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Complete Reducibility of some Modules
for a Generalized Kac Moody Lie Algebra

WANsoON KiM

ABSTRACT. Let G(A) denote a generalized Kac Moody Lie algebra
associated to a symmetrizable generalized Cartan matrix A. In this
paper, we study on representations of G(A). Highest weight mod-
ules and the category O are described. In the main theorem we show
that some G(A) modules from the category O are completely re-
ducible. Also a criterion for irreducibility of highest weight modules
is obtained. This was proved ‘in [3] for the case of Kac Moody Lie
algebras.

I. Introduction

We introduce generalized Kac Moody Lie algebras and some basic
properties. Let A be a real n X n matrix (a;;) satisfying the following
properties:

(1) either a;; =2o0ra; <0
(2) a;; SOIft?é] and a;; € Zifa; =2

(3) ai; =0 implies aj; = 0.

And let (H,II,IIV) be a realization of A i.e., H is a complex vector
space, both of Il = {ay, az,...,a,} (C H*)and IV C {a},ay,...,ay}
(C H) are linearly independent, (a),a;) = a;; and dim H = 2n — [.

To this matrix we associate a Lie algebra G which is generated by

e, fi(i =1,2,...,n), H with the following relations:
(1) [h W] =0 (h, b € H)
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(2) [ei, fil = bijay (3,5 =1,2,...,n)

(3) [h,e] = (o, h)ei [h, fi] = =i, h) fi, 1 =1,2,...,n;h € H)

(4) I ai; > 0, (ade;)'~2%i/%i¢; = 0 and similarly (adf;)!~2i/9i f;

=0.
(5) If a;; = 0, then [e,',ej] = [f,',fj] = 0.
The Lie algebra G is called a generalized Kac Moody algebra (see

[1]), the elements ¢;, f;, @Y, i = 1,2,...,n are called the canonical gen-
erators of G. We denote by @ the lattice generated by a;, as,...,a,

1.e.,
n
Q= E Za;
=1

and

Q+ = Z Zya;.
=1

Here Z, is the set of nonnegative integers. For a and 3 in ), we write
a > pifa— B € Q4. The matrix A is said to be symmetrizable
if there exists a diagonal matrix D with positive rational diagonal
entries such that DA is symmetric. From now on we shall assume
that A is indecomposable and symmetrizable. In this case, G admits
a invariant bilinear form (-, -) which is nondegenerate on H. Since the

bilinear form (-,-) on H is nondegenerate, we have an isomorphism

v: H — H* defined by
l/(h)hl = (h,hl), h, h] € H.

Via v, we induce a bilinear form (-,-) on H*, thus also on Q. We let

p be the element in H* such that

(p, i) = (cii, @i)/2.
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The subspace G, = {z | [h,2] = a(h)z} is the linear span of the

elements of the form

[" -[[651, eiz]’ eia] T ein]

such that a;, + ai, + -+ + ai, = a. A root is defined by a nonzero
element a of @ such that G, is nonzero. A root «a is called real if
(a,@) > 0 and imaginary otherwise. For any root a clearly we have
either a > 0 or —a > 0; a root a is called respectively a positive or
a negative root. Each a;, ¢ = 1,2,...,n is called a simple root. Let

A*(A~) denote the set of positive (negative respectively) roots of G.

Set
Ny=@ Ga, N_= (P Ge.

aglAt a€A~
N4 and N_ are subalgebras of G and as a vector space one has G =
N_@® H® N,. For a subalgebrea B of G let U(B) denote the universal

enveloping algebra of B. By the Poincaré-Birkhoff-Witt theorem one

has
U(G) =UN-)Q U(H) (X) U(Ny).
C C

A G module M()) is called a highest weight module with highest
weight A € H* if there exists a nonzero vector v € M(A) such that
N;i(v) = 0, h(v) = A(h)v for b € H and U(G)(v) = M(A). A G
module M is called H-diagonalizable if

M= M,
AeH*
where My = {v € M | hv = A(h),h € H}. A nonzero element A € H*
is called a weight if M) # 0 and M, is called a weight space.
Now we define the category O as follows. Its objects are G modules

M which are H-diagonalizable with finite dimensional weight spaces
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and such that there exist finite number of elements Ay, Ap,...,A\s € H*
such that ,
P(M) c| D)
i=1
Here, P(M) = {A € H* | M) # 0} and D(A) = {pg € H* | p £
A}. Important examples of modules from the category O are highest
weight modules. Any submodules or quotient modules in O are in O.
Given a G module M in O, we introduce a linear operator {2 on M
as follows: Let u,uz... and u!,u?,... be dual bases of H. For each
positive root a we choose a basis ) of the space G, and let e(_iL be

the dual basis of G_,. The generalized Casimir operator is defined by

Qv) =207 (p) + Zq,-u" +2 Z + Z e(_izxeg .
a€At i

LEMMA 1.1. Let M be a G module in O. Then 2 commutes with
the action of G on M.

PROOF. See [3, Theorem 2.6].

COROLLARY 1.1. For a highest weight module M(\) with highest

weight A\, one has

Q= (A+2p,\)d.
PROOF. See [3, Theorem 2.6].

PROPOSITION I.1. Let M(A) be a highest weight module with
highest weight \. If for any weight pp of M()X), (A+2p,A) = (u+2p, 1)
implies A = p, then the G module M()) is irreducible.

Proor. If M()) has a nonzero proper submodule U, there exists a
vector w in U such that Nyw = 0. Let p be the weight of w in U. Since
U is a proper submodule of M()), we have it < A. On the other hand,
applying Q2 on w, by Corollary 1.1 we obtain the following equality:
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(A +2p,2\)idw = Quw = (p + 2p, p)w. Hence (A + 2p,A) = (¢ + 2p, p),

which contradicts the assumption.

PROPOSITION 1.2. Let M € O. For any complex number ¢, set
Mgy ={ve M| (Q—c)" =0 for some n}. Then M, is a submodule
of M and

M=) @M.
ceG

PROOF. See [2, Theorem 6.3].

II. Complete reducibility

In this section we prove the complete reducibility theorem. First
we introduce the following notion. Let M be a G module. A vector
v € M, is called primitive if there exists a submodule U in M such
that v is not in U and N, (v) C U. In this case A is called a primitive
weight.

Now we state the main theorem.

THEOREM II.1. (a) Let M be a G module from the category O. If
for any primitive weight p of M and for any simple root «;, one has
(p+ p, ;) > 0, then M is completely reducible. (b) Highest weight G
module M() is irreducible if (u + p, ;) > 0 for any primitive weight
pu of M and for any simple root «;.

The proof of the theorem is based on following Lemmas.

LEMMA II.1. Let M be a G module from the category O. If for
any two primitive weights A and p of M the inequality A\ > u implies
A = u, then the module M is completely reducible.

PROOF. See [3, Proposition 9.9].



200 WANSOON KIM

LEMMA I1.2. Let ¢ € C, and M(y) = {v € M | ( —cI)" =
0 for some n}. Then for any two primitive weights A and pu of M),
we have (A +2p,A) = (p + 2p, p).

PRroOOF. It follows immediately from the definition of primitive

weights and the action of (2.

ProoF oF THEOREM II.1.

(a) By Proposition I.2., we may assume M = M|, for some complex
number ¢. Now, let A and u be two primitive weights of M such that
A > pand A # p. Put \—p =) kia;, where k;’s are positive integers.
By assumption (A+2p, A\)—(p+2p, 1) = (\+p+u+p, A—u) is positive,
which contradicts Lemma I1.2. Hence, A = and the theorem follows
from Lemma II.1.

(b) If M(]) is reducible, there exists a primitive weight u such that
A is strictly greater than p. Since both A and p are primitive weights
of M, similar to the case (a), we have that (A +2p,A) — (u + 2p, p) is

positive, which also contradicts Lemma I1.2.

REMARK. Let M be an integrable G module i.e., e; and f; are
locally nilpotent when a;; = 2. Then SL, theory implies (A+p,a;) > 0

for any primitive weight A and for any real simple root «;.
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