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STRUCTURES OF IDEMPOTENT MATRICES OVER CHAIN
SEMIRINGS

KYUNG-TAE KANG, SEOK-ZUN SONG, AND YOUNG-OH YANG

ABSTRACT. In this paper, we have characterizations of idempotent matri-
ces over general Boolean algebras and chain semirings. As a consequence,
we obtain that a fuzzy matrix A = [a,;] is idempotent if and only if all
a; j-patterns of A are idempotent matrices over the binary Boolean alge-
bra B; = {0,1}. Furthermore, it turns out that a binary Boolean matrix
is idempotent if and only if it can be represented as a sum of line parts
and rectangle parts of the matrix.

1. Introduction and preliminaries

It is well-known that over any field the structure of idempotent matrices is
very simple, that is, each idempotent matrix is similar to a diagonal matrix
with 0 and 1 on the main diagonal.

In general, the characterization of idempotent matrices in abstract algebraic
systems is a vital problem that is crucial for the understanding the structure
of these systems and in many other applications ([3, 6]). For matrices over
algebraic systems that are not fields, this problem is far from being solved yet.

A semiring ([4]) is essentially a ring in which only the zero is required to
have an additive inverse. Recently, there are many papers on the study of
matrix theory over semirings. But there are few papers on the characteriza-
tions of idempotent matrices over semirings. Beasley and Pullman ([2]) char-
acterized linear operators on the matrices over semirings strongly preserving
idempotents (that map idempotents to idempotents and non-idempotents to
non-idempotents). Bapat et al. ([1]) obtained characterizations of nonnegative
real idempotent matrices.

For a fixed positive integer k, let By be the (general) Boolean algebra of
subsets of a k-element set Sy and o1,04,...,04 denote the singleton subsets
of Sg. Union is denoted by + and intersection by juxtaposition; 0 denotes the
null set and 1 the set S;. Under these two operations, By is a commutative
semiring(that is, only 0 has an additive inverse); all of its elements, except 0
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and 1, are zero-divisors. In particular, if k = 1, B, is called the binary Boolean
algebra.

Let K be any set of two or more elements. If K is totally ordered by <
(i.e., z < y or y < z for all distinct elements z,y € K), then define 2 + y as
max(z,y) and zy as min(z,y) for all z,y € K. If K has a universal lower bound
and a universal upper bound, then K becomes a semiring, and called a chain
semiring. The following are interesting examples of a chain semiring.

Let H be any nonempty family of sets nested by inclusion, 0 = Nz, and
1 =Uzen . Then S =HU{0,1} is a chain semiring.

Let o, w be real numbers with a < w. Define S={# € R : a < § < w}.
Then S is a chain semiring with & = 0 and w = 1. It is isomorphic to the chain
semiring in the previous example with H = {[a, 5] : @ < 8 < w}. Furthermore,
if we choose the real numbers 0 and 1 as « and w in the previous example,
then F = {8 : 0< g <1} is called fuzzy semiring.

In particular, if we take H to be a singleton set, say {a}, and denote @ by 0
and {a} by 1, the resulting chain semiring becomes the binary Boolean algebra
B, = {0,1}, and it is a subsemiring of every chain semiring. Since any general
Boolean algebra By (k > 2) is not totally ordered under inclusion, it is not a
chain semiring.

Hereafter, unless otherwise specified, S denote a semiring which is either a
general Boolean algebra By, or a chain semiring K.

Let M, (S) denote the set of all n x n matrices with entries in S. The usual
definitions for addition, multiplication by scalars, and the product of matrices
over fields are applied to M, (S) as well. The zero matrix is denoted by O,
the identity matrix by I, and the matrix with all entries equal to 1 is denoted
by Jn. The matrix in M, (S) all of whose entries are zero except its (i,7)®,
which is 1, is denoted by E; ;. We call this a cell. When i # j, we say E; ; is
an off-diagonal cell; E; ; is a diagonal cell.

A matrix A € M, (S) is called idempotent if A> = A. The matrices Oy, I,
and J, are clearly idempotents in M, (S). Furthermore we can easily show that
all diagonal cells are idempotents, but all off-diagonal cells are not idempotents.

In this paper, we deal with idempotent matrices over Boolean algebras and
chain semirings including fuzzy semiring. In Section 2, we characterize idem-
potent matrices over the binary Boolean algebra. Also in Section 3, we obtain
characterizations of idempotent matrices over chain semirings.

2. The binary Boolean case

In this section, we shall characterize idempotent matrices over the binary
Boolean algebra B; = {0,1}.

The following is an immediate consequence of the rules of matrix multipli-
cation.

Proposition 2.1. For any cells E; ; and E, ., we have E; ;E, , = E;,, or O,
according as j = u or j # u.
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For a matrix 4 = [a;;] in My, (B; ), A can be written uniquely as 3 a;; E; ;.
ij=1
Since a;; € {0,1}, the matrix A4 is a sum of cells.

If A = [a;;] and B = [b;;] are in M,,(B,), we say B dominates A (written
by A E B) if b;; = 0 implies a;; = 0 for all 4,5 = 1,...,n. This provides a
reflexive and transitive relation on M, (B, ).

For a matrix A = [a;;] € M, (B,), if a;; = 1 for some i and j, then we say
that the cell E; ; is in A. Thus the cell E;; is in A if and only if E; ; C A.

Lemma 2.2. Let Ey,...,E,, and F be cells in an idempotent matriz X €
M, (By), where m > 2. Then

(i) if By - Ep, is not zero, then it is a cell in X;

(ii) of F is off-diagonal, then there exist distinct cells G and H in A such
that F = GH. Moreover if both cells G and H are off-diagonal, then
three cells F\G and H are mutually distinct.

Proof. (i) Clearly E; --- E,, is a cell by Proposition 2.1. Let 4, B, C and D be
matrices in M, (B; ). Then we can easily show that if A C B and C C D, then
AC T BD. It follows from E; C X forall i = 1,...,m that Ey---E,, T X™.
Since X is idempotent, we have X™ = X for m > 2 so that E, --- E,,, is in X.

k
(ii) Let F1,..., Fy be cells in X so that X = }_ Fj. Since X is idempotent,
=1
we have

k k k
Y FP+ Y FF=X'=X=) F.
i=1 i,j=1,i%j i=1

Since F' £ X, we have either F C F? or F C F,F; for some 4,5 € {1,...,k}
with ¢ # j. Since F is off-diagonal, it follows from Proposition 2.1 that F Z F?.
Thus we have F' C F;F; for some 4,5 € {1,...,k} with i # j. If we let G = F;
and H = Fj, then F' = GH. Furthermore if G and H are off-diagonal, then
F,G and H are mutually distinct by Proposition 2.1. O

Corollary 2.3. If all cells in A € M, (B,) are off-diagonal, then A is not
tdempotent.

Proof. On the contrary, assume that A is idempotent. Let ® = {Fy,..., F,,}
be the set of all cells in A, where each F; is off-diagonal. We shall show
that there exists an infinite subset of cells in ®, which is impossible. We
proceed by induction on the number of cells in ®. Since A is idempotent,
by Lemma 2.2(ii), there exist indices 7,5 € {1,...,m} such that F;F; = F
and the three cells F;, F; and Fy are mutually distinct. By Proposition 2.1,
we can write F; = E,.,,F; = E; 3 and Fi = E,; for certain mutually
distinct indices a,b and z;. Since F, = E,., € ® and A is idempotent, it
follows from Lemma, 2.2(ii) that there exist two cells E, ,,, E,, ., € ® such
that E, ,, = Eq 2, Ee, 2, for some index z, different from a and z;. Assume
that for some k > 2, the set of distinct cells {Ey 4y, ..., Eq4, } € ® was already
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constructed. Then we may add a new element to this set as follows. Since A
is idempotent, by Lemma 2.2(ii), there exist two cells Eq z; 1, Ezppr0r € @
such that Eq 4, = Eaay,q Ezyyr 2, for some index x4y different from a and

T. Assume that there exists an index i € {1,...,k — 1} such that x; = z41.
By Lemma 2.2(i), we have that
E¢izi = Ezk+1,2i = Efck+1,wk e Ewi+1,z‘1‘ C A

This contradicts the assumption that all cells in A are off-diagonal. Thus
x; # xpyq for all 4 = 1,..., k. It follows that E, ;;, € ® are distinct cells for

i =1,...,k+ 1. Hence & contains an infinite subset of distinct cells. This
contradiction completes the proof that A is not idempotent. O
Let A be a matrix in M., (B; ). For i = 1,...,n, we define an i*" row matriz

r;[A] of A as a matrix whose i*? row is the same as the i*® row of A and the

other rows are zero. Similarly, we can define a j*® column matriz c;[A] of A

for j =1,...,n. A line matriz is an i*" row matrix or a j** column matrix of

k
a matrix; Cells Ey, ..., Ey are called collinear if Y E; is dominated by a line
=1
matrix of J,.
Let A € M, (B, ). For indices ¢,j € {1,...,n}, r;[A] and ¢;[A] are said to be
(i, j)-disjoint if XY = O, for all off-diagonal cells X C r;[A] and Y C ¢;[A].

Lemma 2.4. Let A be idempotent in M, (By). If r;[A] and c;[A] are not
(¢,7)-disjoint, then E; ; C A.

Proof. If r;[A] and ¢;[A] are not (4, j)-disjoint, then there exist off-diagonal
cells X C r;{A] and Y C ¢;[A4] such that XY # O,. Thus we may write
that X = E;, and Y = E,; for some indices z and y. Since XY # O, it
follows from Proposition 2.1 that z = y and XY = E; ;. Since A is idempotent,
XY = E; ; C A by Lemma 2.2(i). m|

Let E1, Es, E; and E, be four distinct cells in M, (B;). Then their sum is
called a frame if the four 1’s constitute a rectangle with at least one entry on
diagonal. That is, there exist indices 7,7,k € {1,...,n} with ¢ # 7, k such that

4
Y. Ei=Eii+Ei;+E+Eg;.
=1

Proposition 2.5. Let A be idempotent in M, (By). If F is an off-diagonal cell
in A such that F is not collinear with any diagonal cell in A, then F is in a
frame with one diagonal cell and two additional off-diagonal cells in A.

Proof. Let ¥ = {E1,..., E,} be the set of all distinct diagonal cells in A and
®, be the set of all off-diagonal cells in A. By Corollary 2.3, we have m > 1.
Let us denote E; = E,, 4, for all ¢ = 1,...,m and F = E;.. Since F' and
E; are not collinear for all , it follows that ay,...,am,b, and ¢ are mutually
distinct indices. Assume that F is not in a frame with one diagonal cell in @,
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and two off-diagonal cells in ®5. Then we can construct an infinite subset of
cells in ®, applying the induction process as in the proof of Corollary 2.3.

The base of induction. Since 4 is idempotent, by Lemma 2.2(ii), there exist
two distinct cells Ej ;,, Eq, . © A such that Ey . = Ep ., E,, . for some index
1. f By oy € @y or B, o € ®q, then F = Ep . is collinear with a diagonal cell.
This is a contradiction. Thus Ey .., E,, . € ®2. If 21 = a; for some ¢, then
we obtain that E;, o, + Fy ;, + E;, . + Ep . is a frame, a contradiction to the
assumption. Hence, x; # a; for all <.

Since A4 is idempotent and Ep ., € ®», by Lemma 2.2(ii), we can find two
cells By 5, and E,, -, in ®; U @, such that E, ,, = Ej 2, Eq, 2, for some index
x2. Then we have E,, . = Eg, o, Fy, « C A by Lemma 2.2(3). If 9 = z4, then
the four cells E;, o, Fy z,, Es, c and F = E; . are in a frame, which contradicts
the assumption. If z; = a; for some ¢, then E,, o,, Eb ¢y, Eq,,c and F = Ej
are in a frame, which also contradicts the assumption. Thus zs # a; for all ¢
and xs # x1.

The induction step. Assume that for certain k > 2, the set of cells
{Eb,wl ER] Eb,mkaEm,m’ s ’Ewk,wk~1} C o,

was already constructed. Then we may add new elements to this set as follows.
By Lemma 2.2(ii), since A is idempotent, there exist two cells Ej.,,, and
Eiii1,2, in ®1 U @y such that Ep,, = Ep oz E for some index xpy;.
Thus by Lemma 2.2(i},

Tk+1+Tk

Ewk+1,c = E$k+1,wk e EE2,171E901,C C A

Now, we show that x4, is neither b nor z; for all ¢ = 1,...,k. Note that
Tp41 # b since F = Ep. is not collinear with any diagonal cell. Assume
that zx41 = z; for some i € {1,...,k}. Then E,,. = Eqs,,,,c & A and by
Lemma 2.2(i), Bz, 2; = Eoyi1e; = Ezpyr,on * Eoivres & A. Therefore, the
four cells E;,,, F o, Ez; - and F = Ej . are in a frame, which contradicts the
assumption. Thus 1 # @; for all i = 1,...,k and we have constructed the
set

{Ebyzl’ cee Eb,wk+1 ’ sz,wlv R Ewk+1,$k} C ®,.

Therefore we obtain an infinite set of off-diagonal cells {Ej .,
bth

i € N} on the
row, which is impossible. This contradiction completes the proof. O

The weight of a matrix A in M, (B;) is the number of nonzero entries of A
and will be denoted by w(A). Note that r;[A] is the i*h row matrix of 4, and
c¢;[4] is the j* column matrix of A.

Lemma 2.6. Let A be an idempotent matriz in M, (B,) with E;; C A. If
w(r;[A]) = s+ 1 and w(c;[A]) =t + 1, then there exist exactly s -t frames in
A dominating E; ;.
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Proof. If s = 0 or t = 0, then the result is straightforward. Thus we assume
5,1 > 1. Since 4 is idempotent, Lemma 2.2(1) and Proposition 2.1 implies that
for any cells E;, ; C A and E;; C A, A dominates their product Ey ;. Therefore,
the four cells E; ;, By ;, E;; and Ey; are in a frame in A for each k,[ such that
Er;C Aand E;; C A. Thus A has at least s - ¢ frames such that each frame
dominates E; ;. It follows from the definition of frame that A has at most s - ¢
frames dominating E; ;. ]

For a matrix A € M, (B;), let
: {Eiﬂ‘, Ejl,i; R :Ejs,i} and {Eiﬂ‘, Ei,i] sy Ei,it}
be the sets of cells in ¢;[A] and r;[A], respectively, where s,¢ > 1. If E;, ;, C A
forallk=1,...,sand [ =1,...,¢ then
s t
(Bii + Ej.i + Eii, + Ejp i)
k=11=1

is called an i*® rectangle part of A, and denoted by RP;[A].

Let A be idempotent in M, (B;) with E;; T A. If w(r;[A]) > 1 and
w(e;[A]) > 1, then Lemma 2.6 shows that the ith rectangle part RP;[A] of
A exists.

101 1
Example 2.7. Let A = (1) g (1) (1) € My (B,). Then
010 1
1011
RR[A]=RPA=| ) 0 90
0000

But there is neither RP;[A] nor RP,[A].

Let A be a matrix in M, (B, ) with E;; C A. If w(r;[A]) = 1 or w(e;[4]) =1,
then r;[A] + ¢;[A] is called an i*® line part of A, and denoted by LP;[A]. That
is, A € M, (B,) has the i*} line part LP,[A] = r;[A] + c;[4] if and only if
ri[A] = E;; or ¢;[A] = E; ;.

1
0
0

— O
OO =

Example 2.8. Let B = be matrix in My (B;). Then B has

O O

0 0 1
1°¢ and 4" line parts, which are LP,[B] = F1; + E13 + E1 4 and LP,[B] =
E4 4 + Eh 4, respectively. But B has neither LP>[B] nor LP5[B].

Corollary 2.9. If A is idempotent in M, (By ), then every cell dominated by A
is either in a rectangle part or in a line part of A.
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Proof. Tt follows directly from Proposition 2.5 and Lemma 2.6. O

Suppose that A € M, (B, ) has i*? and j** rectangle parts RP;[A] and RP;[A]
for some ¢ and j with i # j. We say that RP;[A] and RP;[A] are disjoint if
r;[A] and ¢;[A] are (i, j)-disjoint, or 7;[A] and ¢;[A] are (j,)-disjoint or both.

Proposition 2.10. Let A be idempotent in M, (By). Then any two rectangle
parts of A are either disjoint or identical.

Proof. 1t is straightforward that disjoint parts are not identical. Suppose that
the i*" and j*® rectangle parts of A are not disjoint. By definition, we have
r;[A] and ¢;[A] are not (¢, j)-disjoint, and 7;[A] and ¢;[A4] are not (j,7)-disjoint.
Therefore, E; ; C A and E;; C A by Lemma 2.4. Then in this case we claim
that for any cell E, we have F C RP;[A] if and only if E C RP;[A]. Tt is
straightforward that the four cells E;;, E; ;, E; j, E;; © RP[A] for t = i,j.
Suppose E C RP;[A]. We first consider the case E T r;[A], say E = E; ..
Then we have E; , = E; ;E; , T A by Lemma 2.2(i), and the four cells

Eio,Eij,Ej, and Ej;

form a frame. Therefore, E = E; , T RP;[A]. Similarly for the case £ C c;[4]
it follows that E C RP;[A].

Next, consider the case £ Z 7;[A] and E IZ ¢;[A], say E = E. 4. Since
E T RP;[A], there exist two off-diagonal cells E; , C 7;[A] and E,; C ¢;[4]
such that E.4 = E,;F;,. Therefore, we have that ¢ = y and d = z by
Proposition 2.1. Since A is idempotent, we obtain by Lemma 2.2(i) that

Ec’j = y,] = E E E A and E Ej’w = Ej,iEi,a: E A.
Hence the four cells
Ec,d,Ec,j, Ej’d and E]"j
form a frame. Therefore, we have E = E. 4 C RP;{A].

Similarly if £ is a cell with E C RP;[A], then we have that E C RP;[A].
Therefore, the two rectangle parts RP;[A] and RP;[A] are identical. O

Theorem 2.11. Let A be a matriz in M, (B;). Then A is idempotent if and
only if the following two conditions are satisfied:

(1) there exist integers r,1 > 0 such that A is a sum of r disjoint rectangle
parts and | line parts,

(2) if for some i # j v;[A] and c;[A] are not (i, j)-disjoint, then E; ; is a
cell in A.

Proof. Let A be a matrix in M, (B;). It is routine to check that a matrix
satisfying the two conditions is idempotent. To show the opposite implication,
without loss of generality, we can assume that A has r rectangle parts and [
line parts, where 7,1 > 0. Let F be an off-diagonal cell in A. By Corollary 2.9,
F is in some rectangle part or some line part of A. Therefore, A is the sum of
r rectangle parts and [ line parts of A. It follows from Proposition 2.10 that
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r rectangle parts of A are disjoint. By Lemma 2.4, if r;[A] and ¢;[A] are not
(i, j)-disjoint, then E; ; is a cell in A. O

Furthermore, Song et al. characterized the structures of general Boolean
idempotent matrices as follow:

Theorem 2.12 ([8]). Let A be a matriz in M, (By,). Then A is idempotent if
and only if all p** constituents of A are idempotent in M, (B, ), where the pt}
constituent of A is the matriz in M., (B;) whose (i, )™ entry is 1 if and only
lf a5 :_) Op.

3. The chain semiring case

In this section, we characterize idempotent matrices over chain semirings K
including the fuzzy semiring F = [0, 1]. We remind that for all z,y € K

z+y=max(z,y) and zy = min(z,y).

Let a be a fixed member of K, other than 1. For each z € K, define z% = 0
if z < a, and * = 1 otherwise. Then the mapping z — z® is a homomorphism
of K onto B;. Its entrywise extension to a mapping A — A% of M, (K) onto
M, (B, ) preserves matrix sums and products and multiplication by scalars. We
call A% the a-pattern of A.

Let A = [a;;] be a matrix in M, (K). Then an a;j-pattern of A may be a
key to determine whether A is idempotent or not. For example, let

A =lay] = E i] € M, (F),

.

where F = [0,1] is the fuzzy semiring. Then the as2(= %)-pattern of A4,
Ai = E (1)} , is not idempotent in My (B; ) by Lemma 2.6. Theorem 3.1(below)
shows that A is not idempotent in M (F).

Theorem 3.1. Let A = [a;;] be a matriz in M, (K). Then A is idempotent if
and only if all a; j-patterns of A are idempotent in M, (B,).

Proof. Let A be idempotent in M, (K). Then all a;;-patterns of A are idem-
potent in M, (B; ) because each a;j-pattern of A is a homomorphism of M, (K)
onto M, (B, ).

Conversely, assume that each a;;-pattern A% of A is idempotent in M, (By ).
If A2 # A, then for some (i, )*® entries of A and A2, we have

(3.1) Qij 7& Zaikakj.
k=1
If ai; < 3 airax;, then the (i,)™ entry of A% is 0, but that of (4%7)? is
k=1

1, a contradiction to the fact that a;;-pattern of A is idempotent in M, (B; ).
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n

Hence we have a;; > 3 asrar;. We notice that the right side of (3.1) is just
k=1

airak; for some k € {1,...,n}. Furthermore we have a;zar; = aix or ax;.

n
If QifQr; = ik, then A5 > Z ik Qk; = Qik, and hence the (i,j)th entry of
k=1
A%* is 1, but that of (A%*)? is 0, a contradiction. Similarly if axar; = ax;,
then we have (A%9)? # A% a contradiction. Therefore A is idempotent in

M, (K). a

References

(1] R. B. Bapat, S. K. Jain, and L. E. Snyder, Nonnegative idempotent matrices and minus
partial order, Linear Algebra Appl. 261 (1997), 143-154.

[2] L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent ma-
trices over semirings, Linear Algebra Appl. 160 (1992), 217-229.

[3] J. 8. Golan, Semirings and their applications, updated and ezpanded version of the theory
of semirings, with applications to mathematics and theoretical computer science, Kluwer
Academic Publishers, Dordrecht, 1999.

[4] D. A. Gregory and N. J. Pullman, Semiring rank : Boolean rank and nonnegative rank
factorizations, J. Combin. Inform. System Sci. 8 (1983), no. 3, 223-233.

[5] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of non-binary
matrices, Linear and Multilinear Algebra 38 (1993), no. 3-4, 295-300.

(6] V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and its Applications, Mathe-
matics and its Applications, 401, Dordrecht: Kluwer Academic Publishers, 1997.

[7] S. Z. Song and K. T. Kang, Types and enumeration of idempotent matrices, Far East J.
Math. Sci. 3 (2001), no. 6, 1029-1042.

[8] S. Z. Song, K. T. Kang, and L. B. Beasley, Idempotent matriz preservers over Boolean
algebras, J. Korean Math. Soc. 44 (2007), no. 1, 169-178.

Kyung-TAE KANG

DEPARTMENT OF MATHEMATICS

CHEJU NATIONAL UNIVERSITY

JEJU 690-756, KOREA

AND

DEPARTMENT OF MATHEMATICS AND STATISTICS
UTAH STATE UNIVERSITY

Logan, UraH 84322-3900, U.S.A.

E-mail address: kangkt@cheju.ac.kr

SEOK-ZUN SONG

DEPARTMENT OF MATHEMATICS
CHEJU NATIONAL UNIVERSITY

JEJU 690-756, KOREA

E-mail address: szsongQcheju.ac.kr

YoUuNG-OH YANG

DEPARTMENT OF MATHEMATICS
CHEJU NATIONAL UNIVERSITY

JEIJU 690-756, KOREA

E-mail address: yangyo@cheju.ac.kr



