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STRICTLY INFINITESIMALLY GENERATED
TOTALLY POSITIVE MATRICES

INHEUNG CHON

ABSTRACT. Let G be a Lie group, let L(G) be its Lie algebra,
and let exp : L(G@) — G denote the exponential mapping. For
S C G, we define the tangent set of S by L(S) = {X € L(G) :
exp(tX) € S for all t > 0}. We say that a semigroup S is strictly
infinitesimally generated if S is the same as the semigroup gen-
erated by exp(L(S)). We find a tangent set of the semigroup of
all non-singular totally positive matrices and show that the semi-
group is strictly infinitesimally generated by the tangent set of the
semigroup. This generalizes the familiar relationships between con-
nected Lie subgroups of G and their Lie algebras

1. Introduction

Let G be a Lie group, let L(G) be its Lie algebra, and let exp: L(G) —
G denote the exponential mapping. For § C G, we define the fangent
set of S by L(S) = {X € L(G) : exp(tX) € S for all ¢t > 0}. Finding
the tangent sets of given semigroups may be considered as a gener-
alization of taking derivatives. We say that a semigroup S is strictly
infinitesimally generated if S is the same as the semigroup generated by
exp(L(S)). Computing the strictly infinitesimally generated semigroups
may be considered as a generalization of finding integrands. It is stan-
dard that if S is a connected Lie subgroup of G, then L(S) is a Lie
subalgebra of L(G) and every element of S is written as a finite prod-
uct of exponentials of elements of L(S), that is, S is the same as the
group generated by exp(L(S)). Thus characterizing the strictly infinites-
imally generated semigroups may be considered as a generalization of
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the relationships between connected Lie subgroups of G and their Lie
algebras.

In Section 2, we find a tangent set of the semigroup of all non-singular
totally positive matrices. In Section 3, we show that the semigroup of all
non-singular totally positive matrices is strictly infinitesimally generated
by factorizing n X n non-singular totally positive matrix as finite prod-
ucts of exponentials of Jacobi matrices with non-negative off-diagonal
elements.

2. Tangent cone of the semigroup of non-singular totally
positive matrices

Let V denote a Banach space, gl(V) the space of continuous linear
transformations from V into V, and GL(V') the space of all invertible
continuous linear transformations from V into V. We consider the special
case of G = GL(V) and L(G) = gl(V). It is well known that if S
is a closed subgroup of GL(V), then its Lie algebra arises as the set
{X €gl(V): exp(tX) € § for allt > 0}. This motivates the following
definition.

DEFINITION 2.1. For § C GL(V), let L(S) = {X € gl(V) : exp(tX) €
S for all t > 0}. L(S) is called the tangent set of S.

DEFINITION 2.2. A subset W of a real topological vector space V is
called a wedge or a cone if it satisfies the following conditions:

1) W+WCwW

(2) RTWCW

(3) Wis closed in V,

where RT denotes the set of non-negative real numbers.

PROPOSITION 2.3. If S is a closed semigroup of GL(V'), then L(S)
is a closed cone. '

PROOF. Straightforward from a standard fact(see [5]) that for A, B €
gl(V), exp(A + B) = limy—o0 (exp(2) exp(Z))". O

Given a closed semigroup S, computing W = L(S) may be thought
of the generalization of “taking the derivative”. Let R denote the set
of all real numbers. In the following we consider matrices with entries
from R. In the case V is an n-dimensional vector space over R with a
fixed basis, we identify gl{(V') with the set of all n X n matrices over R.
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NOTATION. We will denote the determinant formed from elements of

the given matrix A = ||ai| ¢ =1,2,...,m;k=1,2,...,n) as follows:
ailkl Qi ko e ailkp
1 Ia ... ’ip Qioky  Qigky, - Gigk,
A =det| i )
k‘l kz .o kp . . . .
Qiky  Qigky -+ Qik,

DEFINITION 2.4. A rectangular matrix 4 = {lai| (1 = 1,2,...m :
k=1,2,...,n) is called totally positive—hereafter denoted by TP— if
all its minors of any order are nonnegative. An n X n matrix is called
totally positive of order m and is denoted by T'P,, if all its minors of
order j < m are non-negative. The square matrix A = ||a;;|| is called
a Jacobi matriz if all elements outside the main diagonal and the first
super-diagonal and sub-diagonal are zero. Let A = |/a;;|| be an n x n
square matrix. The principal minors of A are the scalars of the form

i1 d2 ... 1 . . , . . .
Al 0 Plforl<ii=ji<ig=ja< - <ip,=7J,<n.
(]1 Jo ... ]p) >~ 1 n 2 J2 P Jo &

It is easy to see that the set of all TP matrices forms a closed semi-
group from the Binet-Cauchy formula(see [4]).

THEOREM 2.5. Let S be the semigroup of all invertible TP matrices
and W be the set of all Jacobi matrices with nonnegative off-diagonal
elements, where off-diagonal element is an element other than the main
diagonal elements. Then L(S) =W.

PRrOOF. By Proposition 2.3, L(S) is a cone. Let A=exp(tE;;) for
li — jl=1, where E;; is a matrix such that (ii)-th entry is —1, (ij)-th
entry is 1, and the other entries are 0. Then A is a Jacobi matrix such
that all its entries outside the main diagonal except for (ij)-th entry
(which is 1 — e %) are 0 and all its main diagonal entries except for
(¢i)-th entry (which is e™*) are 1. For 1 < i1 = j4 < -+ < i, = j, < m,

A(il ia ... z‘,,)
J1 J2 - Jp

is the determinant of the triangular matrix whose main diagonal ele-
ments are from the main diagonal elements of A. Since every main diag-
onal element of A is positive, principal minors of A are positive. Since a
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Jacobi matrix is TP if and only if all its elements and principal minors
are non-negative(see p.100 of [2, vol.2]), A is TP. Thus E;; € L(S). Let
E} be the matrix such that all its entries are 0 except for the (kk)-th
entry which is equal to 1. Then exp(tEy) is the matrix such that all its
entries outside the main diagonal are 0. Clearly exp(tEy) is TP. Similarly
exp(t(—Ey)) is TP. Thus Ej, —Ej € L(S). Since L(S) is a cone,

n n
Z az’jEij + ZbkEk — chEk € L(S) for Qij, bk, Cck 2 0.

1<i,j<nli—jl=1 k=1 k=1

Thus W C L(S).
Conversely, let A € L(S). Then exp(tA) is TP for all £ > 0. Let

h11 (t) hio (t) eo. hin (t)
h h e hop,
H(t) = exp(tA) = 21:(75) 22:(75) : 2 :(t)
hot(t) hoa() . an(®)
Then
R1(0)  Ri2(0) ... Ri,(0)
A ietA ~ lim et — T _ /21'(0) /22(0) 2n(0)
dt t=0  t—0+ t : : IR
hp1(0)  hyo(0) ... hp,(0)
Ifj>i+1,
oy | Pt hi(t)
Ai(H) = hiv1,i+1(2) hi+i,j(t)

= hi,i+1(t)hi+17]‘ (t) e h,] (t)hi—i-l,i—i—l (t) > 0 for all ¢ 2 0.
Since hpq(0) = 0 for p # ¢, A;;(0) = 0. Thus
A45(8) = Aiy(0)

7 1

A;;(0) = tglg1+ — > 0.
Hence Aj;(0) = —h;;(0) > 0. Since h;;(t) > 0and hy;(0) = 0, h{;(0) > 0.
Thus h{;(0) = 0for j >t+1landi=1,2 ..., n—2 Similarly

h;;(0) =0 for j < i—1and =3, ...,n. Since hpq(0) = 0 and hpy(t) 2 0
for p # g and t > 0, h;,,(0) > 0 for p # ¢. Thus A is a Jacobi matrix
with nonnegative off-diagonal elements. That is, L(S) C W. O
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3. Strictly infinitesimally generated non-singular totally pos-
itive matrices

LEMMA 3.1. If an n x n nonsingular matrix A = |ja;;|| (n > m) has
all its minors of order m — 1 nonnegative and has all its minors of order
m which come from consecutive rows nonnegative, then all mth order
minors are nonnegative.

PROOF. See [1]. O

LEMMA 3.2. LetV = |lv;;|| be annxn nonsingular TP matrix. Then
v11 >0, v21 > 0,...,0p1 > 0,0p411 =" =vp1 =0 for some p.

PROOF. See [6]. O

LEMMA 3.3. Let W = ||w;;|| be an n X n non-singular TP matrix
and set | = max{k : wg1 > 0}. Assume

Wi
w11 w12 Win
Wp—1,1 Wp—1,2 cee Wi—1,n

= YW1 — U2W—1,1 UIWi2 — UgWi—12 ... UIWip — U2Wi-1,n
Wi4+1,1 Wi41,2 - Wi+1,n
Wn1 Wn2 Wnn
_ Wi—1,1 —_ w
1) If w—1p < wpn, v = T and up = ——Ll——w“_wl_lyl, then

Wi_1,1 is TP and non-singular.
—_ wWy-1,1 — w
(2) If wi-1,1 > win, Ui = riaen and us FTe—— then
Wi_1,1 is TP and non-singular.
(3) If wy—1,1 = wp and u; = up = 1, then Wi_1; is TP and non-

singular.

PROOF. w1 > 0,...,wi—11 > 0, and wy; > 0 by Lemma 3.2.
(1) Consider the following three cases (a), (b), and (c).

(a) Suppose mth order minor of W;_; ; which comes from consecutive
rows contains the [th row of W;_1 ; between its first row and its last row.
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Suppose p+k =1<p+m—1<n. Then

W (p p+1 ... p+k-1 p+tk ... p+m—1>
-1 | . . . ,
Ju.ooJ2 .- Jk Je+1 - Jm
:ulw(p p—.l-l lfl .l p+m—1>
J1 12 Je Jk+1 .- Im
—uQW(P ptl ... -1 1-1 .. p+m—1>
n J2 Jk Jk+1 .- Im
>0

since the second determinant equals to 0. Thus all mth order minors of
Wi_1.1, which come from consecutive rows and contain the Ith row of
W;_1,1 between its first row and its last row, are nonnegative.

(b) Suppose mth order minor of W;_1 1 which comes from consecutive
rows contains the Ith row of Wi_;; as its first row.

I I+1 ... l+m-1
W¢_171 ( . . . )
J1 J2 .o Im
— W g I+1 ... l+m—1)
J1 J2 Im
n J2 Jm
Ui Wi—-1,5 Wi—1,j; Wi—1,jm
U2 Wi, j1 Wi, 52 e W, jm
=10  wy Witlj, - Witljn
0 wigm-15 W4m—-142 -+ Witm—=1jn,
(-1 [ ... I+m-1
_ ) wman ( L ; ) >0, ifj1>1,
= ' 1 .- m
0, if ;= 1.

Thus all mth order minors of W;_; 1, which come from consecutive rows
and contain the Ith row of W;_1; as its first row, are nonnegative.

(c) Suppose mth order minor of W;_; ; which comes from consecutive
rows contains the [th row of W;_; ; as its last row.
Similarly we may show that all mth order minors of W;_1 1, which come
from consecutive rows and which contain the lth row of W;_;; as its
last row, are nonnegative.
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From (a), (b), and (c), Wi—1,1 € TPy, based on the consecutive rows.
Since

-1 1
wi—1,1Wi — wiwi—1,; = W < 1 z) >0,

1
wwy — ugwi—1; = —————— (Wi—1,1Wy — wnwi—1,4) > 0,
Wi — Wi-1,1

and hence W;_y 1 is TP;. Suppose W;_1,1 is TPp—1. According to the
Lemma 3.1, Wi_11 € TP,,. By induction on the order of its minors,
W,_1,1 € TP. Since Wi_y,; isrow equivalent to W and W' is non-singular,
Wi_1,1 is non-singular.

(2) The proof is analogous to that of part (1).

(3) The proof is analogous to that of part (1). O

LEMMA 3.4. Suppose an n X n matrix

a1 0 ce 0 0 e 0
Qa1 an2 PN 0 0 PN 0
A= 11 a-12 ... a-15-1 au 0
0 a2 e apr—1 ajl e 0
0 an?2 Ce Qn,l—1 Apl ... QOpn

is non-singular and TP, where | — 1 = max{k : ax1 > 0}.
Then

a1 0 0 0 0
an a99 cen ' 0 0 . 0
A= a1 am2—ap .0 @11 —ag-1 0 0
0 a2 v api—1 ay e 0
0 An2 Qn, -1 Qnl - Qnn

is non-singular and TP if all elements of the | — 1th row of A; are
nonnegative.
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Proor. Clearly, A; is TP;. Suppose A; is TP, _1. Consider the fol-

lowing three cases.

(a) Suppose mth order minor of A; contains the | — 1th row of A;
between its first row and its last row.

A (P
! <]1
=A(P

W2l

_A(p
J1

> 0.

p+1 ... 1-1 | p+m—1)
] i/ [T R Jm
-1 1 p+m—1
i+ - Jm )
[ I ... p+m-1
JuoJigr - Jm )

(b) Suppose mth order minor of A; contains the [ — 1th row of A; as

its first row.

m(bﬂ l
J1 J2
:A(H :

n J2
> 0.

[+m—2
n)

l+m—2)_A<l I ... l+m—2>
Jm JuoJ2 .. Im

(c) Suppose mth order minor of A; contains the I — 1th row of A; as

its last row.
l—m
A .
! ( 1
n
al—myjl

al_zyjl
al—lvjl
al1j1

l—l)
Jm

=1\ _ (l=-m .. 1-2
jm jl v jm-—l jm
Al—m,jm 0
01-2,5, 0
a-1,5, 1
(275 7y 1

-2 -1 1

) Z O) if jm < la
Jm—1 Jm l

otherwise.

From (a), (b), and (c), A; is TP, based on the consecutive rows.
According to the Lemma 3.1, A; € TP,,. By induction on the order of
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its minors, A; is TP. Since the determinant of A; is equal to that of A,

A; is non-singular. O
LEMMA 3.5. Let Cy, Cs,...,C, be the columns of n X n non-singular
upper triangular TP matrix C = ||¢;;|| = (C1, Ca,..., Cp). Set | =

max{k : c1x > 0} and C,;—1 = (C1,...,71C1-1,C1 — p2C1-1,Ciry1,4 . . -,

Ch) for py :% and pg=;“4— Then C1,1 is non-singular and TP.

PRroOOF. Straightforward from Lemma 3.3 and Lemma 3.4. W

THEOREM 3.6. If W = ||w;|| is an nxn nonsingular TP matrix, then
it can be represented as W = B1B, ... B,_1DC1C5...Cy_1, where B;
and C; are of the form

B; = eXP(JriL,n—l) eXP(JriL—1,n—2) .- 'exp(‘]ii-i-l,i)a
Ci= exp(H’lZ’L—’i,n—i—l-l) eXp(H:L—i-i-l,n—H—Z) ‘. exp(Hrlz—l,n)'

Here D is an exponential of diagonal matrix, J,ip is the matrix such
that its (kk)-th entry is aby, its (kp)-th entry is aj, > 0, and cher
entries are 0, and Hj, is the matrix such that its (Il)-th entry is by, its
(lq)-th entry is b{ , = 0, and other entries are 0. That is, J,ip and H l]q are
Jacobi matrices with nonnegative off-diagonal elements.

ProOF. Assume w,; > 0. Then wgy; > 0 for k = 1,2,...n — 1 by
Lemma 3.2. Let Wy, W5, ... W, be the rows in order of W. Let

W1 Wl
Wh-11= : ; ‘ = :
-5 n—1,1 )
Wi—1 W1
/ /
@ Wn — Wit g Wn — aWh—1
Wi
" _
n—1,1 — 9
W1
Wn — Wit
where
_ Wn—1,1 _ Wn1
Q1 - 3 Q2 - 9
Wnp1 — Wn-1,1 Wn1 — Wn-1,1
r Wn—1,1 r Wn1
q = 9 =

—7, -
Wn—-1,1 — Wna Wn—1,1 — Wni
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Consider the following three cases
(a) In case of wp_1,1 < Wn1-

Let
1 0 0 0 0
0 1 0 0 0
Hep1=[0 0 . —wa _wa 3 . g
Wh—1,1 We—1,1
o 0 ... 0 0 o 1
for k = 2,...,n, where wzjki and - o 1 are in the kth row and

—Yel_ ] ijs on the diagonal. That 1s Hkk 1=FE1 4+ -+ Ex1 +

We—1,1

w:}ki lEk k—1 T (j:i’“lll — 1)Ex + Eg41 + -+ + Ep, where Ek,k—l,Ek
are matrices in Theorem 2.5. Then W = Hy, ,_1Wy,_1,1, where Wy 13
is the matrix in Lemma 3.3. Since w:’jh > 1 and w—:}”—j—i—l —-1>0,
Hppoy = exp(J),_;) for some Jacobi matrix J;, ,_; with nonnega-
tive off-diagonal elements as denoted in the hypothesis. By Lemma 3.3,
W,_1,1 is TP and non-singular. Thus W = exp(Jy, ,,1)Wn—1,1, where
Wy—1,1 is TP and non-singular.

(b) In case of wyp_1,1 > wn1.

Let
1 0 0 0 0
0 1 0 0 0
Hio1=|0 0 . —wa 1__wa .. g
. Wg—1,1 We—1,1
0 0 ... 0 0 o1
for k =2,...,n, where ———k—l— and 1— “”“ are in the kth row. That is,

We

Hy 1—E1+ +Ek 1+ B k- 1+Ek+Ek+1+ -+ E,,. Then
W =H) , 1 Wn_l’l.Slnce0<1—U%h<1andO<1 o Hyp g =

—1,1

exp(J)/,_,) for some Jacobi matrix J._, with nonnegative off-diagonal
elements. By Lemma 3.3, W,,_, ,, is TP and non-singular. Thus W =

"

exp(Jy n_1)W;_1,1, where Wy _, ; is TP and non-singular.

(c) In case of wp—_1,1 = Wn1-
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Let
10 0 0 0
0 1 0 0 0
Gee-1= | 11 0
00 ... 00 ... 1

for k = 2,...,n, where 1 in the first sub-diagonal is in the kth row. That
is, Gk:,k—l =Fi+ - -+FEx +Ek,k—1+2Ek +Ei1+ -+ E,. Then W =
GnnaW)_1 1. Also, Gnn—1 = exp(Jy,_1) for some Jacobi matrix
J! _, with nonnegative off-diagonal elements. By Lemma 3.3, W;_, ;
is TP and non-singular. Thus W = exp(J,.,,_1)W,/_; 1, where W}/_,  is
TP and non-singular.

From (a), (b), and (c),

)

exp(Jy n_1)Wno11, if wn_1,1 < wna,
(Jnn—1)W,
(

n,
144 .
W = ¢ exp(J;, 115 i wn_11 > wn1,
" 3 —
€xp n,n—- 1) n—1,1» if Wp-1,1 = Wn,
where Wr_1,1, W),_1 1, Wy_;; are TP and nonsingular. Similarly we

may factorize any of Wn_1,1, W),_1 1, W,/_1 1 depending on the case. Con-

tinuing this process, we can represent W as
W = eXP(Jl )exp(Jn 1,n— 2) - eXIT’(«]21,1)V11 = By V11,

where V7, is TP, non-singular, and of the following form:

Vi1 V12 ... Uin
0 we ... 1o

Vin =
0 Von .-+ Unn

Since Vi; is TP and non-singular, we can factorize V;; and represent
Vii = exp(J2 1) exp(J2_1 n o). -exp(J32)Uz2 = BzUzz, where Uz,
is TP, non-singular, and of the following form:

U1 w2 U3 ... Ulp
0 U22 U233 ... U2,
U22 — 0 0 ussy ... U3n

0 0 uUng ... Upn
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Continuing this process, we can represent W as W = BBy ... B,_1 K,
where B; = exp(J}, ,_1)exp(J},_ n_2) - --exp(Ji;1,;) and K is TP, non-
singular, upper triangular, and of the following form:

ki1 ki2 ... ki
0 koo ... ko

K= . . ) .
0 0 ... kpn

Let K, ..., K, be the columns of K such that K = ||k;|| = (K1, Ko,
..., Ky) and let | = max{m : ki, > 0} and Kq;-1 = (Ki,...,u1 K11,
Ky —wK; 1, Ki41,..., Ky ) forug = k—lk% and ug = klkl”_l. Then

K = Kl,l—lMl—l,l forl = 2, Loy, where

1 0 ... 0 0 ... 0
o1 ... 0 0 ... 0
SN P S P
=Ll = U kig—itkun kiioatku
o 0 ... 0 0
\O o ... 0 0 o1
Here klfl_'illk” and ku%ik” are in the [ — 1th row of M;_; ;. That is,

Mi_1y=Ei+-+Eat g Mg= B+ By + B+ -+ En. Since

M_q, = exp(Hlljl1 ;) for some Jacobi matrix Hf:ll , With nonnegative

off-diagonal elements, K = K ;1 exp(H, lljll 1) According to the Lemma
3.5, K1,;-1 is TP and non-singular. Cont7inuing this process, we can
represent K as K = I exp(Hf;l .. .exp( ;‘jll,n) = [1Cph_1, where
Fy, is TP, non-singular, upper triangular, and of the following form:

fin 0 ... O
0 fa ... fa
Fu=1| . S :n
0 0 ..o fum

Since Fi; is TP and non-singular, we can factorize Fy; again as above
and represent i1 = E23C,_2, where Fqo is TP, non-singular, upper
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triangular, and of the following form:

€11 0 0 0

0 €99 0 0
Ep=| 0 0 es3 €3n
0 0 0 ... enn

Continuing this process, we can represent K as K = DC1C;...Cy 1,
where D is an exponential of diagonal matrix. Thus W = B1By ... B,
XDClcg...Cn_l. d

For each cone W C L(G), there is a local subsemigroup of Lie group G
for which the given cone is the set of subtangent vectors, but in general
there need not exist a globally defined semigroup for which this is true
(see [3]). This motivates the following definition.

DEFINITION 3.7. A semigroup S is said to be strictly infinitesimally
generated by L(S) if S is the same as the semigroup generated by

exp(L(5))-

Given L(S), computing the strictly infinitesimally generated semi-
groups may be considered as a generalization of finding integrands.

THEOREM 3.8. The semigroup S of n X n non-singular TP matrices
is strictly infinitesimally generated by the set W of n x n Jacobi matrices
with non-negative off-diagonal entries which forms a tangent cone of the
semigroup.

PRrOOF. Let Sg(exp(W)) denote a semigroup generated by exp(W).
Then exp(W) C S, L(S) = W, and Sg(exp(W)) C S by Theorem 2.5.
By Theorem 3.6, S C Sg(exp(W)). O
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