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LINEAR PRESERVERS OF
BOOLEAN NILPOTENT MATRICES

SEOK-ZUN SONG, KYUNG-TAE KANG, AND YOUNG-BAE JUN

ABSTRACT. For an n x n Boolean matrix A, A is called nilpotent if
A™ = O for some positive integer m. We consider the set of n x n
nilpotent Boolean matrices and we characterize linear operators
that strongly preserve nilpotent matrices over Boolean algebras.

1. Introduction and preliminaries

There is a great deal of literature on the study of matrix theory over a
finite Boolean algebra (see [1], [2], [4]-[7]). But many results in Boolean
matrix theory are stated only for binary Boolean matrices because there
exists a semi-ring isomorphism between the matrices over the Boolean
algebra of subsets of a k element set and the k tuples of binary Boolean
matrices. The isomorphism allows many questions concerning matrices
over an arbitrary finite Boolean algebra to be referred to the binary
Boolean case. In many instances, the results in the general case are not
immediately obvious because the above mentioned isomorphism was not
well known.

Botta et al. [3] obtained characterizations of the linear operators
which preserve nilpotent matrices over fields. In this paper, we will
characterize linear operators that strongly preserve nilpotent matrices
over general Boolean algebras.

For a fixed positive integer k, let By be the Boolean algebra of sub-
sets of a k-element set S and 01, 09, . . ., o), denote the singleton subsets
of Sg. Union is denoted by + and intersection by juxtaposition; 0 de-
notes the null set and 1 the set Sg. Under these two operations, By is a
commutative, anti-negative semi-ring (that is, only zero element has an
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additive inverse); all of its elements, except 0 and 1, are zero-divisors.
In particular, if £ = 1, By is called the binary Boolean algebra.

Let M, (By) denote the set of all nxn matrices over a general Boolean
algebra By with & > 1. We denote the n x n identity matrix by I, the
n X n zero matrix by O,, and the n x n matrix all of whose entries are
1 by Jp. For a matrix A in M, (Bg), |A| is denoted as the number of
nonzero elements in A.

The nxn matrix all of whose entries are zero except its (7, j)-th, which
is 1, is denoted E;;. We call Ej; a cell. Let E, = {E;;|i,j =1,...,n}
denote the set of all cells. When i # j, we say E;; is an off-diagonal
cell; E; is a diagonal cell. A line is a row or a column. A set of cells is
collinear if they are all in the same line.

For any matrix A = [a;;] € M,(Bg), the p** constituent, A,, of A is
the n x n binary Boolean matrix whose (i, j)-th entry is 1 if and only if
aij 2 op. Via the constituents, 4 can be written uniquely as

k

A=) "opAp,

p=1

which is called the canonical form of A (see [7]).
It follows from the uniqueness of the decomposition and the fact that

the singletons are mutually orthogonal idempotents that for all matrices
A, B € M, (Bg) and all a € By,

(1.1) (AB),=A,B,, (A+B),=A,+B,, and (ad),=0p4p
forall 1 <p<k.

LeMMmA 1.1. ([5]) For any matrix A € M,(Bg) with k > 1, A is
invertible if and only if all its constituents are permutation matrices. In
particular, if A is invertible, then A=* = A’

A matrix A in M, (By) is called nilpotent if A™ = O,, for some integer
m > 1, and we denote N,,(B) as the set of all nilpotent matrices in
M,,(Bg). We also shall denote the set of all matrices in which all diagonal
entries are zero by Z,(By). We can easily show that all off-diagonal cells
in M, (By) are nilpotent but all diagonal cells are not nilpotent.

THEOREM 1.2. For a matrix A € M,(By), A is nilpotent in M, (By)
if and only if all its constituents are nilpotent in My, (B1).
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k
Proof. Let A= }_ 0,A, be a matrix in M, (B). Since gp04 = 0 or
p=1

- 0 according as p = q or p # g, we have
k
(1.2) A™ = Zap(Ap)m
p=1

for all integer m > 1. For a nilpotent matrix A in M,,(By), assume that
there exists a p*® constituent, A, of A such that A, is not nilpotent
in M,(B;) so that (A,)™ # O, for all integer m > 1. Therefore we
have that an (¢, j)-th entry of (Ap)™ is 1. By (1.2), the (4,7)-th entry
of A™ must contain o), for all integer m > 1, a contradiction. Hence all
constituents of A are nilpotent in M, (B;).

Conversely, assume that all constituents of A are nilpotent in M, (B,).

Then there exist positive integers my, ..., my such that (4,)™ = O,, for
allp=1,...,k. Let m = max{mg, ..., mg}. Then we have (4,)™ = O,
and so A™ = Oy, by (1.2). Therefore A is nilpotent in M, (Bg). (

PROPOSITION 1.3. For any integer k > 1, we have Ny, (By) C Z,(Bg).

Proof. Let A = [ai;] ¢ Zn(Bi). Then there exists a diagonal entry a;;
of A such that a; # 0 for some ¢ = 1,...,n so that a; 2 o0}, for some
p=1,...,k. Therefore the (i,7)-th entry of A™ must contain &, so that
A™ £ O, for all integer m > 1. This implies that A ¢ N, (By). d

2. Nilpotent matrix preservers over binary Boolean algebra

In this section we obtain characterizations of the linear operators that
preserve nilpotent matrices over the binary Boolean algebra B;.

A mapping T : M, (B) — M, (By) is said to be a linear operator on
M, (Bg) if T(aA+bB) = oT(A)+bT'(B) for all A, B in M,,(Bg) and for all
a,bin Bg. A linear operator T on M, (By) is said to be strongly preserve
N, (Bg) (or T strongly preserves nilpotent matrices) if A € N,,(Bg) if and
only if T(A) € Np(By).

If A = [a;;] and B = [b;;] are matrices in My (By), we shall use the
notation A > B(or B < A) if a;; 2 by; (equivalently a;; + by; = ay;)
for all 4,5 = 1,...,n. This provides a reflexive and transitive relation
on M, (Bg). If A and B are matrices in M, (By) with A > B, it follows
from the linearity of T that T(A) > T(B) for any linear operator T on
M, (By).

PRroPOSITION 2.1. If A € N,(Bg) and A > B, we have B € N, (By).
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Proof. 1t follows from O, = A™ > B™ for some integer m > 1. O

LEMMA 2.2. Let T : M,(B1) — M,,(B;) be a linear operator which
strongly preserves N,,(B;1). Then T is nonsingular.

Proof. Suppose that T(E) = O, for some cell E € E,,. Then we have
that F is an off-diagonal cell since every diagonal cells are not nilpotent.
Consider X = E + E!'. Then we can easily show that X ¢ N,(B;)
while T(X) = T(E + E') = T(E?) € N,(B;), a contradiction. Hence
T(E) # Oy, for all cells E € E,,. The Lemma, follows. O

LEMMA 2.3. Let T : M,(B;) — M,,(B;1) be a linear operator which
strongly preserves N, (B;). Then T is invertible on Z,(B1) and T~! is
also a linear operator on Z,(B;) and strongly preserves N,(B;). Fur-
thermore T permutes cells in Z,(B1).

Proof. It had been proved in [2] that for a finite semiring, there is a
power of T" which is idempotent. Let L = T? be idempotent for some
integer p > 1. Then L still strongly preserves N, (B;). By Lemma 2.2,
we have that L is nonsingular.

To show that T : Z,(B1) — Zn(B;) is invertible, we will claim that
L : Zn,(B1) — Z,(B;) is the identity map. Let E be an off-diagonal
cell in Z,(B;). Since T and L are nonsingular, we have T(FE) # O,
and L(E) # Op. It follows from Proposition 2.1 that neither T'(E)
nor L(E) can dominate any diagonal cell because T(E) and L(E) are
nilpotent. Thus there exists at least one off-diagonal cell F' in Z,(B,)
such that L(E) > F. If E # F, then we have E + F* € N,(B;) so that
L(E + FT) € N,(B1). Now,

L(E + F*) = L(E) + L(F') = L*(E) + L(F%)
> L(F) + L(F") = L(F + F").
By Proposition 2.1, L(F + Ft) € N,(B;) while F + F! ¢ N,(B;), a
contradiction. Therefore F' = E and hence L(E) dominates E only,
that is, L(E) = E. Therefore L must be the identity map on Z,(B;)

and so T is invertible on Z,(B1).
Let A, B € Z,(B1) and a,b € B; be arbitrary. Then we have

T(aT *(A) +bT"Y(B)) = aA + bB,
equivalently
T~ '(aA+bB) = aT'(A) + bT~}(B).
Thus 7~ is a linear operator on Z,(B;). It is easy to show that 7!
strongly preserves N, (B;).



Linear preservers of Boolean nilpotent matrices 543

Let E be a cell in Z,(B;1). Then there exists at least one cell F in
Zn(By) such that T(E) > F or equivalently, E > T~1(F). Since T~ is
nonsingular, it follows that E = T~1(F), equivalently, T(E) = F. Since
T is invertible on Z,(By), it follows that T permutes cells in Z,(B;). O

COROLLARY 2.4. Let T : M,(B;) — M,(B;1) be a linear operator
which strongly preserves N,,(B1). Then we have T(A?) = T(A)¢ for all
A€ Z,(By).

Proof. Let E be any cell in Z,(B;). Consider a matrix E+ E*. Then
we have E + Et ¢ N,,(B;) so that T(E) +T(E?) = T(E + Et) ¢ N,,(B,).
By Lemma 2.3, both T'(E) and T(E") are different cells in Z,(B;). This
shows that T(E?) = T(E)! because T(E) + T(E*) ¢ Np(B;). It follows
that T(A?) = T(A)* for all A € Zn(B1). O

A matrix E € Z,(By) is called an s-star matriz if |E| = s and all its

nonzero entries lie on a row or column for 2 < s < n — 1. Then we can
easily show that any s-star matrix is nilpotent for all s =2,...,n — 1.

PROPOSITION 2.5. If A is a 2-star matrix in Zn(B;), there exists a
permutation matrix P such that PAP! = E1o + Ei3 or Ea1 + Es;.

Proof. Since A is a 2-star matrix, its form has A = E;; + Ej; or
E;j+ Ey;, where 1, j and k are all distinct. For the case of E = E;; + Ey,
let o be a permutation of {1,2,...,n} such that (i) = 1, a(j) = 2,
ak) =3 and ofl) =l for all I € {1,2,...,n}\ {3,4,%,1,2,3}. Let

n

P=3 Eq(s)s- Then P is the permutation matrix corresponding to «
s=1

and

PAP! = (Z Ea(s)s) (Eij + Eik) (Z Esa(s)>

s=1 s=1
= Ea(i)a() T Ea)ak) = E12 + Er3.
Similarly, if E = E;; + Ej;, we obtain that PAP* = E5; + E3; for some
permutation matrix P. O
COROLLARY 2.6. Let A be a matrix in Z,(B1) with |A| =2. If A is

not a 2-star matrix, then there exists a permutation matrix P such that
PAP! = Ey5 + E, where E = Fy1, Eo3, F3; or E3q.

Proof. The proof follows from a similar method to Proposition 2.5.
O

LEMMA 2.7. IfT is a linear operator on M, (B;) that strongly pre-
serves N, (B1), then T preserves 2-star matrices.
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Proof. Let A be a 2-star matrix. By Proposition 2.5, we can assume
that A = E15 + Ei3 or Eo1 + E3;. For the case of A = FEy2 + Fis,
we have |T(A)] = 2 by Lemma 2.3. Assume that T(A) is not a 2-
star matrix. By Corollary 2.6, there exists a permutation matrix P
such that PT(A)Pt = FEys + E, where E = Eos), FEs3, F31 or Ea4.
Since permutation similarity preserves nilpotent matrices, without loss
of generality, we may assume that T(A) = E15 + E. Let

Ei2 + En if £ = Ey,
M =< Eis+ Es3+ Es3; if £ = FEz3 or Ej3,
Eyo+ B3+ E3q + Eqy if E = E3y,

so that M is not nilpotent with M > T(A). If we let N = M \ T(A),
then both N + T'(Ey2) and N + T(E3) are nilpotent. By Lemma 2.3,
both By = T™Y(N) + Ej2 and By = TY(N) + Ey3 are nilpotent. It
follows that

(2.1) B +T Y (N)=B; and By;+T }(N)=B,.

Let B =T7Y(N) + E12 + E13 so that B = By + By. Now we will show
that

(2.2) B™ = B + BY*

for all integer m > 1. We shall prove (2.2) by induction on m. If m =1,
the result is obvious. We may assume that (2.2) holds for m > 1. Then
by (2.1), we have

Bm+1 BB™
= B(B* + By)
= (B1 + B2)(BT" + BY")
= B! 4+ B**! 4+ By,B* + B, By
= BI""' + By + T~H(N)B[" + Ei3Bi* + T~'(N)BY' + E12 By’
= (B1+T Y(N))B" + (By + T™}(N)) B} + Ex3Bl* + E12 By
= B"*! + B+ + E3B{® + E12BY".
Now, we will show that
BM 4 EpBY = BP*Y and  BPt! 4+ BB = BptL
Notice that

E13B* = Ey3(T~Y(N) + E1)™ ZEls YN ETR-
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Let X = E13(T~'(N))*E72~%. Then we have that

O, if k<m-—2,
X = E13(T_1(N))m~1E12 if k=m— 1,
Era(T-1(N))™ if k= m.

If X = Ey3(T~1(N))™, then it is a term of the expansion of By**! so
that By*t! + X = BPTL If X = Ey3(TY(N))™ 'E},, then we have
(T7Y(N))™ ! > E3;. Let C = [¢;j] = T~Y(N). Then the (3,1)-th entry
of C™~1 is 1 so that there exist indices i1,%2,...,im—2 € {1,2,...,n}
such that ¢34, ¢4, - - Ci,,_p1 = 1. Therefore, we have c3;, = ¢iy4, = =
Ciyp1 = 1 80 that T_l(N) =C> By, + B+ + E’im_zl- Thus we
have

By = T_l(N) + FE13 2> E3i, + B+ + E; 1+ Ens.

Since E3;, + Ejy i, +- - -+ E;,,_,1+ FE13 is not nilpotent, By is not nilpotent
by Proposition 2.1. This contradicts to the fact that By is nilpotent.
Therefore, we have established that B;”H + E3B7* = B;n‘H. Similarly,
we obtain that BY*"! + E1,BJ* = B"*1. Thus,

B™! = BI**! + Byt + BB + BBy = B! + Byt

Since B; and Bs are nilpotent, there exist integers mi,mg > 1 such
that B = O, for i = 1,2. Let m = max{m,m2}. Then we have
B™ = BT* + BT® = Oy, + O, = O,,. Thus, B is nilpotent and so

T(B)=T(T"YN)+ Ep2+Ei3)=N+Ep+E3z=M

is also nilpotent. This contradicts to the fact that M is not nilpotent.
Therefore T'(A) is a 2-star matrix. Similarly, if A = E»; + E31, we obtain
that T'(A) is a 2-star matrix. Therefore T preserves 2-star matrices. [

COROLLARY 2.8. IfT is a linear operator on M,,(B;) that strongly

preserves N,(B,), then T preserves all s-star matrices for each s =
2,3,...,n—1.

Proof. By Lemma 2.7, T preserves 2-star matrices. Assume that
T preserves k-star matrices for some & = 2,3,...,n — 2. Let A be
any (k + 1)-star matrix. Without loss of generality, we may assume
that A = Ejy, +--- + E;, + Eiik+1’ where © # i1,...,0k, i1 Let
B = Ey, +--- + By, so that B is a k-star matrix. By the induction
hypothesis, we have T(B) is a k-star matrix. Thus the form of T(B)
is either Ej; + --- + Ejj, or Ej1j +--- + Ej,;, where j F Jly- -y ke
Let T(B) = Ejj, +--- + Ejj,. Without loss of generality, we can take
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T(Ey,) = Ejj, for each 1 = 1,2, ...,k. Suppose that T(A) is not (k+1)-
star matrix. Then we have T(Ej;,,,) = Eg, where s # t and s # j.
Thus, T(Ey, + Eu,,y) = Ejj + Eg and T(Ey, + By, ) = Ejj, + Egt
are 2-star matrices because Ey, + Ejy;, ., and Ey, + Ej,,, are 2-star
matrices. Since s # j, we have j; = t and jo = t so that j; = jo,
a contradiction. Hence T'(A) is a (k + 1)-star matrix. Therefore T
preserves s-star matrices for all s =2,3,...,n—1. O

An (n —1)-star matrix A € Zy,(By) is called a row matriz (or column
matriz) if all its nonzero entries lie on a row (or column). Let R; =
Y Ejjand C; =3 Ej fori,j=1,...,n. Then R; is a row matrix and
J#i i#]

C; is a column matrix for all 4,5 =1,...,n. Let R={R;|i = 1,...,n}
and C={Cj|j =1,...,n}.

PROPOSITION 2.9. Let T be a linear operator on My (B1) that
strongly preserves N,,(B1). Then

(1) T maps R to R and maps C to C, or
(2) T maps R to C and maps C to R.

Proof. Let R; be any row matrix. By Corollary 2.8, T(R;) is a row
matrix or a column matrix. Assume that T(R;) is a row matrix. Say
T(R;) = Ry for some k =1,...,n. Suppose that T(R;) = C; for some
J # i and for some column matrix C;. Since |R; + R;| = 2n — 2, it
follows from Lemma 2.3 that |Ry + Cj| = |T(R; + R;)| = 2n — 2 so that
Ry = C}. By Corollary 2.4, T(R!) = T(R;)' = C} = Ry = T(R;) so
that R; = R;. This is impossible. Thus T" maps R to R. By a similar
method, T maps C to C.

Similarly, if 7' maps a row matrix to a column matrix, we obtain that
T maps R to C and maps C to R. O

LEMMA 2.10. Let T be a linear operator on M,,(B;) that strongly
preserves N, (B;). Then there exists a permutation matrix P such that
T(X) = PXP! or T(X) = PX'P* for all X € Zy,(By).

Proof. Suppose that T strongly preserves N,,(B;). By Lemma 2.9, T
maps R to R and maps C to C, or T maps R to C and maps C to R.
First, we assume that T' maps R to R and maps C to C. Then we
have that T(R;) = Ry(;) and T(C;) = Cg(;), where a and 8 are some
permutations of {1,2,...,n}. Thus, for any cell E;; € Z,(B,), we can
n n

write T(EU) = Ea(i)ﬂ(j)- Let P = Z Ea(i)i and Q = Z Ejﬁ(j) be the
=1 j=1

permutation matrices corresponding to & and 3, respectively. Then for
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T
any matrix X = [x;;] € Zn(B1), we have that T(X) = Y 24 Eqi)p() =
=1

b=
PXQ. :

Now, we will show that Q = P!, equivalently QP = I,,. By Corollary
2.4, we have PX'Q = T(X?) = T(X)! = Q*X'P* so that QPX!QP =
X*. Suppose that QP # I,,. Since QP is a permutation matrix, there
exists an (7,7)-th entry of QP is 1 for some i # j. Then we have
QPE;;'QP = E;;. This contradicts to QPX*QP = X*. Hence we have
QP = I, so that T(X) = PXP? for all X € Z,(B,).

Next, we assume that 7" maps R to C and maps C to R. By the similar
argument, we obtain that T'(X) = PX*P? for all X € Z,(B;). O

For two matrices A = [a;;] and B = [b;;] in M, (By), A o B denote
the Hadamard (or Schur) product, the (i,7)-th entry of Ao B is a;; bs;.
Set Ky, = Jp \ I

THEOREM 2.11. Let T be a linear operator on M, (B;). Then T
strongly preserves Ny, (B1) if and only if there exist a permutation matrix

P and matrices D; which are not nilpotent with ¢ = 1,...,n such that
either
(1) T(X) = P(X o Kp)P' + 3 z;;D; for all X € M,,(By), or
=1

(2) T(X) = P(X' o Kp)Pt+ 3. D for all X € M, (B).
i=1

Proof. Suppose that T strongly preserves N,(B;). By Lemma 2.10,
there exists a permutation matrix P such that 7(X) = PXPtor T(X) =
PX'P! for all X € Z,(B,).

Assume that T(X) = PXP* for all X € Z,(B;1). For any matrix
X in M, (B;), we have that X o K,, € Z,(B;) so that T(X o K,,) =
P(X o K,)Pt. Let D; = T(E;) for each i = 1,2,...,n. It follows from
Ey ¢ Np(By) that D; is not a nilpotent matrix. Thus T(X o I,) =

T
z4D;. Since X = (X o K,) + (X o I,), we have that

i=1

n
T(X)=T(X 0 Kn) + T(X 0 I) = P(X 0 Kp)Pt + > 2:D;
i=1
for all X € M,,(B1).
Similarly, if T(X) = PX*P?, then we obtain that

n
T(X)=P(X"0 Kp)P'+ ) z;D;

i=1
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for all X € M,,(B;).

Conversely, let X € N,(B;). By Proposition 1.3, X o I, = O, so
that x; = O for all i = 1,2,...,n. It follows from X o K,, = X that
T(X) = PXP*' or T(X) = PX!P*. Therefore we have T(X) € N,(B1)
because similarity and transposition strongly preserves N, (B;).

Let T(X) € Np(B;1). Then we can easily show that z;; = 0 for all
i =1,2,...,n. Thus we have X oI, = O, so that X = X o K,,.
Therefore we have that T(X) = PXP? or T(X) = PX!P!. Tt follows
that X € N,,(B;) because similarity and transposition strongly preserves
N,.(B;). O

3. Nilpotent matrix preservers over general Boolean algebra

In this section, we study nilpotent matrices over general Boolean
algebras By with £ > 1. Furthermore, using Lemma 2.10, we obtain
characterizations of linear operators which strongly preserve nilpotent
matrices over general Boolean algebras.

If T is a linear operator on M, (By) with k > 1, foreach 1 < p < k
define its p™ constituent operator, T, », DY

Tp(B) = (T(B))y
for all B € M,(By). By the linearity of T, we have

k
(3.1) T(A) = ZUPTP(AP)
p=1

for any matrix A € My, (Bg) ([7])-

LeMMA 3.1. IfT is a linear operator on My, (By) which strongly pre-
serves N;,(By), then each pt? constituent operator, T,, strongly preserves

N,.(B1).

Proof. Let A be any matrix in M, (B;). Obviously, A is the matrix
in M, (]Bk) such that Ap=Aforallp=1,2,... k. Thus, we have that

A= Z opAp = E opA. If A € Ny(By), then A € N,,(Bg) by Theorem

1.2. Since T preserves N, (By), T(A) Z opTp(Ap) € No(Bg). Again

by Theorem 1.2, each Tp(4,) € N, (Bl) S0 that Tp,(A) € N, (By) for all
p=12,...,k.
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Conversely, if T,(A) € Ny(B1) for each p = 1,2,...,k, then T(A4) =
k
Y- opTp(Ap) and so T(A) € N, (Bi) by Theorem 1.2. Hence A € N, (Byg).
p=1
By Theorem 1.2, we have that A(= Ap) € N,(B1). O

For any fixed invertible matrix U in M,,(By), the operator A — U AU*
is called a similarity operator. And the operator B — Bt is called a
transposition operator on M, (Bg) ([7]). We can easily show that any
similarity operator and transposition operator on My, (Bj) are linear op-
erators which strongly preserve nilpotent matrices. Also, we can restate
Lemma 2.10 as follows: the linear operators on Z,(B;) that strongly
preserve Ny, (B;) are compositions of transpositions and similarity oper-
ators. But for a general Boolean algebra B, with & > 2, the following
example shows that there exists another linear operator on Z, (Bj) that
strongly preserves N, (By) which is neither a transposition operator nor
a similarity operator.

ExXAMPLE 3.2. Let

g1 02 03
U= oy 03 01 EM3(IB3).
03 01 02

By Lemma 1.1, U is an invertible matrix in M3(B3) with U~ = U’
Define an operator T on Z3(B3) by

T(X) = U(0'1X1 + UgXé -+ U3X3)Ut

3
for all X = > 0,X, € Z3(B3). Then we can easily show that T is
p=1

a linear operator on Z3(B3) which is neither a transposition operator
nor a similarity operator. It is easy to show that T strongly preserves
N3(Bs3). a

LEMMA 3.3. Let T be a linear operator on M, (By) that strongly
preserves Ny (By). Then there exists an invertible matrix U in M, (By)
such that

T(X) =U( zk: opY, ) Ut
p=1

for all X € Z,(By), where Y, = X, or Y, = th, foreachp=1,... k.

Proof. Assume that T strongly preserves N, (B;). By Lemma 3.1,
each p*® constituent operator, T}, , on M, (B;) strongly preserves N, (B ).
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By Lemma 2.10, each T, has the form
Tp(Xp) = QpXpQy or Tp(Xp) = QPX;Q;)

k
for all X = Y 0pX, € Zy(By), where each @), is a permutation matrix
p=1

k
for all p = 1,...,k. By (3.1}, we have T(X) = } 0,Q,Y;Q%, where
p=1
Y, = Xp or Y, = X}, for each p =1,.. ., k, equivalently

T(X) = (é apr) (; opr) (g O'pr)t.

k
If we let U = op@p |, then U is invertible in M, (B;) by Lemma
2. Tpler

1.1, and hence the result is satisfied. O

PRrROPOSITION 3.4. Let D be a matrix in M,,(By) all of whose con-
stituents are not nilpotent in M,(B1). Then zD is not a nilpotent matrix
for all nonzero x € By.

Proof. Suppose that 2D € N, (By) for some nonzero z € Bi. Then
there exists o, € By such that * > o, so that D > ¢,D. By Propo-
sition 2.1, we have o,D is nilpotent. But opD = D, is not nilpotent,
a contradiction. Hence zD is not a nilpotent matrix for all nonzero
x € Bg. O

THEOREM 3.5. Let T be a linear operator on M, (By) with k > 1.
Then T strongly preserves Ny, (By) if and only if there exist an invertible
matrix U in M, (By) and matrices D; all of whose constituents are not
nilpotent for i = 1,...,n such that

k

T(X) = U( Y (opY,0 Kn)) Ut + i z;D;

p=1 i=1
for all X € My(By), where Y, = X, or Y, = X] foreachp=1,...,k.

Proof. Assume that T strongly preserves N, (Bg). By Lemma 3.3,
there exists an invertible matrix U in M,,(B) such that

T(X)=U( i opYp Ut
p=1

for all X € Zn(By), where Y, = X, or Y, = X{ foreach p=1,...,k.
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For any matrix X in M, (Bg), we have that X o K,, € Z,(Bg) so that
T(XoKy) = U(Z’;zl(ap)’p o Kn)) Ut, where Y, = X, or ¥, = X} for
eachp=1,...,k. Let D; = T(E;;) foreachi =1,2,...,n. Suppose that
a p® constituent, (D;)p, of D; is nilpotent in M, (B;). Then we have
(D;)p = opD; is nilpotent. This contradicts to the fact that T(opEy) =
opD; is not nilpotent. Therefore all constituents of D; are not nilpotent
in M, (B;). Furthermore, by Proposition 3.4, we obtain that zD; is not
nilpotent for all nonzero x € Bg. It follows from D; = T(E;) that

n
T(Xol,) =) zi;D;. Since X = (X o Ky,) + (X o I;), we have that
i=1

k n
T(X)=T(X 0 Kp) + T(X o I,) = U( Y (opYpo Kn)>Ut +3 @D
p=1 i=1

for all X € My, (By), where Y, = X, or Y, = X! foreachp=1,...,k.
Conversely, let X € Ny, (Bg). By Proposition 1.3, X o I, = Oy, so that

zyi =0 for all i = 1,...,n. Therefore we have T'(X) = U( I;=1(Upr o

Kn))Ut, where Y, = X or Y, = X] foreachp =1,..., k. It follows from
Theorem 1.2 that ¥, € N,(B;) for all p=1,...,k because X € N,(By).
Thus we have Zgzl(apY;, o K,) € Ny(Bg). Since similarity operator
strongly preserves N,,(By), we obtain that T(X) € N, (By).

Let T(X) € N,(Bg). By Proposition 3.4, we have z; = 0 for all
i=1,...,n so that T(X) = U(z’;zl(a,,yp 0 Kn)) U*. Since similarity
operator strongly preserves N, (By), we have Z;j:l(ap)’;,oKn) € N, (Bg).

Since z; = 0for allé =1,...,n, we have Y}, € N, (B,) from Theorem 1.2
for each p = 1,...,k, equivalently X, € N,(B;). Therefore, we obtain

k
that X = " 0,X, € N,,(By) by Theorem 1.2. O
p=1

Thus we obtain characterizations of linear operators which strongly
preserve nilpotent matrices over general Boolean algebras.

References

[1] L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean
rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77.

, Operators that preserve semiring matrix functions, Linear Algebra Appl.

99 (1988), 199-216.

(2]




552 Seck-Zun Song, Kyung-Tae Kang, and Young-Bae Jun

[3] P. Botta, S. Pierce, and W. Watkins, Linear transformations that preserve the
nilpotent matrices, Pacific J. Math. 104 (1983), no. 1, 39-46.

[4] K. H. Kim, Boolean matric theory and applications, Pure and Applied Mathemat-
ics, Vol. 70, Marcel Dekker, New York, 1982.

[5] S. Kirkland and N. J. Pullman, Linear operators preserving invariants of non-
binary matrices, Linear Multilinear Algebra 33 (1993), 295-300.

[6] S. -Z. Song, L. B. Beasley, G. -S. Cheon, and Y. -B. Jun, Rank and perimeter
preservers of Boolean rank-1 matrices, J. Korean Math. Soc. 41 {2004), no. 2,
397-406.

[7] S.-Z. Song and S. -G. Lee, Column ranks and their preservers of general Boolean
matrices, J. Korean Math. Soc. 32 (1995), no. 3, 531-540.

Seok-Zun Song and Kyung-Tae Kang

Department of Mathematics

Cheju National University

Jeju 690-756, Korea

E-mail: szsong@cheju.ac.kr
kangkt@cheju.ac.kr

Young-Bae Jun

Department of Mathematics Education
Gyeongsang National University

Jinju 660-701, Korea

E-mail: ybjun@nongae.gsnu.ac.kr



