• Title/Summary/Keyword: mathematical proof

Search Result 546, Processing Time 0.021 seconds

A NEW PROOF OF MACK'S CHARACTERIZATION OF PCS-ALGEBRAS

  • Kim, Hyoung-Soon;Woo, Seong-Choul
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.1
    • /
    • pp.59-63
    • /
    • 2003
  • Let A be a $C^*$-algebra and $K_{A}$ its Pedersen's ideal. A is called a PCS-algebra if the multiplier $\Gamma(K_{A})\;of\;K_{A}$ is the multiplier M(A) of A. J. Mack [5]characterized PCS-algebras by weak compactness on the spectrum of A. We give a new simple proof of this Mack's result using the concept of semicontinuity and N. C. Phillips' description of $\Gamma(K_{A})$.

An Analysis of the Practice of Proof Education in Korea - Focused on the Middle School Geometry

  • Na, Gwi-Soo
    • Research in Mathematical Education
    • /
    • v.2 no.2
    • /
    • pp.71-78
    • /
    • 1998
  • This paper investigates the practices of proof education in Korea by analyzing the teaching and learning of proofs in classes in the second year of middle school. With this purpose, this study examines the features and deficiencies of the ways of teaching proofs and investigates the difficulties which students have in learning them. Furthermore, it suggests methods for the improvement of teaching proofs.

  • PDF

DISCRETE PROOF OF EVEN KAKUTANI EQUIVALENCE VIA ${\alpha}$- AND ,${\beta}$-EQUIVALENCE

  • Park, Kye-Won
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.61-72
    • /
    • 1998
  • It has been known that if T and S are even Kakutani equivalent, then there exists U such that T and U are $\alpha$-equivalent and S and U are $\beta$-equivalent where $\alpha$ and $\beta$ are irrationally related. In this paper we give a complete discrete proof of this theorem without using R-actions.

  • PDF

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRECHET SPACE

  • Cho, Myung-Hyun;Kim, Jun-Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.277-285
    • /
    • 2001
  • The purpose of this paper is to give a proof of a generalized convex-valued selection theorem which is given by weakening a Banach space to a completely metrizable locally convex topological vector space, i.e., a Frechet space. We also develop the properties of upper semi-continuous singlevalued mapping to those of upper semi-continuous multivalued mappings. These properties wil be applied in our further consideraations of selection theorems.

  • PDF

FOOTNOTE TO A MANUSCRIPT BY GWENA AND TEIXIDOR I BIGAS

  • Ballico, Edoardo;Fontanari, Claudio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.67-69
    • /
    • 2009
  • Recent work by Gwena and Teixidor i Bigas provides a characteristic-free proof of a part of a previous theorem by one of us, under a stronger numerical assumption. By using an intermediate result from the mentioned manuscript, here we present a simpler, characteristic-free proof of the whole original statement.

ANOTHER PROOF THAT Aγ(G) AND A(G) ARE BANACH ALGEBRAS

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.337-344
    • /
    • 2011
  • We provide another unified proof that $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are Banach algebras for a compact group G, where $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are images of the convolution and the twisted convolution, respectively, on $A(G{\times}G)$. Our new approach heavily depends on analysis of co-multiplication on VN(G), the group von-Neumann algebra of G.

A SIMPLE PROOF OF QUOTIENTS OF THETA SERIES AS RATIONAL FUNCTIONS OF J

  • Choi, SoYoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.919-920
    • /
    • 2011
  • For two even unimodular positive definite integral quadratic forms A[X], B[X] in n-variables, J. K. Koo [1, Theorem 1] showed that ${\theta}_A(\tau)/{\theta}_B(\tau)$ is a rational function of J, satisfying a certain condition. Where ${\theta}_A(\tau)$ and ${\theta}_B(\tau)$ are theta series related to A[X] and B[X], respectively, and J is the classical modular invariant. In this paper we give a simple proof of Theorem 1 of [1].

ANOTHER PROOF OF CLASSICAL DIXON'S SUMMATION THEOREM FOR THE SERIES 3F2

  • Kim, Insuk;Cho, Myunghyun
    • Honam Mathematical Journal
    • /
    • v.41 no.3
    • /
    • pp.661-666
    • /
    • 2019
  • In this short research note, we aim to provide a new proof of classical Dixon's summation theorem for the series $_3F_2$ with unit argument. The theorem is obtained by evaluating an infinite integral and making use of classical Gauss's and Kummer's summation theorem for the series $_2F_1$.

A SIMPLE PROOF FOR JI-KIM-OH'S THEOREM

  • Byeong Moon Kim;Ji Young Kim
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.181-188
    • /
    • 2023
  • In 1911, Dubouis determined all positive integers represented by sums of k nonvanishing squares for all k ≥ 4. As a generalization, Y.-S. Ji, M.-H. Kim and B.-K. Oh determined all positive definite binary quadratic forms represented by sums of k nonvanishing squares for all k ≥ 5. In this article, we give a simple proof for Ji-Kim-Oh's theorem for all k ≥ 10.