2β = u−1g(x)v−1u2β = u−1G(x)u2β

and
f1(x)γ = f1(x)v−1

2 v2γ = v−1f(x)u−1v2γ = v−1F (x)v2γ.

Thus if f1(x)γ ∈ N(Q[x]) and g1(x)β ∈ N(Q[x]), then F (x)v2γv−1 ∈ N(Q[x])
and G(x)u2βu−1 ∈ N(Q[x]) with v2γv−1, u2βu−1 ∈ Q\0. This is a contra-
diction to assumption, entailing f1(x)γ /∈ N(Q[x]) and g1(x)β /∈ N(Q[x]).
Since R is π-McCoy, f(x)δ ∈ N(R[x]) and g(x)ζ ∈ N(R[x]) for some δ, ζ ∈
R\0. It then follows that F (x)uδ = f(x)u−1uδ = f(x)δ ∈ N(R[x]) and
G(x)vζ = g(x)v−1vζ = g(x)ζ ∈ N(R[x]) with uδ, vζ ∈ Q\0, a contradiction
to the assumption. Therefore F (x)α ∈ N(Q[x]) or G(x)β ∈ N(Q[x]) for some
α, β ∈ Q\0.

By Cases 1, 2, 3 and 4, F (x)α ∈ N(Q[x]) or βG(x) ∈ N(Q[x]) for some
α, β ∈ Q\0. Thus Q is π-McCoy. ¤

Next we observe the case of polynomial rings.

Theorem 2.2. Let R be a ring and suppose that (fc)h = 0 for some 0 6= c ∈ R
and h ≤ k whenever (fg)k = 0 for nonzero f, g in R[x]. Then R[x] is π-McCoy.
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Proof. Let S = R[x]. Let R be π-McCoy and suppose that f(t)g(t) ∈ N(S[t])
for nonzero polynomials f(t) = f0 +f1t+ · · ·+fmtm and g(t) = g0 +g1t+ · · ·+
gntn in S[t], where S[t] is the polynomial ring with an indeterminate t over S.
Say (f(t)g(t))` = 0. Set k = deg(f0) + · · ·+ deg(fm) + deg(g0) + · · ·+ deg(gn)
and replace t by xh with h = k`+1. Then the set of coefficients of the fi’s and
gj ’s coincides with the set of coefficients of f(xh) and g(xh); hence f(xh) and
g(xh) are nonzero polynomials in R[x]. Moreover we have

(f(xh)g(xh))` =
(m+n)`∑

s=0

∑

i1+···+i`=s

pi1qi1 · · · pi`
qi`

(xh)s,

where pij
∈ {f0, . . . , fm} and qij

∈ {g0, . . . , gn} for all ij ’s. But these

pi1qi1 · · · pi`
qi`

’s

are equal to those of (f(t)g(t))`, and so (f(xh)g(xh))` = 0. Now by hypothesis,
(f(xh)c)v = 0 for some 0 6= c ∈ R and v ≤ `. This implies that (f(t)c)v = 0
with 0 6= c ∈ S since the coefficients of (f(xh)c)v = 0 and (f(t)c)v = 0 are
equal. Thus R[x] is π-McCoy. ¤

Proposition 2.3. A ring R is π-McCoy if R[x] is π-McCoy.

Proof. Let S = R[x] be π-McCoy and suppose that f(x)g(x) ∈ N(R[x])
for nonzero polynomials f(x), g(x) in R[x]. This can be converted to that
f(t)g(t) ∈ N(S[t]) for nonzero polynomials f(t), g(t) in S[t]. Since S is π-
McCoy, f(t)h(x) ∈ N(S[t]) for some 0 6= h(x) ∈ R[x], say (f(t)h(x))k = 0.
Note that f(t) ∈ R[t]. Here letting h(x) =

∑n
i=0 aix

i ∈ R[x] (we can set
a0 6= 0, dividing by x if necessary), then we get f(t)a0 ∈ N(R[t]) from
0 = (f(t)h(x))k = (f(t)a0)k + h1x + · · · + hnkxnk with h1, . . . , hnk ∈ R[t].
This implies that f(x)a0 ∈ N(R[x]) and 0 6= a0 ∈ R, showing that R is π-
McCoy. ¤

The index of nilpotency of a nilpotent element x in a ring R is the least
positive integer n such that xn = 0. The index of nilpotency of a subset I of R
is the supremum of the indices of nilpotency of all nilpotent elements in I. If
such a supremum is finite, then I is said to be of bounded index of nilpotency.

From Theorem 2.2 and Proposition 2.3 we can obtain the following.

Corollary 2.4. Let R be a ring of bounded index of nilpotency. Then R is
π-McCoy if and only if R[x] is π-McCoy.

In the following we deal with a case similar to the classical quotient rings.

Proposition 2.5. Let R be a ring and ∆ be a multiplicatively closed subset
of R consisting of central regular elements. Then R is π-McCoy if and only if
∆−1R is π-McCoy.
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Proof. Suppose that R is π-McCoy. Let F (x) =
∑m

i=0 αix
i and G(x) =∑n

j=0 βjx
j be nonzero polynomials in (∆−1R)[x] such that

F (x)G(x) ∈ N((∆−1R)[x]),

where αi = aiu
−1, βj = bjv

−1 with ai, bj ∈ R and u, v ∈ ∆. Since ∆ is
contained in the center of R, we have F (x)G(x) = u−1(a0 + a1x + · · · +
amxm)v−1(b0 + b1x + · · · + bnxn) = (uv)−1(a0 + a1x + · · · + amxm)(b0 +
b1x + · · · + bnxn) ∈ N((∆−1R)[x]). Let f(x) = a0 + a1x + · · · + amxm and
g(x) = b0+b1x+· · ·+bnxn. Then f(x) and g(x) are nonzero polynomials in R[x]
with f(x)g(x) ∈ N(R[x]). Since R is right π-McCoy, there exists 0 6= c ∈ R
such that f(x)c ∈ N(R[x]). Hence F (x)c = u−1f(x)c ∈ N((∆−1R)[x]), con-
cluding that ∆−1R is π-McCoy.

Conversely assume that ∆−1R is π-McCoy. Let f(x) =
∑m

i=0 aix
i and g(x)=∑n

j=0 bjx
j be nonzero polynomials in R[x] such that f(x)g(x) ∈ N(R[x]). Since

∆−1R is π-McCoy, f(x)(cw−1) ∈ N((∆−1R)[x]) for some 0 6= cw−1 ∈ ∆−1R.
Thus we get f(x)c ∈ N(R[x]) and 0 6= c ∈ R, showing that R is π-McCoy. ¤

Corollary 2.6. Let R be a ring. Then R[x] is π-McCoy if and only if so is
R[x;x−1].

Proof. Note that ∆ = {1, x, x2, . . .} is a multiplicatively closed subset of R[x]
consisting of central regular elements. So Proposition 2.5 gives the proof since
R[x;x−1] = ∆−1R[x]. ¤

We consider several basic examples as follows.

Proposition 2.7. Let {Ri | i ∈ I} be a class of rings.
(1) The direct product and direct sum of Ri’s are π-McCoy when some Ri

is non-semiprime.
(2) Suppose that N∗(Ri) = 0 for all i ∈ I. The direct product of Ri’s is

π-McCoy if Ri is π-McCoy for all i ∈ I.
(3) Suppose that N∗(Ri) = 0 for all i ∈ I. The direct sum of Ri’s is π-McCoy

if Ri is π-McCoy for all i ∈ I.
(4) The direct sum of Ri’s is π-McCoy if |I| = ∞.

Proof. (1) If some Ri is non-semiprime, then the direct product and direct sum
of Ri’s are also non-semiprime; hence they are π-McCoy by Lemma 1.2(2).

(2) Let R be the direct product of Ri and suppose f(x)g(x) ∈ N(R[x])
with 0 6= f(x) =

∑m
j=0(a(j)i)xj , 0 6= g(x) =

∑n
k=0(b(k)i)xk ∈ R[x]. Letting

fi(x) =
∑m

j=0 a(j)ix
j and gi(x) =

∑n
k=0 b(k)ix

k we can write f(x) = (fi(x))
and g(x) = (gi(x)).

If fh(x) = 0 for some h ∈ I, then take r = (ri) ∈ R be such that rh = 1 and
zero elsewhere, obtaining f(x)r = 0 with r 6= 0. So assume that fi(x) 6= 0 for
all i ∈ I. Since g(x) 6= 0, there exists k ∈ I such that gk(x) 6= 0. Since Rk is
π-McCoy by hypothesis, there exists 0 6= c ∈ Rk such that fk(x)c ∈ N(Rk[x]).
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Let r = (ri) ∈ R be such that rk = c and zero elsewhere. Then f(x)r ∈ N(R[x])
with r 6= 0, concluding that R is π-McCoy.

(3) The proof is almost same as (2).
(4) Let R be the direct sum and 0 6= f(x) =

∑m
j=0(a(j)i)xj ∈ R[x]. Since

|I| = ∞, there exists k ∈ I such that a(j)k = 0, the coordinate of (a(j)i) in
Rk, for all j. Take r = (ri) ∈ R be such that rk = 1 and zero elsewhere. Then
f(x)r = 0 with r 6= 0 and so R is π-McCoy. ¤

Next we see the direct limit case.

Proposition 2.8. The classes of π-McCoy rings and right (or left) McCoy
rings are closed under direct limits.

Proof. Let D = {Ri, αij} be a direct system of π-McCoy rings Ri for i ∈ I and
ring homomorphisms αij : Ri → Rj for each i ≤ j satisfying αij(1) = 1, where
I is a directed partially ordered set. Set R = lim−→Ri be the direct limit of D
with ιi : Ri → R and ιjαij = ιi. We will show that R is a π-McCoy ring. Take
a, b ∈ R. Then a = ιi(ai), b = ιj(bj) for some i, j ∈ I and there is k ∈ I such
that i ≤ k, j ≤ k. Define

a + b = ιk(αik(ai) + αjk(bj)) and ab = ιk(αik(ai)αjk(bj)),

where αik(ai) and αjk(bj) are in Rk. Then R forms a ring with 0 = ιi(0) and
1 = ιi(1).

Now let f, g ∈ R[x] be nonzero polynomials such that fg ∈ N(R[x]). There
is k ∈ I such that f, g ∈ Rk[x] via ιi’s and αij ’s; hence we get fg ∈ N(Rk[x]).
Since Rk is π-McCoy, there exists 0 6= ck ∈ Rk such that fck ∈ N(Rk[x]). Put
c = ιk(ck). Then fc ∈ N(R[x]) with nonzero c, entailing R being π-McCoy.
The proof for right (or left) McCoy rings is similar. ¤
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