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Abstract. Using generalized graded crossed products, we give necessary

and sufficient conditions for a simple algebra over a Henselian valued field
(under some hypotheses) to have Kummer subfields. This study gener-

alizes some known works. We also study many properties of generalized
graded crossed products and conditions for embedding a graded simple

algebra into a matrix algebra of a graded division ring.

Introduction

Amitsur and Tignol determined in [12] necessary and sufficient conditions for
Malcev-Neumann division algebras (under some hypotheses) to have Kummer
subfields. This work was then extended by Morandi and Sethuraman in [7]
where they showed that in fact these conditions are true for any (tame) division
algebra of the form D = S ⊗E T over a Henselian valued field E, where S is
an inertially split division algebra over E and T is a (tame) totally ramified
division algebra over E. A second generalization of this work to arbitrary
tame division algebra over a Henselian valued field was given by the second
author in [8]. In the present article, we give a more general result showing that
Amitsur and Tignol’s conditions are also true for (tame) simple algebras over
a Henselian valued field (see Corollaries 3.9 and 3.10). These results are based
on a particular representation of (some) graded simple algebras as generalized
graded crossed products satisfying some ‘grading separation condition’ (GSP)
(see (1.6)). Also, they are based on canonical relations connecting graded
simple algebras to simple algebras with tame gauges (as developed in [13] and
[14]). Some necessary results concerning the possibility of embedding a graded
simple algebra in a matrix algebra of a graded division ring, are shown in the
second section of this work. The first section, which is independent of the
rest, studies arbitrary generalized graded crossed products for their own right.
We show that if S = (A,H, (w, f)) is a generalized graded crossed product
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satisfying the GSP, then many properties of S depend on analogous ones on A
(see Proposition 1.14).

We precise that all rings are assumed to be associative with an identity
element, and all free modules are assumed to be finite-dimensional. We recall
below some necessary facts on graded algebras.

Let F be a ring and Γ a totally ordered abelian group. We say that F is a
graded ring of type Γ if there are subgroups Fγ (γ ∈ Γ) of F such that F =
⊕γ∈ΓFγ and FγFδ ⊆ Fγ+δ for all γ, δ ∈ Γ. In this case, the set ΓF = {γ ∈ Γ |
Fγ 6= {0}} is called the support of F .

If F is a graded ring of type Γ and x ∈ Fγ for some γ ∈ ΓF , then we say
that x is a homogeneous element of F . In particular, if x is a nonzero element
of Fγ , we say that x has grade γ and we write gr(x) = γ. We denote by F ∗ the
set of invertible homogeneous elements of F . We say that F is a graded field
if F is a commutative graded ring and all nonzero homogeneous elements of F
are invertible.

Let F be a graded field of type Γ and A be a (left) F -module such that
A = ⊕γ∈ΓAγ , where Aγ are subgroups of A, and FλAγ ⊆ Aλ+γ for all λ, γ ∈ Γ,
then we say that A is a graded (left) F -module (or a graded vector space over
F ). If in addition A is a ring and AγAδ ⊆ Aγ+δ for all γ, δ ∈ Γ, then we say
that A is a graded algebra over F . In this case, if I is an ideal of A such that
I = ⊕γ∈Γ(I∩Aγ), then we say that I is a graded ideal of A. If A has no graded
ideals but 0 and A, then we say that A is graded simple. Graded algebras over
F [resp., commutative graded algebras over F ] for which nonzero homogeneous
elements are invertible are called graded division algebras over F [resp., graded
field extensions of F ]. If F is the center of a graded division algebra [resp.,
a graded simple algebra] B, then we say that B is a graded central division
algebra over F [resp., a graded central simple algebra over F ].

Let A be a graded division algebra (of type Γ) over F . Since Γ is totally
ordered and all nonzero homogeneous elements of A are invertible, then A is
a domain, so we can consider its quotient algebra (i.e., the algebra of central
quotients of A) that we denote by q(A). It is clear that q(A) coincides with
the quotient field of A when A is a graded field extension of F .

Let F be a graded field, A and B be two graded F -algebras (of the same
type Γ), and let f : A→ B be an F -algebra homomorphism. We say that f is
a graded F -algebra homomorphism if for any γ ∈ Γ, we have f(Aγ) ⊆ Bγ . If f
is a bijective graded F -algebra homomorphism, then we say that f is a graded
F -algebra isomorphism and we write A ∼=g B. If in addition A = B, then we
say that f is a graded F -algebra automorphism of A.

A finite-dimensional graded field extension L of F is called tame over F if
L0 is separable over F0 and ΓL/ΓF has no p-torsion, where p = char(F ). We
recall that L is tame over F if and only if q(L) is a separable field extension
of q(F ) (see [1, Theorem 4] or [4, Proposition 3.5]). We recall also that L is
called Galois over F if it is Galois over F when both L and F are considered
as commutative rings. By [4, Theorem 3.11] L is Galois over F if and only if
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q(L) is Galois over q(F ). In such a case, denoting by Gal(L/F ) the group of
graded automorphisms of L, which preserve ‘elementwise’ the elements of F ,
we have Gal(L/F ) ∼= Gal(q(L)/q(F )).

Let E be a field and v be a (Krull) valuation on E, then the filtration of E
induced by v yields a canonical graded field GE. Namely, let Eγ = {x ∈ E
| v(x) ≥ γ} and E>γ = {x ∈ E | v(x) > γ}, then E>γ is a subgroup of the
additive group Eγ . So, we can define the quotient group GEγ = Eγ/E>γ . For

x ∈ E\{0}, we denote by x′ the element x+E>v(x) of GEv(x). One can easily
see that the additive group GE = ⊕γ∈ΓGEγ endowed with the multiplication
law defined by x′y′ = (xy)′ is a graded field.

In the same way, if D is a valued division algebra over a field E, then the
filtration of D by the principal fractional ideals yields a graded division algebra
GD over GE (see [2, §4], or [5, §4]).

Let (E, v) be a Henselian valued field. We recall that there is a (canonical)
bijective map, induced by the correspondence K 7→ GK, between the set of
isomorphism classes of finite-dimensional tame field extensions of E and the
set of isomorphism classes of finite-dimensional tame graded field extensions
of GE. Moreover, for any such field extension K of E, K is a Galois tame
(finite-dimensional) field extension of E if and only if GK is a Galois (finite-
dimensional) graded field extension of GE, and in such a case Gal(K/E) is
isomorphic to Gal(GK/GE) (see [4, Theorem 5.2] or [10, Corollary 1.13]).

1. Generalities

Throughout this work all considered graded objects will be assumed to have
the same grading type, which is a totally ordered (uniquely) divisible abelian
group Γ.

(1.1) Let R be a commutative graded ring, A be a graded algebra over R, A∗

be the group of invertible homogeneous elements of A, H be a finite group that
acts on A by graded ring automorphisms, GAut(A) be the group of graded
ring automorphisms of A, and consider two maps: ω : H → GAut(A) and
f : H × H → A∗, which satisfy the following conditions (for all a ∈ R and
σ, τ, µ ∈ H):

(1) ωσ(a) = σ(a),
(2) ωσωτ = Int(f(σ, τ))ωστ ,
(3) f(σ, τ)f(στ, µ) = ωσ(f(τ, µ))f(σ, τµ).

Then, we say that (ω, f) is a graded factor set of H in A. We define the
corresponding generalized graded crossed product (A,H, (ω, f)) to be the ring:
(A,H, (ω, f)) := ⊕σ∈HAxσ, where xσ are independent indeterminates on A,
with the addition law defined componentwise, and the multiplication defined
by (extension of) the equalities: xσa = ωσ(a)xσ and xσxτ = f(σ, τ)xστ for all
a ∈ A and σ, τ ∈ H. We say that f is normalized if f(σ, 1) = f(1, σ) = 1 for
any σ ∈ H. In this case, we identify A with Ax1, especially we identify the
identity element x1 of S with 1A.
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If we suppose that f is normalized, then for any σ ∈ H, we have wσw1 =
Int(f(σ, 1))wσ = wσ, so w1 = idA. It follows that wσwσ−1 = Int(f(σ, σ−1))w1

= Int(f(σ, σ−1))idA. One can then easily see that for a graded ideal I of A,
the following two conditions: wσ(I) ⊆ I for any σ ∈ H, and wσ(I) = I for any
σ ∈ H, are equivalent.

Let (ω, f) and (β, h) be two graded factor sets of H in A. We say that (ω, f)
and (β, h) are cohomologous if there is a family (aσ)σ∈H of elements of A∗ such
that for all σ, τ ∈ H, βσ = Int(aσ)ωσ and h(σ, τ) = aσωσ(aτ )f(σ, τ)a−1

στ . We
write in this case (ω, f) ∼ (β, h). One can easily see that the relation ∼ is an
equivalence relation on the set of factor sets of H in A.

Lemma 1.2. With the above notation in (1.1), there exists a unique graded
algebra structure on (A,H, (ω, f)) which extends the grading of A and for which
all elements xσ are homogeneous.

Proof. Consider the mapping h : H×H → Γ, defined by h(σ, τ) = gr(f(σ, τ)).
By condition (3) in (1.1), it is clear that h is a cocycle of Z2(H,Γ); moreover,
since H is finite and Γ is uniquely divisible, then H2(H,Γ) = H1(H,Γ) = 0,
where H2(H,Γ) and H1(H,Γ) are respectively the second and the first cohomo-
logical groups of H in Γ (the action of H on Γ being trivial). Therefore, there
is a unique family (γσ)σ∈H of elements of Γ such that h(σ, τ) = γσ + γτ − γστ
(the uniqueness follows from the fact that H1(H,Γ) = 0). The unique graded
structure of (A,H, (ω, f)) which extends the grading of A and for which all
elements xσ are homogeneous, is then defined by setting gr(xσ) = γσ. �

(1.3) Conversely to (1.1), graded factor sets can be constructed from graded
algebras. Namely, in [9, Lemma 2.4] we proved that if A is a graded simple
algebra over a graded field F such that A0 is simple, then there is a natural
graded factor set (w, f) of H := ΓA/ΓF in A0.F (with f possibly chosen nor-
malized) such that A is graded isomorphic to the generalized graded crossed
product (A0.F,H, (w, f)). We recall that in this case, we have ΓA = Γ∗A, where
Γ∗A := gr(A∗) (A∗ being the multiplicative group of invertible homogeneous
elements of A as seen above). Examples of such graded simple algebras (with
simple 0-component) are given by matrix algebras Mn(D) where D is an arbi-
trary (finite-dimensional) graded central division algebra over a graded field.

In the same way, if F is a graded field and B a finite-dimensional graded
central F -algebra such that ΓB = Γ∗B and H := ΓB/ΓF is finite, then by chosen
invertible homogeneous elements xσ ∈ B∗ with x1 = 1 and gr(xσ)+ΓF = σ for
all σ ∈ H, then B = ⊕σ∈HB0Fxσ = (B0F,H, (w, f)) where (w, f) is the graded
factor set of H in B0F , defined by the conditions: xσxτ = f(σ, τ)xστ and
xσa = wσ(a)xσ, for all σ, τ ∈ H and a ∈ B0F . It is clear that gr(xσ)+ ΓB0F (=
gr(xσ) + ΓF ) are pairwise distinct (for σ ∈ H). This last condition will be
needed in the main result of this section (see Proposition 1.14). We fix now
the following notation:
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(1.4) Notation: Throughout the rest of this section, R is a commutative
graded ring, A is a graded algebra over R, H is a finite group that acts on A
by graded ring automorphisms, (w, f) is a graded factor set of H in A with
f normalized, and S = (A,H, (w, f)) is the corresponding generalized graded
crossed product.

Lemma 1.5. Let A and S be as in (1.4). If we suppose that ΓA = Γ∗A, then
the following statements are equivalent:

(1) S0 = A0,
(2) for a representation S := ⊕σ∈HAxσ as in (1.1), we have gr(xσ) + ΓF

pairwise distinct (for distinct σ ∈ H).

Proof. (1) ⇒ (2) Let σ, τ ∈ H and suppose that gr(xσ) + ΓA = gr(xτ ) + ΓA,
then gr(xσx

−1
τ ) ∈ Γ∗A(= ΓA). Let a ∈ A∗ such that gr(xσx

−1
τ ) = gr(a), then

gr(xσx
−1
τ a−1) = 0. So, xσx

−1
τ a−1 ∈ A0(= S0), which means xσ ∈ A0.(axτ ) ⊆

Axτ . Therefore, σ = τ .
(2) ⇒ (1) Since gr(x1) = 0 and gr(xσ) + ΓA are pairwise distinct, then

S0 ⊆ A0 (by identification of A0 with its canonical image A0x1 in S), so
S0 = A0. �

(1.6) Let A,H, (w, f) and S be as in (1.4). We will say that S satisfies the
grading separation property (GSP) with respect to (w, f), if there is some
representation of S as in (1.1), say S := ⊕σ∈HAxσ, with gr(xσ) + ΓF pairwise
distinct (for distinct σ ∈ H). Note that in this case, the homogeneous elements
of S are the elements axσ, where a is a homogeneous element of A and σ ∈ H.
Also, in this case, we have S0 = A0.

(1.7) We saw above in (1.3) that graded simple algebras with simple 0-compon-
ent satisfy the graded separation property (GSP). We give here another example
of generalized graded crossed products satisfying this property. This example
is based on Malcev-Neumann construction for his power series division rings.
Let Γ1 ⊆ Γ2 be an extension of totally ordered abelian groups with H := Γ2/Γ1

finite (one can take for example Γ1 = m1Z × · · · ×mrZ and Γ2 = Zr, where
m1, . . . ,mr are nonnegative integers, and let Γ1 and Γ2 be ordered by the anti-
lexicographic order). Consider a factor set (v, g) of Γ2 in a ring B, with g
normalized, and let S := (B,Γ2, (v, g)) = ⊕µ∈Γ2Bxµ, where xµ are indepen-
dent indeterminates over B satisfying the conditions: xµxµ′ = g(µ, µ′)xµ+µ′

and xµb = vµ(b)xµ for all µ, µ′ ∈ Γ2 and b ∈ B. Let A := ⊕µ∈Γ1
Bxµ

(= (B,Γ1, (v, g))), and for any element δ ∈ H, choose a representative δ of
δ in Γ2 and let yδ := xδ. Then, we have S = ⊕δ∈HAyδ = (A,H, (w, f)),
where (w, f) is the graded factor set of H in A defined by the equalities

yδa = wδ(a)yδ and yδyδ′ = f(δ, δ
′
)yδ+δ′ for any δ, δ

′ ∈ H and a ∈ A. It is

clear that gr(yδ) + Γ1(= δ) are pairwise distinct (for distinct δ in H).

(1.8) Let A, (w, f) and S as in (1.4). A graded ideal I of A will be called
a graded w-ideal (or a w-invariant graded ideal) if for any σ ∈ H, we have
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wσ(I) = I. As seen in (1.1) this condition is equivalent to have wσ(I) ⊆ I for
all σ ∈ H.

We will say that I is graded w-prime if for any graded w-ideals I1, I2 of A
such that I1I2 ⊆ I, we have I1 ⊆ I or I2 ⊆ I. We will say that I is graded
w-semiprime if for any graded w-ideal J of A such that J2 ⊆ I, we have J ⊆ I.

A graded ideal I of S is called graded prime (resp., graded semiprime) if the
condition above holds for graded ideals I1, I2 [resp., J ] of S (without assuming
that they are graded w-ideals).

We will say that A is a graded w-simple algebra if the only graded w-ideals
of A are 0 and A.

The graded ring A is said to be graded w-prime (resp., graded w-semiprime)
if 0 is graded w-prime (resp., graded w-semiprime). Similarly, S is called graded
prime (resp., graded semiprime) if the graded ideal 0 is graded prime (resp.,
graded semiprime).

We will say that A is graded local if it has a unique maximal right graded
ideal.

For a subset T consisting of homogeneous elements of A, we will write
AnngA−l(T ) for the left annulator of T in A (which is a left graded ideal of
A). We will say that A is w-compatible, if for any subset T consisting of homo-
geneous elements of A and any τ ∈ H, we have AnngA−l(T ) = AnngA−l(wσ(T )).

A graded ring B is called graded Baer [resp., graded quasi-Baer] if the left
annihilator of any nonempty subset consisting of homogeneous elements of B
[resp., of any left graded ideal of B] is generated by a homogeneous idempotent.

We say that B is graded regular if for any homogeneous element x of B,
there exists a homogeneous element y of B such that x = xyx.

Before giving some properties of the generalized graded crossed products,
we show the following lemmas.

Lemma 1.9. Let S be a generalized graded crossed product as in (1.4) and
suppose that S satisfies the GSP, then for any graded ideal J of S, we have
J = (J ∩ A).S. Conversely, let I be a graded w-ideal of A and let JI be the
graded ideal of S generated by the homogeneous elements of I, then I = JI ∩A.

Proof. It is clear that (J ∩ A).S ⊆ J , so it suffices to prove that we have
J ⊆ (J ∩A).S. Let aγxσ be a homogeneous element of J , then we have

(aγxσ)(xσ−1f(σ, σ−1)−1) = aγf(σ, σ−1)x1f(σ, σ−1)−1

= aγf(σ, σ−1)w1(f(σ, σ−1)−1)x1

= aγx1.

By identification of A with Ax1 in S, we get aγ ∈ J ∩A. So, J ⊆ (J ∩A).S.
Conversely, let I be a graded w-ideal of A and let JI be the graded ideal of

S generated by the homogeneous elements of I. For any a, b ∈ A, c ∈ I and
σ, τ ∈ H, we have (axσ)c(bxτ ) = awσ(cb)f(σ, τ)xστ with awσ(cb)f(σ, τ) ∈ I.
One can then easily deduce that JI ∩A = I. �



ON GENERALIZED GRADED CROSSED PRODUCTS AND KUMMER SUBFIELDS 945

Lemma 1.10. Let A, (w, f) and S be as in (1.4). Then the following state-
ments are equivalent:

(1) A is graded w-prime.
(2) For any nonzero graded w-ideal I of A, we have AnngA−l(I) = 0.
(3) For any homogeneous elements a, b in A such that wσ(a).A.wτ (b) = 0

for all σ, τ ∈ H, we have a = 0 or b = 0.

Proof. (1) ⇒ (2) Let I be a nonzero graded w-ideal of A. One can easily
see that AnngA−l(I) is a graded w-ideal of A. Indeed, let a be an arbitrary

homogeneous element of I and take an element b of AnngA−l(I). For any

τ ∈ H, we have wτ (b)a = wτ (b)wτ (w−1
τ (a)) = wτ (bw−1

τ (a)). Note that we
have wτwτ−1 = Int(f(τ, τ−1)), so w−1

τ = wτ−1 ◦ Int(f(τ, τ−1)−1). Therefore
w−1
τ (a) ∈ I (because I is a graded w-ideal), hence wτ (b)a(= wτ (bw−1

τ (a))) = 0.
It follows then that wτ (b) ∈ AnngA−l(I), so wτ (AnngA(I)) ⊆ AnngA(I). Now,

we have AnngA−l(I).I = 0 with I 6= 0 and A graded w-prime, so necessarily

AnngA−l(I) = 0.
(2) ⇒ (3) Let a, b be two homogeneous elements of A and suppose that

wσ(a).A.wτ (b) = 0 for any σ, τ ∈ H. Let I be the graded ideal of A generated
by the elements wτ (b), where τ describes H. Then, I is a graded w-ideal and
a ∈ AnngA−l(I). If b 6= 0, then I 6= 0, so necessarily a = 0.

(3) ⇒ (1) Let I1 and I2 be two nonzero graded w-ideals of A and let
ai be a nonzero homogeneous element of Ii (1 ≤ i ≤ 2), then there exist
σ, τ ∈ H such that wσ(a).A.wτ (b) 6= 0. We then have 0 6= wσ(a).A.wτ (b) =
wσ(a).(A.wτ (b)) ⊆ I1I2. �

Analogously, using the same arguments, one can easily prove the following
lemma.

Lemma 1.11. Let A, (w, f) and S be as in (1.4). Then the following state-
ments are equivalent:

(1) A is graded w-semiprime.
(2) For any homogeneous element a in A such that wσ(a).A.wτ (a) = 0 for

all σ, τ ∈ H, we have a = 0.

It is well known that for any ring B with (Jacobson) radical rad(B), if
b + rad(B) is an idempotent of B/rad(B), then there exists an idempotent
a ∈ B such that a − b ∈ rad(B). Analogously, in the graded setting, if A
is a graded ring with (Jacobson) graded radical radg(A) (i.e., radg(A) is the
intersection of all maximal right graded ideals of A), then we have the following
result1.

Lemma 1.12. Let F be a graded field and A a graded F -algebra. For any
homogeneous idempotent f +radg(A) of A/radg(A) there is an idempotent e of
A0 such that f − e ∈ radg(A).

1Note that all homogeneous idempotents of a graded ring R are in R0 (because Γ is totally

ordered).
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Proof. One can easily see that (radg(A))0 = rad(A0). Since f + radg(A) is a
homogeneous idempotent of A/radg(A), then without loss of generality, we can
assume that f ∈ A0. It follows that f + rad(A0) is an idempotent element of
A0/rad(A0). So, by the above there is an idempotent element e in A0 such
that f − e ∈ rad(A0), hence f − e ∈ radg(A). �

Lemma 1.13. Let F be a graded field and A a finite-dimensional graded F -
algebra. Then the following statements are equivalent:

(1) A is graded local.
(2) A has a unique maximal left graded ideal.
(3) The set of noninvertible homogeneous elements of A generate a proper

two-sided graded ideal of A.
(4) For any element a of A0, one of the elements a or 1− a is invertible.
(5) A has only two homogeneous idempotents, 0 and 1.
(6) The graded F -algebra A/radg(A) is a graded division algebra.
(7) A0 is a local algebra.

Proof. (1) ⇒ (3) By definition, radg(A) is the unique proper maximal (right)
graded ideal of A. So, for any homogeneous element a of A, we have a ∈ radg(A)
if and only if a has no right inverse. Let x be a nonzero homogeneous element
of A with a right inverse y (in A−gr(x)), then we have (1 − yx)y = y − yxy =
y(1 − xy) = 0. If y has no right inverse, then by the above y ∈ radg(A), so
1−yx is invertible (this property of the Jacobson graded radical can be proved
as in the ungraded case), hence y = 0 (because (1 − yx)y = 0 as seen above),
but this is not true. Therefore, y has a right inverse, and so 1− yx = 0. This
shows that x is invertible. We conclude that a homogeneous element a of A is
in radg(A) if and only if a has no right inverse if and only if a is not invertible.
Thus, radg(A) is the graded ideal of A generated by noninvertible homogeneous
elements of A. Plainly, radg(A) is proper in A.

(2)⇒ (3) It follows in the same way.
(3)⇒ (4) Let a be a nonzero element of A0 and let I be the (proper) graded

ideal of A generated by noninvertible homogeneous elements of A. If both a
and 1− a are noninvertible, then 1 = a+ (1− a) ∈ I, a contradiction.

(4)⇒ (5) If e is a homogeneous idempotent of A, then e ∈ A0, and we have
e(1− e) = 0, so necessarily e = 0 or e = 1.

(5)⇒ (6) by Lemma 1.12, the homogeneous idempotents of A/radg(A) can
be lifted modulo radg(A), so the graded semisimple algebra C := A/radg(A)
has only two homogeneous idempotents 0 and 1. It follows by the graded
version of Wedderburn’s theorem that A/radg(A) is a graded division algebra
(see [5, Proposition 1.3] for the graded version of Wedderburn’s theorem on
graded simple algebras).

(6) ⇒ (1) [resp., (6) ⇒ (2)] This is clear since in this case radg(A) is the
unique maximal right [resp., left] graded ideal of A.

In the same way, we show that A0 is a local algebra if and only if 0 and 1
are the only idempotent of A0. Hence, (1)⇔ (7). �
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The following proposition summarizes some facts relating properties of a
generalized graded crossed product S = (A,H, (w, f)) which satisfies the grad-
ing separation property, to analogous ones on A.

Proposition 1.14. Let A, (w, f) and S be as in (1.4) and suppose that S
satisfies the GSP. Then we have the following statements:

(1) S is graded simple if and only if A is graded w-simple.
(2) S is graded semiprime [resp., graded prime] if and only if A is graded

w-semiprime [resp., graded w-prime].
(3) S is graded local if and only if A is so if and only if A0 is local.
(4) If A is w-compatible, then S is graded Baer [resp. graded quasi-Baer]

if and only if A is so.

Proof. (1) Suppose that S is a graded simple algebra and let I be a graded
w-ideal of A and JI be the graded ideal of S generated by the homogeneous
elements of I, then JI is either 0 or S. By Lemma 1.9 we have JI ∩ A = I, so
I is either 0 of A.

Conversely, suppose that A is a graded w-simple algebra, and let J be a
graded ideal of S. One can easily see that J ∩ A is a graded w-ideal of A
(indeed, for any homogeneous element a ∈ J ∩ A and any σ ∈ H, we have
wσ(a) = xσax

−1
σ ∈ J ∩ A). Therefore, J ∩ A is either 0 or A. So, by Lemma

1.9 J is then 0 or S.
(2) This follows easily from Lemmas 1.10 and 1.11.
(3) This is clear from Lemma 1.13 (since S0 = A0).
(4) We will show that S is graded quasi-Baer if and only if A is so. The

fact that S is graded Baer if and only if A is so follows in a similar way.
Suppose that A is graded quasi-Baer and let I be a graded left ideal of S.
For a nonzero element p of S, we denote by mincomp(p) the homogeneous
component aγxσ of minimal grade of p. Let’s consider the left graded ideal
J of A generated by the elements aγ , where aγxσ = mincomp(p) for some
σ ∈ H and p in I. Let’s also consider the following sets: T := {aγ | aγxσ =
mincomp(p) for some σ ∈ H and p ∈ I}, and for τ ∈ H, Tτ := wτ (T ) =
{wτ (aγ) | aγxσ = mincomp(p) for some σ ∈ H and p ∈ I}. By assumption we
have AnngA−l(T ) = AnngA−l(Tτ ).

It is clear that the (left) annulator AnngA−l(J) is contained in AnngA−l(T ).

Conversely, let x ∈ AnngA−l(T ) and let c be a homogeneous element of A and
aγ ∈ T with aγxσ = mincomp(p) for some σ ∈ H and p ∈ I. If caγ 6= 0,
then caγxσ = mincomp(cp), so x(caγ) = 0. For an arbitrary element c of
A, write c =

∑
cλ, where cλ are homogeneous elements of A, then x(caγ) =∑

x(cλaγ) = 0, so x ∈ AnngA−l(J). Therefore, AnngA−l(J) = AnngA−l(T ).
Since A is graded quasi-Baer, then there is a homogeneous idempotent

e ∈ A (hence e ∈ A0) such that AnngA−l(J) = A.e. Let q be an arbi-

trary nonzero element of AnngS−l(I) and write q = bλxτ + q1, where bλxτ =
mincomp(q). For any 0 6= p ∈ I, we have (bλxτ )mincomp(p) = 0. Write
mincomp(p) = aγxσ (for some γ ∈ Γ, σ ∈ H and aγ ∈ Aγ), then we have
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bλwτ (aγ)f(τ, σ)xτσ = 0, so bλwτ (aγ) = 0. Therefore, bλ ∈ AnngA−l(Tτ )(=

AnngA−l(J)), so there is a homogeneous element rq of A such that bλ = rqe.

We then have mincomp(q) = rqexτ = rqxτw
−1
τ (e). We have wτ (e) = xτex

−1
τ ,

so e = w−1
τ (xτ )w−1

τ (e)w−1
τ (xτ )−1, which implies w−1

τ (e) = w−1
τ (x−1

τ )ew−1
τ (xτ ),

hence w−1
τ (e) ∈ AnngA−l(J), so w−1

τ (e) = sqe for some homogeneous ele-
ment sq of A, hence mincomp(q) = rqxτsqe. On the other hand, one can
easily see that e ∈ AnngS−l(I). Indeed, for any p ∈ I, if ep 6= 0, then
0 = emincomp(p) = mincomp(ep) 6= 0, a contradiction.

Let q1 := q−mincomp(q) = q−rqxτsqe, then q1 ∈ AnngS−l(I). If we continue
in this way, we get q ∈ S.e. This shows that S is graded quasi-Baer.

Conversely, suppose that S is graded quasi-Baer and let J be a left graded
ideal of A. Plainly, SJ is a left graded ideal of S. Therefore, there is a homo-
geneous idempotent e in S such that AnngS−l(SJ) = S.e. The grading group

being totally ordered, then e ∈ A0(= S0). It is clear that A.e ⊆ AnngA−l(J).

Conversely, let r be a homogeneous element of AnngA−l(J), b be a homoge-
neous element of A, a be a homogeneous element of J and τ ∈ H, then
rb ∈ AnngA−l(J), so rbwτ (a) = 0 (because A is graded w-compatible), thus
r((bxτ )a) = (rb)wτ (a)xτ = 0. Consequently, for any p ∈ S, we have r(pa) = 0,
which shows that r ∈ AnngS−l(SJ), hence r = se for some homogeneous ele-
ment s of S. Since r is a homogeneous element of A and e ∈ A0, then s = tx1

for some homogeneous element t of A. Therefore, by identification of A with
Ax1, r ∈ A.e. Thus, AnngA−l(J) ⊆ A.e, so AnngA−l(J) = A.e. �

Remark 1.15. Under the hypotheses of Proposition 1.14, we show also that S
is graded semisimple if and only if A is so. In fact, as in the ungraded case
S [resp., A] is graded semismiple if and only if it is graded regular and every
subset consisting of orthogonal idempotents of S0(= A0) is finite. So, it is
sufficient to show that S is graded regular if and only if A is so. This follows
easily by computations. Indeed, suppose that A is graded regular, and let y
be a homogeneous element of S, then we can write y = aγxσ for some γ ∈ Γ,
σ ∈ H and aγ ∈ Aγ . Since A is graded regular, then there is a homogeneous
element e of A such that aγ = aγeaγ . Let z = w−1

σ (ef(σ, σ−1)−1)xσ−1 , then
we have

yzy = (aγxσ)[w−1
σ (ef(σ, σ−1)−1)xσ−1 ](aγxσ)

= aγef(σ, σ−1)−1f(σ, σ−1)x1aγxσ

= aγeaγxσ = aγxσ = y,

which shows that S is graded regular.
Conversely, suppose that S is graded regular and let a be a homogeneous

element of A, then there is a homogeneous element cxτ of S, where c is a
homogeneous element of A, such that a(cxτ )a = a. So, acwτ (a)xτ = a, hence
τ = 1 and aca = a. This shows that A is graded regular.
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2. Embedding of graded simple algebras

(2.1) Let F be a graded field of type Γ and λ be an element of Γ. We recall that
the shifted graded F -space Fs(λ) is obtained from F by shifting homogeneous
elements by λ, i.e., Fs(λ) equals to F as a set and (Fs(λ))γ = Fγ+λ for all γ ∈ Γ.
For a positive integer n and elements δ1, . . . , δn of Γ, we let Mn(F )(δ1, . . . , δn)
denote the following split graded central simple algebra (i.e., matrix graded
algebra):

Mn(F )(δ1, . . . , δn) =

 Fs(δ1−δ1) . . . Fs(δ1−δn)

...
. . .

...
Fs(δn−δ1) . . . Fs(δn−δn)

 .

This means that a nonzero homogeneous element of grade γ of Mn(F )(δ1, . . .,
δn) is a matrix with ij-entry in (Fs(δi−δj))γ(= Fδi−δj+γ). If A is a graded
F -algebra (of type Γ), we define Mn(A)(δ1, . . . , δn) in a similar way. We will
also denote Mn(F )(δ1, . . . , δn) simply by Mn(F )(δ), where δ = (δ1, . . . , δn).

(2.2) Now, let R be a ring and M an abelian group with endomorphism ring
End(M) (acting on M on the right with the multiplication law in End(M)
being the opposite of the usual composition law), then a right R-module action
on M is equivalent to a ring homomorphism φ : R → End(M). The two
conditions are related by the equation:

m.φ(r) = m.r

for m ∈ M , r ∈ R, which defines the module action when φ is given and
conversely define φ when the module action is given. In the graded setting,
if F is a graded field of type Γ, δ1, . . . , δn are elements of Γ, and M is the
graded F -vector space Fs(δ1) ⊕ · · · ⊕ Fs(δn) (where Fs(λ) is the shifted of F by
λ as seen above), then End(M) is a graded F -algebra that we will denote by
GEnd(M), and we have GEnd(M) ∼=g Mn(F )(δ), where δ = (δ1, . . . , δn) (see
e.g., [14, Proposition 2.9, p. 41 (see also Proposition 2.8, p. 39)]). Thus, if A is
a graded F -algebra, the fact that we have a graded F -algebra homomorphism
φ : A→ Mn(F )(δ), is equivalent to having a graded right A-module structure
on M (compatible with the action of F on M).

If u1, . . . , un is a base of A over F , consisting of homogeneous elements of A,
then as a graded vector space over F , A is isomorphic to the graded F -vector
space M := Fs(δ1)⊕· · ·⊕Fs(δ1), where δi = −gr(ui) for all i (1 ≤ i ≤ n). Since
we have a natural right A-module structure on A (hence on M), then there is a
graded F -algebra homomorphism φ : A→ Mn(F )(δ), which is clearly injective
(for ker(φ) = annAA = 0).

Corollary 2.3. Let F be a graded field, A be a graded central division algebra
over F , L be a finite-dimensional graded field extension of F and S be a graded
central simple algebra over L. If ΓS ⊆ ΓA, then there is a graded monomorphim
of graded F -algebras from S into Mn(A) for some positive integer n.
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Proof. Let u1, . . . , un be a base consisting of homogeneous elements of S over F
and let δi = −gr(ui). By the above there is a graded F -algebra monomorphism
from S into Mn(F )(δ1, . . . , δn). Therefore, there is graded F -algebra monomor-
phism from S into Mn(A)(δ1, . . . , δn). Since δ1, . . . , δn belongs to ΓA, then by
[5, (ii), p. 78] Mn(A)(δ1, . . . , δn) ∼=g Mn(A)(= Mn(A)(0, . . . , 0)). Therefore,
there is a graded F -algebra monomorphism from S into Mn(A). �

(2.4) Let F be a graded field, L a finite-dimensional graded field extension of
F , A a graded central division algebra over F and S a graded central simple
algebra over L. If ΓS ⊆ ΓA, then by Corollary 2.3 there is some positive integer
t such that S is graded isomorphic to a graded subfield of Mt(A). Suppose
that ΓS ⊆ ΓA and let s be the smallest positive integer such that S embeds
in Ms(A) (as a graded ring). Inspired by [6, Proposition 2.1], we will show
here that s = [L : F ]deg(S)ind(A⊗F S)/deg(A). For this consider the graded
simple algebra CMs(A)(S) (where S is considered as a subring of Ms(A)). Since
S is simple, then by the graded version of the double centralizer theorem [5,

Proposition 1.5] C
(S)
Ms(A) is also graded simple, therefore by the graded version

of the Wedderburn Theorem (see [5, Proposition 1.3]), there exists a graded
division algebra R, a positive integer m and some δ = (δ1, . . . , δm) ∈ Γm such
that CMs(A)(S) ∼=g Mm(R)(δ) (see [5, Proposition 1.3]). Consider the graded

central simple F -algebra C := Mm(F )(δ). Obviously, C embeds in Mm(R)(δ),
so C can be considered as a graded simple subalgebra of CMs(A)(S), hence of
Ms(A). Let B = CMs(A)(C), then again by the graded version of the double
centralizer theorem, we have Ms(A) ∼=g C⊗F B. In particular, ΓB ⊆ ΓMs(A) =
ΓA. Note that C is (graded) Brauer-equivalent to F , so B is (graded) Brauer-
equivalent to A. It follows that ΓB = ΓA (because ΓB ⊆ ΓA and B is (graded)
Brauer-equivalent to A). Therefore, B ∼=g Ml(A) for some positive integer
l (see [5, Proposition 1.3, p. 81 and (1.4), p. 78]). If C 6= F (i.e., m 6= 1),
then necessarily l < s, but this contradicts the fact that s is minimal (see that
C ⊆ CMs(A)(S), so S ⊆ B). Thus m = 1, so CMs(A)(S)(∼=g Mm(R)(δ) = R)
is a graded division algebra. As in the ungraded case, CMs(A)(S) is (graded)
Brauer-equivalent to Ms(A) ⊗F Sop, hence Brauer-equivalent to A ⊗F Sop.
Therefore, deg(CMs(A)(S)) = ind(A⊗F Sop).

Note that by the graded version of the double centralizer theorem, we have
[CMs(A)(S) : F ][S : F ] = [Ms(A) : F ] = s2deg(A)2. Therefore, [CMs(A)(S) :

L][S : L][L : F ]2 = s2deg(A)2, so s = [L : F ]deg(S)ind(A⊗F Sop)/deg(A). We
get then the following proposition.

Proposition 2.5. Let F be a graded field, L a finite-dimensional graded field
extension of F , A a graded central division algebra over F and S a graded
central simple algebra over L with ΓS ⊆ ΓA and n a positive integer. Then,
S embeds (as a graded ring) in Mn(A) if and only if n is a multiple of [L :
F ]deg(S)ind(A⊗F Sop)/deg(A).
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Proof. Let s = [L : F ]deg(S)ind(A ⊗F Sop)/deg(A). We saw in (2.4) that S
embeds in Ms(A), so for any multiple n of s, it embeds in Mn(A).

Conversely, suppose that S embeds in Mn(A), then again as in the un-
graded case CMn(A)(S) is (graded) Brauer-equivalent to A ⊗F Sop, so it is
(graded) Brauer-equivalent to the graded division algebra CMs(A)(S). It fol-
lows that deg(CMn(A)(S)) is a multiple of deg(CMs(A)(S)). As in (2.4), by
using the graded version of the double centralizer theorem, we get n = [L :

F ]deg(S)deg(C
(S)
Mn(A))/deg(A), so n is a multiple of s. �

Corollary 2.6. Let E be a Henselian valued field, D be a tame central division
algebra over E, n a positive integer, and K a tame finite-dimensional field
extension of E such that ΓK ⊆ ΓD, then the following statements are equivalent:

(1) K embeds in Mn(D).
(2) GwK embeds in Mn(GD), where w is the extension of the valuation of

E to K.

Proof. Let s be the smallest positive integer such that K embeds in Ms(D).
Since ungraded algebras can be considered as (trivially) graded algebras, then
by Proposition 2.5, we have s = [K : E]ind(D ⊗E K)/deg(D). Note that
because K is tame over E, then it is defectless over E, so [K : E] = [K :
E](ΓK : ΓE) = [GK : GE] (because K = (GK)0 and ΓK = ΓGK). Moreover,
by [5, Corollary 5.7] ind(D⊗EK) = ind(GD⊗GEGwK), and obviously we have
deg(D) = deg(GD). Therefore, s is also the smallest positive integer such that
GwK embeds in Ms(GD). Thus, again by Proposition 2.5, for any positive
integer n, K embeds in Mn(D) if and only if GwK embeds in Mn(GD). �

Proposition 2.5 can be applied also to give graded versions, with alternative
proofs, to many results in [3]. Namely, we have the following proposition.

Proposition 2.7 (Compare [3, Proposition 2]). Let L/F be a finite-dimen-
sional graded field extension, R be a graded central division algebra over L, A a
graded central division algebra over F with ΓR = ΓA, and m, n be two positive
integers and suppose that ΓR ⊆ ΓA. If Mm(R) embeds, as a graded ring, in
Mn(A), then m divides n and R embeds, as a graded ring, in Mk(A), where
k = n/m.

Proof. Let r be the minimal positive integer l such that R embeds in Ml(A),

then by Proposition 2.5, r = deg(R)[L:F ]ind(A⊗FR
op)

deg(A) . For a positive integer

m, let S := Mm(R), then mr(= deg(S)[L:F ]ind(A⊗FS
op)

deg(A) ), is the smallest positive

integer t such that S embeds in Mt(A). If S embeds in Mn(A) for some positive
integer n, then again by Proposition 2.5, n is a multiple of mr, so a multiple of
m. Plainly, in this case n/m is a multiple of r, so R embeds in Mn/m(A). �
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3. Kummer subfields of simple algebras

(3.1) Let F be a graded field and L be a finite-dimensional abelian graded
field extension of F such that char(F ) does not divide [L : F ]. We recall
that L is a Kummer graded field extension of F if F0 contains a primitive
mth root of unity, where m is the exponent of Gal(L/F ). In such a case, we
have L = F [a | a ∈ KUM(L/F )], where KUM(L/F ) = {x ∈ L∗ | xm ∈ F}
(see [8, (2.1)]), so ΓL/ΓF is generated by {gr(a) + ΓF | a ∈ KUM(L/F )}.
Therefore, if we set kum(L/F ) = KUM(L/F )/F ∗, then the group homo-
morphism ψ : kum(L/F ) → ΓL/ΓF , defined by ψ(aF ∗) = gr(a) + ΓF , for
a ∈ KUM(L/F ), is surjective. Note that in this case the graded subfield
L0F of L is a Kummer graded field extension of F . Moreover, since L0F
is unramified over F , then by applying [4, Remark 3.1] L0 is a Kummer
field extension of F0. Let φ : kum(L0/F0) → kum(L/F ) be the group ho-
momorphism defined by φ(aF ∗0 ) = aF ∗, for every a ∈ KUM(L0/F0), then
clearly φ is injective. Also, we have ψ ◦ φ = 0, and by comparing the car-
dinalities of the terms in the following sequence of trivial ΓL/ΓF -modules:

αL : 1 → kum(L0/F0)
φ→ kum(L/F )

ψ→ ΓL/ΓF → 0, we see that αL is ex-
act (we recall that kum(L0/F0) is isomorphic to Gal(L0/F0) and kum(L/F )
is isomorphic to Gal(L/F ), see [8, 2.1]). Plainly, αL can be considered as
a (symmetric) 2-cocycle of Z2(ΓL/ΓF , kum(L0/F0))sym. If L is a Kummer
graded subfield of a graded central simple algebra A over F , then one can
see that KUM(L/F ) ∩ A0 = KUM(L0/F0). In what follows, we will denote
by e∗ : H2(ΓL/ΓF ,KUM(L0/F0))sym → H2(ΓL/ΓF , kum(L0/F0))sym the ho-
momorphism of cohomology groups corresponding to the canonical surjective
homomorphism e : KUM(L0/F0)→ kum(L0/F0).

(3.2) Let F be a graded field, A a graded central simple algebra over F with
A0 simple and R a graded central division algebra over F Brauer-equivalent
to A. As previously seen in (1.3) A can be written as a generalized graded
crossed product A = (A0F,ΓA/ΓF , (ω, f)), where (ω, f) is a graded factor set
of ΓA/ΓF in A0F (see [9, Lemma 2.4]). We can assume that f is normalized
(i.e., f(0, γ) = f(γ, 0) = 1 for all γ(= γ+ΓF ) ∈ ΓA/ΓF ). Indeed, as in the proof
of [9, Lemma 2.4] for any γ ∈ ΓA(= ΓR), fix nonzero homogeneous elements
zγ̄ of R with gr(zγ) + ΓF = γ and with z0 = 1. Then, A = ⊕γ∈ΓA/ΓF

A0Fzγ ∼=
(A0F,ΓA/ΓF , (ω, f)), where (ω, f) is the graded factor set of ΓA/ΓF in A0F ,
defined as follows: ω : ΓA/ΓF → Aut(A0F ), a 7→ ωγ̄(a) = zγ̄az

−1
γ̄ , and f :

ΓA/ΓF × ΓA/ΓF → (A0F )∗, (γ̄, δ̄) 7→ zγ̄zδ̄z
−1
γ̄+δ̄

. This representation of A will

be used in what follows to generalize the statements of [8, Theorems 2.4 and
2.6]. We get then conditions under which A has Kummer graded subfields.

(3.3) Let A = (A0F,ΓA/ΓF , (ω, f)) with f normalized as in (3.2) and denote
also by ω the map ΓA/ΓF → Aut(A0), defined by γ 7→ ωγ|A0

, where ωγ|A0

is the restriction of ωγ to A0. One can easily see that there is a mapping
d : ΓA/ΓF × ΓA/ΓF → A∗0 and a symmetric 2-cocycle h ∈ Z2(ΓA/ΓF , F

∗)sym
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such that (ω, d) is a factor set of ΓA/ΓF in A0 and for any γ, γ′ ∈ ΓA/ΓF , we
have f(γ, γ′) = d(γ, γ′)h(γ, γ′). Indeed, let (δi := δi + ΓF )1≤i≤r be a basis of

ΓA/ΓF (i.e., ΓA/ΓF = 〈δ1〉 ⊕ · · · ⊕ 〈δr〉), and qi = ord(δi) (for 1 ≤ i ≤ r). For
any γ ∈ ΓA/ΓF , there is a unique element m = (m1, . . . ,mr) ∈ Nr with 0 ≤
mi < qi, such that γ = (

∑r
i=1miδi)+ΓF . Let m, n ∈ Nr with 0 ≤ mi, ni < qi,

and let s(m+n) ∈ Nr with 0 ≤ s(m+n)i < qi and mi+ni−s(m+n)i ≡ 0 mod
qi for all i, (1 ≤ i ≤ r). Let ti ∈ N such that mi+ni− s(m+n)i = tiqi, and fix
elements yi ∈ F ∗ with gr(yi) = qiδi and y1 = 1. Let h : ΓA/ΓF ×ΓA/ΓF → F ∗

be the map defined by h(
∑r
i=1miδi,

∑r
i=1 niδi) =

∏r
i=1 yi

ti , where mi, ni
and ti satisfy the above conditions, then by simple computations, one can
see that h is a normalized symmetric 2-cocycle of Z2(ΓA/ΓF , F

∗). Let d :
ΓA/ΓF × ΓA/ΓF → A∗0, be the map defined by d(γ, γ′) = f(γ, γ′).h(γ, γ′)−1.
The fact that (ω, f) is a graded factor set of ΓA/ΓF in A0F (with f normalized)
and h is a normalized symmetric 2-cocycle of Z2(ΓA/ΓF , F

∗), imply that (ω, d)
is a factor set of ΓA/ΓF in A0 (with d normalized).

The following two Theorems generalize the statements of [8, Theorems 2.4
and 2.6] by using the same arguments. For the convenience of the reader we give
the detailed proofs. For a Kummer graded subfield L of a graded simple algebra

A and for a factor set (w, g) of ΓA/ΓF in A0, we will denote by res
ΓA/ΓF

ΓL/ΓF
(w, g)

the restriction of (w, g) when considering ΓL/ΓF instead of ΓA/ΓF . Also,
for a cocycle k ∈ Z2(ΓL/ΓF ,KUM(L0/F0))sym and the canonical embedding
i : KUM(L0/F0)→ A∗0, we denote by i∗k the mapping ΓL/ΓF ×ΓL/ΓF → A∗0,
defined by (γ, γ′) 7→ i ◦ k(γ, γ′).

Theorem 3.4. Let F be a graded field, A a graded central simple algebra over
F with A0 simple and char(F ) not dividing deg(A), L be a Kummer graded
subfield of A, and αL be the cocycle of Z2(ΓL/ΓF , kum(L0/F0))sym defined in
(3.1). Write A = (A0F,ΓA/ΓF , (ω, f)) as in (3.2) and consider the factor
set (ω, d) of ΓA/ΓF in A0 as defined in (3.3), then there exists a normalized
cocycle d′ ∈ Z2(ΓL/ΓF ,KUM(L0/F0))sym (for the trivial action of ΓL/ΓF on
KUM(L0/F0)) and a map ω′ : ΓL/ΓF → Aut(A0) which satisfies ω′γ(a) = a

for all a ∈ L0 and γ ∈ ΓL/ΓF , such that:

(1) (ω′, i∗d
′) is a factor set of ΓL/ΓF in A0, cohomologous to res

ΓA/ΓF

ΓL/ΓF
(ω, d),

and
(2) e∗([d

′]) = [αL], where [d′] [resp., [αL]] denotes the class of d′ in
H2(ΓL/ΓF ,KUM(L0/F0)) [resp., of αL in H2(ΓL/ΓF , kum(L0/F0))] (see (3.1)
for the definition of e∗).

Proof. Write A = (A0F,ΓA/ΓF , (ω, f)) = ⊕γ∈ΓA/ΓF
A0Fxγ , where x0 = 1,

xγ ∈ A∗, gr(xγ̄)+ΓF = γ, xγa = ωγ(a)xγ and xγxγ′ = f(γ, γ′)xγ+γ′ and write
f(γ, γ′) = d(γ, γ′)h(γ, γ′) as in (3.3). Since the map ψ in (3.1) is surjective, then
for any γ ∈ ΓL, we can choose yγ ∈ KUM(L/F ) such that gr(yγ) + ΓF = γ.
Write yγ = aγxγ , where aγ ∈ (A0F )∗. We have x0 = 1 and we can choose
y0 = 1, so a0 = 1. Let bγ ∈ A∗0 and cγ ∈ F ∗ be such that aγ = bγcγ (with
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b0 = c0 = 1), then we have:

yγyγ′ = aγωγ(aγ′)d(γ, γ′)a−1
γ+γ′h(γ̄, γ′)yγ+γ′

= bγωγ(bγ′)d(γ, γ′)b−1
γ+γ̄′cγcγ′c

−1
γ+γ̄′h(γ̄, γ̄′)yγ+γ′

= d′(γ, γ′)h′(γ, γ̄′)yγ+γ′ ,

where d′(γ, γ′) = bγωγ(bγ′)d(γ, γ′)b−1
γ+γ̄′ and h′(γ, γ′) = cγcγ′c

−1
γ+γ̄′h(γ̄, γ̄′).

Since yγ , yγ′ and yγ+γ̄′ are in KUM(L/F ) and h′(γ, γ′) ∈ F ∗, then d′(γ, γ′) ∈
KUM(L/F ) ∩ A0 (= KUM(L0/F0)) (see (3.1)). Moreover, one can easily
check that d′ ∈ Z2(ΓL/ΓF ,KUM(L0/F0))sym (this follows from the equality

(yγyγ′)yγ′′ = yγ(yγ′yγ′′), the fact that h′ which is cohomologous to res
ΓA/ΓF

ΓL/ΓF
(h),

is a symmetric 2-cocycle, and the fact that yγ are pairwise commuting for
γ ∈ ΓL/ΓF ). Also, since y0 = 1, then d′ is normalized.

Now, let ω′ : ΓL/ΓF → Aut(A0) be the map defined by ω′γ = Int(bγ)ωγ (i.e.,

ω′γ(a) = bγωγ(a)b−1
γ̄ for all a ∈ A0 and γ ∈ ΓL/ΓF ), then for any a ∈ L0 and

any γ ∈ ΓL/ΓF , we have ω′γ(a) = bγxγax
−1
γ̄ b−1

γ = aγxγ̄ax
−1
γ a−1

γ = yγ̄ay
−1
γ = a

(because yγ ∈ KUM(L/F )). One can easily see that (ω′, i∗d
′) is a factor set of

ΓL/ΓF in A0, cohomologous to res
ΓA/ΓF

ΓL/ΓF
(ω, d). Finally, the equality yγyγ′ =

d′(γ, γ′)h′(γ, γ′)yγ+γ′ yields, by considering classes modulo F ∗ in kum(L/F ),
that we have yγyγ′ = e(d′(γ, γ′))yγ+γ′ , where e : KUM(L0/F0)→ kum(L0/F0)
is the canonical surjective homomorphism (we identify here kum(L0/F0) with
its canonical image in kum(L/F )). Hence, e∗([d

′]) = [αL]. �

(3.5) Let F be a graded field, D a graded division algebra over F , S a finite
abelian subgroup of D∗/F ∗ with exponent m, and for any s ∈ S, let ds be
a representative of s in D∗. Suppose that char(F ) does not divide deg(D),
F0 contains a primitive mth root of unity and let F (S) = F [ds | s ∈ S] be
the subring of D generated by F and the elements ds (s ∈ S). If ds are
pairwise commuting, then as in the ungraded case F (S) is a Kummer graded
field extension of F with kum(F (S)/F ) = S (it suffices to observe that F (S)
is a graded field and that q(F (S)) = q(F )(S) when S is identified with its
canonical image in q(D)∗/q(F )∗).

In the proof of Theorem 3.6 below, we will have a graded central simple
algebra A over F (with A0 simple and char(F ) not dividing deg(A)) and we
will consider D in above to be a graded subfield L of A. In such a case,
analogously to [12, Remark 3.14], if we assume that F0 contains a primitive
deg(A)th root of unity, then necessarily F0 contains a primitive mth root of
unity, where as in above, m is the exponent of S. Indeed, in this case, S will
turn to be isomorphic to kum(L/F ), so m divides [L : F ], and obviously [L : F ]
divides deg(A). A similar situation will occur in Corollaries 3.9 and 3.10.

Theorem 3.6. Let F be a graded field, A a graded central simple algebra over
F with A0 simple and (ω, d) [resp., h] the factor set of ΓA/ΓF in A0 [resp.,
the cocycle of Z2(ΓA/ΓF , F

∗)sym] seen in (3.3). Assume that char(F ) does not
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divide deg(A), F0 contains enough roots of unity (e.g., F0 contains a primitive
deg(A)th root of unity2) and that there are:

(1) a Kummer field extension M of F0 in A0, and a subgroup R of ΓA/ΓF
acting trivially on M ,

(2) a normalized cocycle d′ ∈ Z2(R,KUM(M/F0))sym and a map ω′ : R→
Aut(A0) such that (ω′, i∗d

′) is a factor set of R in A0, cohomologous

to res
ΓA/ΓF

R (ω, d), and such that ω′γ(a) = a for all a ∈M and γ ∈ R.

Then, there exists a Kummer graded subfield L of A such that

(1) L0 = M , ΓL/ΓF = R and
(2) e∗([d

′]) = [αL].

Proof. Write A = ⊕γ∈ΓA/ΓF
A0Fxγ , where x0 = 1, xγ ∈ A∗, gr(xγ) + ΓF = γ,

xγa = ωγ(a)xγ and xγxγ′ = d(γ, γ′)h(γ̄, γ′)xγ+γ̄′ as in (3.3). The fact that

(ω′, i∗d
′) is cohomologous to res

ΓA/ΓF

R (ω, d) means that there is a family (bγ)γ∈R
of elements of A∗0 such that for all a ∈ A0 and γ, γ′ ∈ R, we have ω′γ(a) =

bγωγ(a)b−1
γ and d′(γ, γ′) = bγωγ(bγ̄′)d(γ, γ′)b−1

γ+γ̄′ . Let yγ = bγxγ̄ for all γ ∈ R.

Then, we have yγyγ′ = d′(γ, γ′)h(γ̄, γ′)yγ+γ′ . Let L = ⊕γ∈RMFyγ(⊆ A).
Since d′ and h are symmetric, then yγ are pairwise commuting. Moreover, by
hypotheses ω′γ̄(a) = a for all a ∈ M and γ ∈ R, so L is a commutative graded
subring of A with L0 = M and ΓL/ΓF = R.

Since both d′ and res
ΓA/ΓF

R h are normalized and yγ(= bγxγ) is invertible for
any γ ∈ R, then y0 = 1 (it suffices to see that y0yγ = d′(0, γ)h(0, γ)yγ = yγ).
For any γ ∈ R, we have yγy−γ = d′(γ,−γ)h(γ,−γ)y0, hence yγ is invertible in
L. One can easily see that nonzero homogeneous elements of L are the elements
of the form ayγ , where a ∈ (MF )∗, and γ ∈ R, so all nonzero homogeneous
elements of L are invertible. This shows that L is a graded subfield of A.

Let S be the subgroup of L∗/F ∗ generated by kum(M/F0) and the set
{yγ}γ∈R, where yγ is the class of yγ in L∗/F ∗ (and where as in above, we
identify kum(M/F0) with its canonical image in kum(MF/F )). One can eas-
ily see that up to a graded isomorphism we have L = F (S). Therefore,
by (3.5) L is a Kummer graded field extension of F with kum(L/F ) = S.
Considering classes in kum(L/F ), we have yγyγ′ = e(d′(γ, γ′))yγ+γ′ , where
e : KUM(M/F0)→ kum(M/F0) is the canonical surjective homomorphism (we
identify here kum(M/F0) with its canonical image in kum(L/F )), so kum(L/F )
is the extension of kum(M/F0) by R with cocycle e∗([d

′]). This shows that
e∗([d

′]) = [αL]. �

(3.7) For the rest we will need some facts from the gauge theory developed by
Tignol and Wadsworth in [13] and [14]. We recall here the following notions:
Let D be a division ring, Γ be a totally ordered abelian group, v : D → Γ∪{∞}
a valuation, and let M be a (right) D-vector space. A function y : M → Γ∪{∞}

2See the last paragraph in (3.5) above.
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is called a D-value function (or a v-value function) if it satisfies the following
conditions (for all m,n ∈M and d ∈ D):
y(m) =∞ if and only if m = 0;
y(md) = y(m) + v(d);
y(m+ n) ≥ min{y(m), y(n)}.
In a similar way as in the construction of GD (see the preliminaries), if

y is a D-value function on M , then we associate to M a graded GD-module
that we denote by GyM (or simply GM). In this case a base (mi)

n
i=1 of M

over D is called a splitting base if for any elements d1,. . . , dn of D, we have
y(
∑n
i=1midi) = min{y(mi) + v(di) | 1 ≤ i ≤ n}. If such a base exists, we

say that y is a D-norm (or a v-norm). We recall that y is a D-norm if and
only if [GM : GD] = [M : D]; furthermore, if this occurs, then (m′i)

n
i=1 is a

base of GM over GD, where m′i = mi + GMy(mi) (see [11, Corollary 2.3] or
[13, Proposition 1.1]).

Let (E, v) be a valued field and let A be an E-algebra. A function α :
A → Γ ∪ {∞}, is called a surmultiplicative E-value function if it satisfies the
following conditions (for all a, b ∈ A and e ∈ E):
α(a) =∞ if and only if a = 0;
α(1) = 0;
α(ea) = v(e) + α(a);
α(a+ b) ≥ min{α(a), α(b)};
α(ab) ≥ α(a) + α(b).
If α is a surmultiplicative E-value function, then the graded GE-module

GA is a graded GE-algebra for the multiplication law defined (for all nonzero
elements a, b of A) by (extension of): a′b′ = (ab)′ if α(ab) = α(a) + α(b) and
a′b′ = 0 otherwise (see [13, (1.5), p. 691]).

If α is a surmultiplicative E-value function on A, then α is called an E-
gauge if it is an E-norm and GA is a graded semisimple GE-algebra. If in
addition Z(GA) = G(Z(A)) and Z(GA) is separable over GE, then we say
that α is a tame E-gauge. We say that a gauge α on A is residually simple if
the 0-component (GαA)0 of GαA is simple.

(3.8) Let E be a Henselian field, D be a tame central division algebra over E,
v be the extension of the valuation of E to D, B = Mn(D) where n is a positive
integer, Γ = v(D∗) and define the map β : B → Γ ∪ {∞} by β((dij)1≤i,j≤n) =
min{v(dij) | 1 ≤ i, j ≤ n}. One can easily see that β is a surmultiplicative
E-value function and an E-norm on B. For b = (dij)1≤i,j≤n ∈ B and γ ∈ Γ,
we have β(b) ≥ γ [resp., β(b) > γ] if and only if v(dij) ≥ γ [resp., v(dij) > γ]
for all i, j (1 ≤ i, j ≤ n), so the correspondence b′ 7→ (dij + (GD)>γ)1≤i,j≤n,
where γ = β(b), induces a graded isomorphism GB → Mn(GD). Therefore, β
is a tame E-gauge. Note that we have B(:= GB0) ∼= Mn(D), so B is simple.

Corollary 3.9. Let E be a Henselian valued field, n be a positive integer,
D be a tame central division algebra over E, B = Mn(D), and suppose that
char(E) does not divide deg(B), that there exists a Kummer subfield K of B
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with ΓK ⊆ ΓD and that E contains enough roots of unity (e.g., E contains
a primitive deg(B)th root of unity), then there is a normalized cocycle d′ ∈
Z2(ΓK/ΓE ,KUM(K/E))sym (for the trivial action of ΓK/ΓE on KUM(K/E))

and a map w′ : ΓK/ΓE → Aut(Mn(D)), which satisfies ω′γ(a) = a for all

a ∈ K and γ ∈ ΓK/ΓE, such that:

(a) (ω′, i∗d
′) is a factor set of ΓK/ΓE in B, cohomologous to res

ΓB/ΓE

ΓK/ΓE
(ω, d),

where (ω, d) is the factor set corresponding to a representation of Mn(GD) as
in (3.3), and

(b) e∗([d
′]) = [αGK ].

Proof. Indeed, take the residually simple tame E-gauge β on B as defined in
(3.8), then we have GβB ∼=g Mn(GD). We have also ΓGK = ΓK ⊆ ΓB =
ΓMn(D) = ΓD, so by Corollary 2.6 GK embeds in Mn(GD). Moreover since K

is a tame Kummer field extension of E and E contains enough roots of unity,
then GK is a Kummer graded field extension of E. Our corollary follows then
by Theorem 3.4. �

Similarly, the following corollary follows by applying Theorem 3.6, Corollary
2.6 and the fact that isomorphism classes of tame (abelian) field extensions of
E are in one-to-one correspondence with the isomorphism classes of (abelian)
graded field extensions of GE (as seen in the preliminaries).

Corollary 3.10. Let E be a Henselian valued field, n be a positive integer,
D be a tame central division algebra over E, B = Mn(D), and suppose that
char(E) does not divide deg(B), that E contains enough roots of unity (e.g., E
contains a primitive deg(B)th root of unity), and that there are:

(1) a Kummer field extension M of E in Mn(D), and a subgroup R of
ΓD/ΓE acting trivially on M ,

(2) a normalized cocycle d′ ∈ Z2(R,KUM(M/E))sym and a map ω′ : R→
Aut(Mn(D)) such that (ω′, i∗d

′) is a factor set of R in Mn(D), coho-

mologous to res
ΓD/ΓE

R (ω, d) (where (ω, d) is the factor set corresponding
to a representation of Mn(GD) as in (3.3)) and such that ω′γ(a) = a
for all a ∈M and γ ∈ R.

Then, there exists a Kummer subfield K of B with ΓK ⊆ ΓD, such that:

(1) K = M , ΓK/ΓE = R and
(2) e∗([d

′]) = [αGK ].

Remark 3.11. One can easily see that Corollaries 3.9 and 3.10 restrict to [8,
Corollaries 2.11 and 2.12] when n = 1.
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[6] J. Mináč and A. R. Wadsworth, The u-invariant for algebraic extensions, in K-theory

and algebraic geometry: connections with quadratic forms and division algebras (Santa
Barbara, CA, 1992), 333–358, Proc. Sympos. Pure Math., 58, Part 2, Amer. Math. Soc.,

Providence, RI, 1995.

[7] P. J. Morandi and B. A. Sethuraman, Kummer subfields of tame division algebras, J.
Algebra 172 (1995), no. 2, 554–583. https://doi.org/10.1016/S0021-8693(05)80015-8

[8] K. Mounirh, Kummer subfields of tame division algebras over Henselian fields, J. Pure

Appl. Algebra 214 (2010), no. 4, 440–448. https://doi.org/10.1016/j.jpaa.2009.06.
013

[9] , Discriminants of orthogonal involutions on central simple algebras with tame

gauges, J. Pure Appl. Algebra 215 (2011), no. 11, 2547–2558. https://doi.org/10.

1016/j.jpaa.2011.02.004

[10] K. Mounirh and A. R. Wadsworth, Subfields of nondegenerate tame semiramified di-
vision algebras, Comm. Algebra 39 (2011), no. 2, 462–485. https://doi.org/10.1080/

00927871003591926

[11] J.-F. Renard, J.-P. Tignol, and A. R. Wadsworth, Graded Hermitian forms and
Springer’s theorem, Indag. Math. (N.S.) 18 (2007), no. 1, 97–134. https://doi.org/

10.1016/S0019-3577(07)80010-3

[12] J.-P. Tignol and S. A. Amitsur, Kummer subfields of Malcev-Neumann division algebras,
Israel J. Math. 50 (1985), no. 1-2, 114–144. https://doi.org/10.1007/BF02761120

[13] J.-P. Tignol and A. R. Wadsworth, Value functions and associated graded rings for

semisimple algebras, Trans. Amer. Math. Soc. 362 (2010), no. 2, 687–726. https://

doi.org/10.1090/S0002-9947-09-04681-9

[14] , Value functions on simple algebras, and associated graded rings, Springer Mono-

graphs in Mathematics, Springer, Cham, 2015.

Driss Bennis

Mohammed V University in Rabat

Faculty of Sciences
Research Center CeReMAR

Rabat, Morocco

Email address: driss.bennis@um5.ac.ma; driss bennis@hotmail.com

Karim Mounirh

Mohammed V University in Rabat
Faculty of Sciences

Research Center CeReMAR

Rabat, Morocco
Email address: akamounirh@hotmail.com

https://doi.org/10.1080/00927879808826318
https://doi.org/10.1016/0021-8693(90)90277-U
https://doi.org/10.1016/0021-8693(90)90277-U
https://doi.org/10.1080/00927879908826464
https://doi.org/10.1080/00927879908826464
https://doi.org/10.1006/jabr.1999.7903
https://doi.org/10.1016/S0021-8693(05)80015-8
https://doi.org/10.1016/j.jpaa.2009.06.013
https://doi.org/10.1016/j.jpaa.2009.06.013
https://doi.org/10.1016/j.jpaa.2011.02.004
https://doi.org/10.1016/j.jpaa.2011.02.004
https://doi.org/10.1080/00927871003591926
https://doi.org/10.1080/00927871003591926
https://doi.org/10.1016/S0019-3577(07)80010-3
https://doi.org/10.1016/S0019-3577(07)80010-3
https://doi.org/10.1007/BF02761120
https://doi.org/10.1090/S0002-9947-09-04681-9
https://doi.org/10.1090/S0002-9947-09-04681-9


ON GENERALIZED GRADED CROSSED PRODUCTS AND KUMMER SUBFIELDS 959

Fouad Taraza

Mohammed V University in Rabat

Faculty of Sciences
Research Center CeReMAR

Rabat, Morocco
Email address: ftaraza@hotmail.com


