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(weak) R-mingle: toward a
fuzzy-relevance logic”

EUNSUK YANG

This paper investigates the relevance system R-mingle (RM) as a
fuzzy-relevance logic. It shows that RM is fuzzy in Cintula's sense, ie., RM
is complete with respect to linearly ordered L-matrices {or L-algebras). More
exactly, we first introduce RM and its weak versions wwRM and wRM. We
next provide algebraic and matrix completeness results for them,
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1. Introduction

The aim of this paper is to extend the world of fuzzy
logic to the realm of relevance logics. For this purpose,
recall first some recent historical facts in fuzzy logic. In the
last decade Hajek [6] introduced the basic fuzzy logic BL
and investigated the well-known infinite-valued systems L
(Lukasiewicz logic), G (Go6del-Dummett logic), and II
(Product logic) as its extensions. BL is the residuated fuzzy
logic capturing the tautologies of continuous t-norms and
their residua. Esteva and Godo [4] introduced the monoidal
t-norm logic MTL, which copes with the logic of
left-continuous t-norms and their residua, as a weakening
of BL (and a strengthening of Affine multiplicative additive
intuitionistic linear logic AMAILL introduced by Hohle [7]).

The system R of Relevance with “mingle” (RM) has
been treated as a relevance logic, and Dunn [3] algebraically
investigated RM capturing the tautologies on denumerable
infinite sets of truth values. Then RM seems both fuzzy
and relevant. However, there are some difficulties in
regarding it as a fuzzy-relevance logic. Because while all
the above fuzzy logics are logics of t-norms in the sense
that their algebraic counterparts satisfy all of the conditions
of a t-norm, RM is not.

The intergral condition (Int) that the greatest element 1



(weak) R-mingle: toward a fuzzy-relevance logic 127

is the unit element (1 * x = x for all x € [0, 1]) does not
hold in Sugihara-algebras, whose class (more exactly the
class of Sugihara-matrices) characterizes RM (see [3]). RM
drops the divisibility axiom (D) (¢ & (d — w)) <« (b A )
for BL related with the continuity of a t-norm, its
weakening (wD) (¢ & (p — y)) — (p A y) for MTL, and
the &-absurdity (&-AB) (¢ & ~¢) — v for AMAILL. It
also omits the &-elimination (&-E) (¢ & w) — ¢, a
common axiom of all the above (t-norm) logics, from which
the weakening (W) & — (¢ — ¢) can be proved using the
“residuation” below and vice versa. Note that (&-E)
concerns the above integral condition of a t-norm in the
sense that (Int) is the algebraic counterpart of (&-E).
Unfortunately, (W) (and so (&-E)) is(are) rejected not
merely in RM, but in relevance systems such as R because
a logic L with (W) allows irrelevance between ¢ and v in
case ¢ — y is a theorem.

It will be interesting to state that Sugihara algebras
instead satisfy all the conditions of a uninorm, which is a
generalization of t-norm where the identity can lie in
anywhere in [0, 1]. This means that using the properties of
it, we may provide algebraic semantics for RM.

In this paper we shall first introduce wwRM and wRM,,
briefly (w)wRM. (w)wRM is a weak version of RM in the
sense that it has weak negation in place of strong negation
of RM. (w)wRM is relevant in the weak sense that it
satisfies the weak relevance principle (WRP) in [3] that ¢
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— y is a theorem only if either (i) & and y share a
sentential variable or (ii) both ~¢ and w are theorems;
wRM is fuzzy in the sense that it satisfies the fuzzy
condition (of a logic) of Cintula in [2] that the logic L is
complete with respect to (w.r.t.) linearly ordered L-matrices
(or L-algebras). (w)wRM is a system belonging to the
class of weakly implicative (fuzzy) logics (WI(F)L)
investigated by Cintula [2] in the sense that the former
satisfies the conditions for a logic to be called WI(F)L. We
verify this by investigating the class of (w)wWRM and its
extensions such as RM ((W)wRM) as the subclass of
WI(F)L. We shall provide algebraic and matrix completeness
results for a (w)wRM L.

While wRM is fuzzy-relevant, it is not necessary that
all of the schematic extensions of wRM are fuzzy-relevant.
Thus the completeness of WRM does not ensure that any
system in that class is relevant. We shall consider the
relevant and irrelevant subclasses of wWRM R-wRM and
P-wRM.

For convenience, we shall adopt the notation and
terminology similar to those in [2], [4], [5], and [6], and
assume being familiar with them (together with results
found in them).
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2. Syntax

We base logics on a countable propositional language
with formulas FOR built inductively as usual from a set of
propositional variables VAR, binary connectives —, &, A,
V, and constants F, f, t. Further definable connectives are:

dfl. ~¢ = ¢ — f,
di2. ¢ < w = (0 = ¢) A (y = @)

We moreover define T as ~F, and ¢ as ¢ A t. For
the remainder we shall follow the customary notation and
terminology. We use the axiom systems to provide a
consequence relation.

We start with the following axiom schemes and rules for
wwRM.

Definition 2.1 wwRM consists of the following axiom
schemes and rules:

Al. ¢ — ¢ (self-implication, SI)

A2. (0 AN y) — o, (& N ¥) = y (A-elimination, A-E)

A3. ((g—=y) A(d—x) — (d—(wAYX)) (A-introduction, A-T)

Ad o — (O V ¥), v = (¢ V y) (V-introduction, V-I)

A5. (9= A (g—x)) — (9Vy)—x) (V-elimination, V-E)

A6. (OAGV (DAY V(OAX) (AV-distributivity, AV-D)

A7. F — ¢ (ex falso quadlibet, EF)

A8 (0 & (y & X)) « (O & ¢ & x) (&-associativity, AS)
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A9 (¢ & w) — (y & ) (&-commutativity, &-C)

Al0. (¢ & t) < ¢ (push and pop, PP)

All. (w = x) = ((d — y) — (¢ — x)) (prefixing, PF)
Al2. (¢ — (g — X)) < (¢ & w) — x) (residuation, RE)
Al3. (¢ & ¢) <« ¢ (idempotence, ID)

Al4. (0&w)~(dAy) V ((0Vy)—(d&y)) (weak RM, wRM)
$ — v, & - w (modus ponens, mp)

¢, v + & A w (adjunction, adj)

Definition 2.2 (i) wRM is wwRM plus

AlS. (¢ — w) V (y — ) (t-prelinearity, PL.).
(i) RM is wRM plus

Al6. ~~¢ — ¢ (double negation elimination, DNE),
where (df3) ¢ & v is defined as ~(¢p — ~y).

Definition 2.3 ((w)wRMs) A logic is a schematic
extension of L if and only if (ff) it results from L by
(finitely or infinitely many) axioms. L is a wRM iff L is a
schematic extension of (w)wRM. |

The following proposition ensures that (WWwWRM is a
subclass of WI(F)L.

Proposition 2.4 (i) (wwRM < WIL) A wwRM L is a
weakly implicative logic.

(ii) WRM C WIFL) A finitary wRM L is a weakly
implicative fuzzy logic.
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Proof: (i) We first note that a weakly implicative logic
(WIL) is a logic having (SI), (mp), transitivity (¢ — w, v
— x + & — x), and congruence w.r.t. connectives. Since L
has Al, (mp), and (SF) below, it suffices to check that <
is a congruence wrt. A, V, & and —' we check one
direction. Let = ¢ — w. Wri A, by A2 and transitivity,
@ A X)) = vy, and thus (® A X) — (g A xX) by A2, A3,
(adj), and (mp); wrt V, analogously to A; wrt &, (0 &
X) = (g & x) and (x & ¢) — (x & y) by (IT) below and
A9 wrt =, (g > x) = (@ — x) and (x = ¢) — (x —
y) by (SF) below and All.

(i) By (1) and Proposition 5.4 below. []

As we mentioned above, WRM includes non-relevant
systems such as the classical propositional system CL. To
restrict WRM to the subclass of fuzzy-relevance ones, we
note one important historical fact in relevance logic: the
most famous relevance systems R, E of Entailment, T of
Ticket Entailment were introduced as logics free from
paradoxes, ie., positive paradoxes such as (W) above and
(—-triviality, —-TR) ¢ — (y — w) (so called the
paradoxes of implication), and negative paradoxes such as
(A-absurdity, A-AB) (¢ A ~¢) = v and (V-TR) ¢ —
(y V ~y) (so called the paradoxes of material implication

}RY

2) Here paradox means that while & — w is a theorem, the antecedent
does not have any meaningful (or intensional) relation with the
consequent (in other words, they do not share any sentential
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These systems satisfy the strong relevance principle
(SRP) in [1] that & — y is a theorem only if ¢ and w
share a sentential variable, and systems satisfying SRP are
free from the paradoxes (W), (—-TR), (A-AB), and (V
-TR). But systems satisfying WRP such as (w)RM are not
necessarily free from paradoxes because such systems prove
some paradoxical sentences such as ~(¢ — ¢) — (g —
y). We call systems free from the paradoxes above strong
paradoxes-free systems, and systems either (i) free from
the paradoxes or (i) satisfying the (i) of WRP weak
paradoxes—free systems. And, in. a non-constructive way,
we define a relevant wRM as follows:

Definition 2.5 (Relevant wRMs, R-wRMs) L is an
R-wRM iff (i) L is a schematic extension of wRM and (ii)
it is weakly paradoxes-free.

We call any weak paradoxes-free wRM R-wRM. We also
call any wRM accepting at least one of the paradoxes
paradoxical wRM (P-wRM), more exactlyy, a wRM
accepting at least one of the positive (negative resp)
paradoxes positive (negative resp) P-wRM. (Note that
some negative P~-wRM L may be a weak paradoxes—free
R-wRM.)

Remark 2.6 In case a wRM L has (df4d) t = T and so

variable).
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(df5) f = F, it is not relevant any more because it proves
(¢ & T) — ¢ and thus (W). Since it proves (W), it is
instead a positive P-wRM.

By R-wRM (P-wRM resp), let us express the class of
R-wRMs (P-wRMs resp). Since R-wRM (P-wRM resp) is a
subclass of wRM, it is immediate that

Corollary 2.7 (i) (R-WRM C WIFL) A finitary R-wRM
L is a weakly implicative fuzzy logic.

(i) (P-wRM < WIFL) A finitary P-wRM L is a weakly
implicative fuzzy logic.

In a wRM L f can be defined as ~t and vice versa; in
a wWRM with (DNE), A defined using ~ and Vv, and —
instead defined as ¢ — ¢ = ~(¢ & ~vy).

Proposition 2.8 (i) wwRM proves:

D @ = y) = (g = x)— (@ —x) SF)

2) ®— vy~ &x)— (g &x) AT)

B) @ —ww—>x)— @y — (@ —x) PM

@ (= (p—wy) — (d— vy (CT)

B) (= y) > ~y —> ~¢ (CP)

(6) & > ~~¢ (double negation introduction, DNI)

(7) ~(@ V y) & ~p A ~y (de Morganl, DM1)

8 ~p V ~y < ~(p A y) (de Morganll, DM2)

9) (0&(w V) —((0&w) V (d&x)) (&V -distributivity, &V -D)
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(i) wRM additionally proves:

(1) (d&wAY))-(d&y) A (0&x)) (&A-D)

2 (d = w) V (g — ¢) (PL)

(iii) RM additionally proves: A8 to Al0, Al4, Al5, and
(1) ¢ < ~~¢ (double negation, DN)

Proof: We prove (i-2) as an example:

L (06 — y) & ¢) — v (Al, Al2, MP)

2.9 — (x — (y & x)) (Al, Al2, MP)

3o — vy & )~ (x = (v & x)) (1, 2, transitivity)
4. (0 = v) & (0 & x)) = (v & x) (3, A8, Al2)

5 (@ — 9 — (¢ &x)— (g &x) 4 Al2)

Proof of the rest is left to the interested reader. []

A theory over L is a set T of formulas. A proof in a
sequence of formulas whose each member is either an
axiom of L. or a member of T or follows from some
preceding members of the sequence using the rules (mp)
and (adj). T + &, more exactly T +_. &, means that ¢ is
provable in T wrt L, ie., there is an L-proof of ¢ in T.
The relevant deduction theorem (RDT) for L is as follows:

Proposition 2.9 Let L be a wwRM, T a theory, and ¢,
y formulas. T U {¢} FLry iff T FL ¢ — w.
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Proof: It is just Enthymematic Deduction Theorem (see

8). O

A theory T is inconsistent if T + F, otherwise it is
consistent.

#“® »

For convenience, “~”, “A” “V” and “—" are used

ambiguously as propositional connectives and as algebraic
operators, but context should make their meaning clear.

Remark 2.10 Let L be a wRM having either f — t or
(FP) f <> t. It proves such formulas as ~(¢ V ~¢) — (¢
V ~y) and ~(¢ — ¢) — (y — y), and so it is not
relevant in the strong sense any more. But, since these
formulas still satisfy the (ii) of WRP, L may be instead
relevant in the weak sense.

3. Semantics

Suitable algebraic structures for (w)wRMs are obtained as
varieties of monoidal residuated lattices.

Definition 3.1 An idempotent coummtative monoidal
residuated lattice (icmr-lattice) is a structure A = (A, T,
L, Ty Ly A, V, *, —) such that!

(I) (A, T, L, A, V) is a bounded distributive lattice
with top element T and bottom element L.
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(II) (A, =, Ty) satisfies for all X, y, z € A,

(@ x *y =y * x (commutativity)

(b) Ty * x = x (identity)

(¢) x < y implies x * z < y * z (isotonicity)

(d x * (y * z) = (x * y) * z (associativity)

(e) x * x = x (idempotence)

(I y < x>z iff xvy < z for all x, 5y, z € A
(residuation)

(A, *, Ty satisfying (II-b, d) is a monoid. Thus (A, *,
T+ satisfying (II-a, b, d) is a commutative monoid, and (A,
*, Ty satisfying (II-a, b, d, e) an idempotent commutative
monoid. (A, *, Ty satisfying (II-a, b, ¢, d) on [0, 1] is a
uninorm and it is a t-norm in case Ty = T.

To define an icmr-lattice we may take in place of (II-c)

V) x#=(y Vz)=(x*y) V (x * 2z).

Using — and Lf we can define T, as Ly — Ly and ~
as in (dfl). In an icmr-lattice, ~ is a weak negation in the
sense that for all x, x < ~~x holds in it.

Definition 3.2 (i) (wwRM-algebra) A wwRM-~algebra is
an icmr-lattice satisfying the condition: for all X, vy,

(wrm) Tp < ((xxy)—=(xAy)) V ((xVy)—>(x*y)).

(i) (wRM-algebra) A wRM-algebra is a wwRM-algebra
satisfying the condition: for all x, vy,

o) Te < X =y V (y = Xk
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Let A be an equationally definable wRM-algebra. A is
paradoxical in case it satisfies at least one of the following
conditions:

(Paradox Conditions, PC) for all x, y € A,
(@ x < (y — x) (weakening)

() x £ (y — y) (—>-triviality)

(¢) (x A ~x) £y (A-absurdity)

(d x < (y V ~y) (V-triviality)

We call it P-wRM-algebra. A is strongly relevant in
case it rejects (PC), and weakly relevant in case it either (i)
rejects (PC) or (ii) satisfies that Ty < (x — y) implies T,
< ~xand Ty < y. In case A is weakly relevant, we call
it R-wKEM-algebra.

In an analogy to Definition 3.2, we can define an
RM-algebra corresponding to the system RM. An algebra
A is linearly ordered if the ordering of its algebra-is linear,
ie, x < yory < X (equivalently, x A y=xorx Ay-=
y) for each pair X, y. '

Definition 3.3 (Evaluation) Let A be an algebra. An
A-evaluation is a function v : FOR — A satisfying:

v(#(@y, -, Ow) = #av(D), -, V(m)),

Whefe #E {&’ -, ;"\, \/; t; f) T; F}; #A = {*: -, /\’
V, Ty, L T, L}, and m is the arity of # and #a.

Definition 3.4 Let L be a propositional language, L a
logic in {, T a theory in {, & a formula, and K a class of
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A-algebras.

(i) (Tautology) ¢ is a T tautology in A, briefly an
A-tautology (or A-valid), if v(p) = T, for each
A-evaluation v.

(i) (Model) An A-evaluation v is an A-model of T if v
(¢) = T for each & € T. By Mod(T, A), we denote the
class of A-models of T.

(iii) (Semantic consequence) ¢ is a semantic consequence
of T wrt. K, denoting by T Ex ¢, if Mod(T, A) = Mod(T
U {¢}, A) for each A € K

Definition 3.5 (L-algebra) Let L be a logic in L, T a
theory in [, ¢ a formula, and A an algebra. A is an
L-algebra iff whenever ¢ is L-provable in T, ie, T FL ¢,
it is a semantic consequence of T wur.t. the set of A. By
MOD™(L), we denote the class of (linearly ordered)
L-algebras. We write T =", ¢ in place of T FMoD L .

Since the class of ML-algebras forms a variety and a
wRM-algebra is just an ML-algebra generalizing identity, it
is obvious that the class of all wRM-algebra is a variety of
algebras. This ensures that

Proposition 3.6 Let L be a wRM. The class of all
L-algebras is a variety of algebras.

Proof: We prove that the class of all wRM-algebras is a
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variety. Note first that the class of (bounded) distributive
lattices is a variety and each of the conditions of (II-a, b,
d, e has a form of equation. Note also that in each
wRM-algebra the equations for (II-c) and (II) can be
given: e.g., for the equations for (III), see Lemma 2.3.10 in
[6]. Analogously the equations for (wrm) and (pl;) can be
given. Thus, since each condition for a wRM-algebra has a
form of equation or can be defined in equation, it can be
eusured that the class of all wRM-algebras is a variety. []

Let A be an algebra. Ay-matrix, briefly M-matrix, is an
A-algebra with D, a subset of A. The elements of D are
usually called designated elements of matrix M. Then, in an
analogy to the above, we can define a (w)wRM-matrix.
Furthermore, by taking v(¢) € D in place of v(d) = Ty,
we can analogously define tautology, model, semantic
consequence, and L-matrix on M-matrices in place of
A-algebras.

Let us take D = {x x = v(®) = Ty). Then it is
immediate that

Corollary 3.7 A (w)wRM-algebra A is an L-algebra iff
T ti ¢ implies T FL ¢ iff a (W) wRM-matrix M = (A, D)
is an L-matrix.
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4. Algebraic completeness

Let L be a (wwRM, and A a (corresponding)
(w)wRM-algebra. We first note that the nomenclature of
the prelinearity condition is explained by the following
subdirect representation theorem.

Proposition 4.1 Each wRM-algebra is a subdirect
product of linearly ordered wRM-algebras.

Proof: Its proof is as usual. []

We next show that classes of provably equivalent
formulas fomd an L-algebra. Let T be a fixed theory over
L. For each formula ¢, let [¢]lr be the set of all formulas y
such that T +L ¢ < y (formulas T-provably equivalent to
®). Ar is the set of all the classes [p]r. We define that
[0y — [yl = [ — v, [0)r * lylr = [0 & v, [9)r A
lwlr = [&0 A wip, [0 V [wlr = [ V wlr, L = [Flr, T =
[Tlr, T¢ = [tl, and 1¢ = [fl;. By A7, we denote this
algebra. ‘

Proposition 4.2 For T a theory over L, Ar is an
L-algebra.

Proof: Note that A2 to A6 ensure that A, V, and —
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satisfy (I) in Definition 3.1; that A8 to Al0, Al3, and (IT)
ensure that' & satisfies (I) (a) - (e); that Al2 ensures that
(Il holds; that Al4 ensures that (wrm) holds; (and that
Al5 ensures that (ply) holds.) It is obvious that [¢lr < [wlr
iff T Fo & e (0 A w) iff T L ¢ — . Finally recall
that At is an L-algebra iff T Fp w implies T Fp w, and
observe that for ¢ in T, since T Fp t — ¢, it follows that
{tlt < [&)r. Thus it is an L-algebra. [J

Theorem 4.3 (Strong completeness) Let T be a theory
and ¢ a formula.

(i) Let L be a wwRM. T +r ¢ iff T &L ¢.

(i) Let L be a wWRM. T +y ¢ iff T &1 ¢ iff T F'L ¢.

Proof: (i) Left to right follows from definition. Right to
left is as follows: from Proposition 4.2, we obtain Ar €
MOD(L), and for At-evaluation v defined as v(y) = [ylr, it
holds that v & Mod(T, Ar). Thus, since from T ki ¢ we
obtain that [®)r = v(¢) = T, T L t — ¢. Then, since T
ki t, by (mp) T i @, as required.

(i) That T Fy ¢ iff T EL ¢ is analogous to (i). That T
Fr ¢ iff T E'L ¢ follows from Proposition 4.1. [J

Corollary 4.4 (Weak completeness) For each formula o,
¢ is a theorem iff for each (linearly ordered) L-algebra A,
¢ is an A-tautology, ie., +i ¢ iff £V 9.
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Given an  equationally definable = R-wRM-algebra
(P-wRM-algebra resp) A, we can provide a corresponding
R-wRM (P-wRM resp) L. Then, since an R-wRM
(P-wRM resp) L is also a wRM, Theorem 4.3 ensures that

Corollary 4.5 Let T be a theory and ¢ a formula.

(i) Let A be a (linearly ordered R-wRM-algebra
(equationally definable) and L a corresponding R-wRM. T
Fooiff T =Y ¢.

(1) Let A be a (linearly ordered) P-wRM-algebra
(equationally definable) and L a corresponding P-wRM. T
Fo ¢ iff T =% o.

5. Matrix completeness

Following Cintula {2], let a wwRM L be fuzzy in case it
is complete w.rt. linearly ordered L-matrices, ie, L = L
We shall show that a logic L is so in case it is a wWRM,
ie, a wwRM satisfying Al5. Note that even though Cintula
[2] does not investigate any system exactly corresponding
to our L, his results are useful. Following his idea we can
provide easy (strong) completeness for L.

To achieve completeness for L, following [2] we add
more definitions on a theory T to the definitions above.

Definition 5.1 Let L be a wwRM.
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(i) T is linear if T is consistent and for each pair ¢, ¥
of formulas, T+ d—>worTF v — o

(i) T is prime if for each pair ¢, w of formulas such
that T+ oV gy, TH dorT + w.

(iti) L has the Linear Extension Property (LEP) if for
each theory T and formula ¢ such that T ¥ ¢, there
is a linear theory T’ such that T € T ' and T’
¥ .

(iv) L has the Prelinearity Property (PP) if for each
theory T, we get T + X whenever T, ¢ = v + X
and T,y —> ¢ F x.

(v) L has the Subdirect Decomposition Property (SDP)
if each ordered L-matrix is a subdirect product of
linearly ordered L-matrices.

(vi) L has the Prime Extension Property (PEP) if for
each theory T and formula ¢ such that T ¥ ¢, there
is a prime theory T’ such that T € T and T’
¥ .

(vi) L has the Proof by Cases Property (PCP) if for
each theory T, we get T, & V w + x whenever T,
¢ xand T, ¢ + X

We consider L as a finitary logic in the sense that for
each theory T and formula ¢ we have that if T + ¢ there
is a finite theory T < T such that T~ + ¢. Then,
since a wwRM L is a WIL, by Lemma 17 in [2], we can
obtain that
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Proposition 5.2 Let L be a wwRM and T a theory.

(1) T is linear iff the L-matrix Mr is linearly ordered;
(i) In case L is a wRM, T is linear iff T is prime;

(ili) L has PP iff L has PCP and (PL), ie, (¢—y)V (yg—0).

Note that Cintula showed that as a finitary WIL L 1is
fuzzy iff L has LEP iff L has PP iff L. has SDP iff L has
PCP and (PL) (see Theorem 3 and Lemma 17 in [2]). Since
a finitary wRM L is a finitary WIL proving (PL), it is
immediate that

Corollary 5.3 For a finitary wEM L,
L 1s fuzzy iff L has PCP iff L has PEP.

Let us consider L with deduction theorem. In an analogy
to Lemma 22 in [2], we can show that

Proposition 54 Let L be a finitary logic with RDT.
Then L is a fuzzy logic iff it holds: +r (& — v) V (¢ —
o), e, AlS.

Proof: Left to right is obvious. For right to left, we just
show that L has PP. let T, ¢ vy +r x and T, yw — ¢
Fe x. By RDT, T +r (0 — w) — x and T +r (g — O}
— x. Then by A5 (together with (adj) and (mp)), T +L
(o — w) V (g = d)) — x. Thus, by Al5 and (mp), T
L X, as desired. (]
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Then using Proposition 54 (and soundness as usual), we
can easily show that

Theorem 5.5 (Completeness) Let T be a theory over a
finitary wWRM L and ¢ a formula. Then T +r ¢ iff T EL 0.

Since an R-wRM (P-wRM resp) L is a WIFL (see
Corollary 2.6), it is immediate that

Corollary 56 (i) Let T be a theory over a finitary
R-wRM L and ¢ a formula. Then T ki ¢ iff T L ¢.

(ii) Let T be a theory over a finitary P-wRM L and ¢ a
formula. Then T 1 ¢ iff T &Y ¢.
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