JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 5, June 1992

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

WANSOON KIM

ABSTRACT. Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

I. Introduction

We introduce generalized Kac Moody Lie algebras and some basic properties. Let A be a real $n \times n$ matrix (a_{ij}) satisfying the following properties:

- (1) either $a_{ii} = 2$ or $a_{ii} \leq 0$
- (2) $a_{ij} \leq 0$ if $i \neq j$ and $a_{ij} \in Z$ if $a_{ii} = 2$
- (3) $a_{ij} = 0$ implies $a_{ji} = 0$.

And let (H, Π, Π^{\vee}) be a realization of A i.e., H is a complex vector space, both of $\Pi = \{\alpha_1, \alpha_2, \ldots, \alpha_n\} (\subset H^*)$ and $\Pi^{\vee} \subset \{\alpha_1^{\vee}, \alpha_2^{\vee}, \ldots, \alpha_n^{\vee}\}$ $(\subset H)$ are linearly independent, $\langle \alpha_i^{\vee}, \alpha_j \rangle = a_{ij}$ and dim H = 2n - l.

To this matrix we associate a Lie algebra G which is generated by $e_i, f_i (i = 1, 2, ..., n), H$ with the following relations:

(1) $[h, h'] = 0 \ (h, h' \in H)$

Received by the editors on June 30, 1992.

¹⁹⁸⁰ Mathematics subject classifications: Primary 17B67.

WANSOON KIM

- (2) $[e_i, f_j] = \delta_{ij} \alpha_i^{\vee} (i, j = 1, 2, \dots, n)$
- (3) $[h, e_i] = \langle \alpha_i, h \rangle e_i \ [h, f_i] = -\langle \alpha_i, h \rangle f_i, \ (i = 1, 2, \dots, n; h \in H)$
- (4) If $a_{ii} > 0$, $(ade_i)^{1-2a_{ij}/a_{ii}}e_j = 0$ and similarly $(adf_i)^{1-2a_{ij}/a_{ii}}f_j = 0$.
- (5) If $a_{ij} = 0$, then $[e_i, e_j] = [f_i, f_j] = 0$.

The Lie algebra G is called a generalized Kac Moody algebra (see [1]), the elements $e_i, f_i, \alpha_i^{\vee}, i = 1, 2, ..., n$ are called the canonical generators of G. We denote by Q the lattice generated by $\alpha_1, \alpha_2, ..., \alpha_n$ i.e.,

$$Q = \sum_{i=1}^{n} Z\alpha_i$$

and

$$Q_+ = \sum_{i=1}^n Z_+ \alpha_i.$$

Here Z_+ is the set of nonnegative integers. For α and β in Q, we write $\alpha \geq \beta$ if $\alpha - \beta \in Q_+$. The matrix A is said to be symmetrizable if there exists a diagonal matrix D with positive rational diagonal entries such that DA is symmetric. From now on we shall assume that A is indecomposable and symmetrizable. In this case, G admits a invariant bilinear form (\cdot, \cdot) which is nondegenerate on H. Since the bilinear form (\cdot, \cdot) on H is nondegenerate, we have an isomorphism $\nu: H \to H^*$ defined by

$$\nu(h)h_1 = (h, h_1), \quad h, h_1 \in H.$$

Via ν , we induce a bilinear form (\cdot, \cdot) on H^* , thus also on Q. We let ρ be the element in H^* such that

$$(\rho, \alpha_i) = (\alpha_i, \alpha_i)/2.$$

196

The subspace $G_{\alpha} = \{x \mid [h, x] = \alpha(h)x\}$ is the linear span of the elements of the form

$$[\cdots [[e_{i_1}, e_{i_2}], e_{i_3}] \cdots e_{i_n}]$$

such that $\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_n} = \alpha$. A root is defined by a nonzero element α of Q such that G_{α} is nonzero. A root α is called real if $(\alpha, \alpha) > 0$ and imaginary otherwise. For any root α clearly we have either $\alpha \ge 0$ or $-\alpha \ge 0$; a root α is called respectively a positive or a negative root. Each α_i , $i = 1, 2, \ldots, n$ is called a simple root. Let $\Delta^+(\Delta^-)$ denote the set of positive (negative respectively) roots of G. Set

$$N_+ = \bigoplus_{\alpha \in \Delta^+} G_{\alpha}, \quad N_- = \bigoplus_{\alpha \in \Delta^-} G_{\alpha}.$$

 N_+ and N_- are subalgebras of G and as a vector space one has $G = N_- \oplus H \oplus N_+$. For a subalgebrea B of G let U(B) denote the universal enveloping algebra of B. By the Poincaré-Birkhoff-Witt theorem one has

$$U(G) = U(N_{-}) \bigotimes_{\mathbf{C}} U(H) \bigotimes_{\mathbf{C}} U(N_{+}).$$

A G module $M(\lambda)$ is called a highest weight module with highest weight $\lambda \in H^*$ if there exists a nonzero vector $v \in M(\lambda)$ such that $N_+(v) = 0$, $h(v) = \lambda(h)v$ for $h \in H$ and $U(G)(v) = M(\lambda)$. A G module M is called H-diagonalizable if

$$M = \bigoplus_{\lambda \in H^*} M_\lambda$$

where $M_{\lambda} = \{v \in M \mid hv = \lambda(h), h \in H\}$. A nonzero element $\lambda \in H^*$ is called a weight if $M_{\lambda} \neq 0$ and M_{λ} is called a weight space.

Now we define the category O as follows. Its objects are G modules M which are H-diagonalizable with finite dimensional weight spaces

WANSOON KIM

and such that there exist finite number of elements $\lambda_1, \lambda_2, \ldots, \lambda_s \in H^*$ such that

$$P(M) \subset \bigcup_{i=1}^{s} D(\lambda_i)$$

Here, $P(M) = \{\lambda \in H^* \mid M_\lambda \neq 0\}$ and $D(\lambda) = \{\mu \in H^* \mid \mu \leq \lambda\}$. Important examples of modules from the category O are highest weight modules. Any submodules or quotient modules in O are in O.

Given a G module M in O, we introduce a linear operator Ω on Mas follows: Let $u_1, u_2 \ldots$ and u^1, u^2, \ldots be dual bases of H. For each positive root α we choose a basis $e_{\alpha}^{(i)}$ of the space G_{α} and let $e_{-\alpha}^{(i)}$ be the dual basis of $G_{-\alpha}$. The generalized Casimir operator is defined by

$$\Omega(v) = 2\nu^{-1}(\rho) + \sum u_i u^i + 2\sum_{\alpha \in \Delta^+} + \sum_i e_{-\alpha}^{(i)} e_{\alpha}^{(i)}.$$

LEMMA I.1. Let M be a G module in O. Then Ω commutes with the action of G on M.

PROOF. See [3, Theorem 2.6].

COROLLARY I.1. For a highest weight module $M(\lambda)$ with highest weight λ , one has

$$\Omega = (\lambda + 2\rho, \lambda)id.$$

PROOF. See [3, Theorem 2.6].

PROPOSITION I.1. Let $M(\lambda)$ be a highest weight module with highest weight λ . If for any weight μ of $M(\lambda)$, $(\lambda + 2\rho, \lambda) = (\mu + 2\rho, \mu)$ implies $\lambda = \mu$, then the G module $M(\lambda)$ is irreducible.

PROOF. If $M(\lambda)$ has a nonzero proper submodule U, there exists a vector w in U such that $N_+w = 0$. Let μ be the weight of w in U. Since U is a proper submodule of $M(\lambda)$, we have $\mu < \lambda$. On the other hand, applying Ω on w, by Corollary I.1 we obtain the following equality:

198

 $(\lambda + 2\rho, \lambda)idw = \Omega w = (\mu + 2\rho, \mu)w$. Hence $(\lambda + 2\rho, \lambda) = (\mu + 2\rho, \mu)$, which contradicts the assumption.

PROPOSITION I.2. Let $M \in O$. For any complex number c, set $M_{(c)} = \{v \in M \mid (\Omega - c)^n = 0 \text{ for some } n\}$. Then $M_{(c)}$ is a submodule of M and

$$M=\sum_{c\in G}\oplus M_{(c)}.$$

PROOF. See [2, Theorem 6.3].

II. Complete reducibility

In this section we prove the complete reducibility theorem. First we introduce the following notion. Let M be a G module. A vector $v \in M_{\lambda}$ is called primitive if there exists a submodule U in M such that v is not in U and $N_{+}(v) \subset U$. In this case λ is called a primitive weight.

Now we state the main theorem.

THEOREM II.1. (a) Let M be a G module from the category O. If for any primitive weight μ of M and for any simple root α_i , one has $(\mu + \rho, \alpha_i) > 0$, then M is completely reducible. (b) Highest weight Gmodule $M(\lambda)$ is irreducible if $(\mu + \rho, \alpha_i) > 0$ for any primitive weight μ of M and for any simple root α_i .

The proof of the theorem is based on following Lemmas.

LEMMA II.1. Let M be a G module from the category O. If for any two primitive weights λ and μ of M the inequality $\lambda \ge \mu$ implies $\lambda = \mu$, then the module M is completely reducible.

PROOF. See [3, Proposition 9.9].

WANSOON KIM

LEMMA II.2. Let $c \in C$, and $M_{(c)} = \{v \in M \mid (\Omega - cI)^n = 0 \text{ for some } n\}$. Then for any two primitive weights λ and μ of $M_{(c)}$, we have $(\lambda + 2\rho, \lambda) = (\mu + 2\rho, \mu)$.

PROOF. It follows immediately from the definition of primitive weights and the action of Ω .

PROOF OF THEOREM II.1.

(a) By Proposition I.2., we may assume $M = M_{(c)}$ for some complex number c. Now, let λ and μ be two primitive weights of M such that $\lambda \geq \mu$ and $\lambda \neq \mu$. Put $\lambda - \mu = \sum k_i \alpha_i$, where k_i 's are positive integers. By assumption $(\lambda + 2\rho, \lambda) - (\mu + 2\rho, \mu) = (\lambda + \rho + \mu + \rho, \lambda - \mu)$ is positive, which contradicts Lemma II.2. Hence, $\lambda = \mu$ and the theorem follows from Lemma II.1.

(b) If $M(\lambda)$ is reducible, there exists a primitive weight μ such that λ is strictly greater than μ . Since both λ and μ are primitive weights of M, similar to the case (a), we have that $(\lambda + 2\rho, \lambda) - (\mu + 2\rho, \mu)$ is positive, which also contradicts Lemma II.2.

REMARK. Let M be an integrable G module i.e., e_i and f_i are locally nilpotent when $a_{ii} = 2$. Then SL_2 theory implies $(\lambda + \rho, \alpha_i) > 0$ for any primitive weight λ and for any real simple root α_i .

Acknowledgement

This work was supported by the Korea Research Foundation through the Fund for the Junior Scholars.

References

- R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512.
- H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulars, Inv. Math. 34 (1976), 37-76.

200

COMPLETE REDUCIBILITY OF SOME MODULE

[3] V. G. Kac, Infinite dimensional Lie algebras, Bikhauser, Basel, 1983.

Department of Mathematics Hoseo University Asan, 337-850, Korea