• Title/Summary/Keyword: matrix algebras

Search Result 37, Processing Time 0.018 seconds

(weak) R-mingle: toward a fuzzy-relevance logic

  • Yang, Eun-Suk
    • Korean Journal of Logic
    • /
    • v.10 no.2
    • /
    • pp.125-146
    • /
    • 2007
  • This paper investigates the relevance system R-mingle (RM) as a a fuzzy-relevance logic. It shows that RM is fuzzy in Cintula's sense, i.e., RM is complete with respect to linearly ordered L-matrices (or L-algebras). More exactly, we first introduce RM and its weak versions wwRM and wRM. We next provide algebraic and matrix completeness results for them.

  • PDF

DECOMPOSITION OF THE KRONECKER SUMS OF MATRICES INTO A DIRECT SUM OF IRREDUCIBLE MATRICES

  • Gu, Caixing;Park, Jaehui;Peak, Chase;Rowley, Jordan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.637-657
    • /
    • 2021
  • In this paper, we decompose (under unitary similarity) the Kronecker sum A ⊞ A (= A ⊗ I + I ⊗ A) into a direct sum of irreducible matrices, when A is a 3×3 matrix. As a consequence we identify 𝒦(A⊞A) as the direct sum of several full matrix algebras as predicted by Artin-Wedderburn theorem, where 𝒦(T) is the unital algebra generated by Tand T*.

KEY EXCHANGE PROTOCOL USING MATRIX ALGEBRAS AND ITS ANALYSIS

  • CHO SOOJIN;HA KIL-CHAN;KIM YOUNG-ONE;MOON DONGHO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1287-1309
    • /
    • 2005
  • A key exchange protocol using commutative subalge-bras of a full matrix algebra is considered. The security of the protocol depends on the difficulty of solving matrix equations XRY = T, with given matrices R and T. We give a polynomial time algorithm to solve XRY = T for the choice of certain types of subalgebras. We also compare the efficiency of the protocol with the Diffie-Hellman key exchange protocol on the key computation time and the key size.

A CONSTRUCTION OF MAXIMAL COMMUTATIVE SUBALGEBRA OF MATRIX ALGEBRAS

  • Song, Young-Kwon
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.241-250
    • /
    • 2003
  • Let (B, m$_{B}$, k) be a maximal commutative $textsc{k}$-subalgebra of M$_{m}$(k). Then, for some element z $\in$ Soc(B), a k-algebra R = B[X,Y]/I, where I = (m$_{B}$X, m$_{B}$Y, X$^2$- z,Y$^2$- z, XY) will create an interesting maximal commutative $textsc{k}$-subalgebra of a matrix algebra which is neither a $C_1$-construction nor a $C_2$-construction. This construction will also be useful to embed a maximal commutative $textsc{k}$-subalgebra of matrix algebra to a maximal commutative $textsc{k}$-subalgebra of a larger size matrix algebra.gebra.a.

STRUCTURES OF IDEMPOTENT MATRICES OVER CHAIN SEMIRINGS

  • Kang, Kyung-Tae;Song, Seok-Zun;Yang, Young-Oh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.721-729
    • /
    • 2007
  • In this paper, we have characterizations of idempotent matrices over general Boolean algebras and chain semirings. As a consequence, we obtain that a fuzzy matrix $A=[a_{i,j}]$ is idempotent if and only if all $a_{i,j}$-patterns of A are idempotent matrices over the binary Boolean algebra $\mathbb{B}_1={0,1}$. Furthermore, it turns out that a binary Boolean matrix is idempotent if and only if it can be represented as a sum of line parts and rectangle parts of the matrix.

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

  • Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.195-201
    • /
    • 1992
  • Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

  • PDF

ON GENERALIZED GRADED CROSSED PRODUCTS AND KUMMER SUBFIELDS OF SIMPLE ALGEBRAS

  • Bennis, Driss;Mounirh, Karim;Taraza, Fouad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.939-959
    • /
    • 2019
  • Using generalized graded crossed products, we give necessary and sufficient conditions for a simple algebra over a Henselian valued field (under some hypotheses) to have Kummer subfields. This study generalizes some known works. We also study many properties of generalized graded crossed products and conditions for embedding a graded simple algebra into a matrix algebra of a graded division ring.

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF

STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.443-456
    • /
    • 2005
  • Let G be a Lie group, let L(G) be its Lie algebra, and let exp : $L(G){\rightarrow}G$ denote the exponential mapping. For $S{\subseteq}G$, we define the tangent set of S by $L(S)\;=\;\{X\;{\in}\;L(G)\;:\;exp(tX)\;\in\;S\;for\;all\;t\;{\geq}\;0\}$. We say that a semigroup S is strictly infinitesimally generated if S is the same as the semigroup generated by exp(L(S)). We find a tangent set of the semigroup of all non-singular totally positive matrices and show that the semigroup is strictly infinitesimally generated by the tangent set of the semigroup. This generalizes the familiar relationships between connected Lie subgroups of G and their Lie algebras