DOI QR코드

DOI QR Code

ANOTHER PROOF THAT Aγ(G) AND A(G) ARE BANACH ALGEBRAS

  • Lee, Hun Hee (Department of Mathematics, Chungbuk National University)
  • Received : 2011.03.29
  • Accepted : 2011.05.24
  • Published : 2011.06.30

Abstract

We provide another unified proof that $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are Banach algebras for a compact group G, where $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are images of the convolution and the twisted convolution, respectively, on $A(G{\times}G)$. Our new approach heavily depends on analysis of co-multiplication on VN(G), the group von-Neumann algebra of G.

Keywords

Acknowledgement

Supported by : Chungbuk National University, National Research Foundation of Korea(NRF)

References

  1. B. E. Forrest, E. Samei and N. Spronk, Convolutions on compact groups and Fourier algebras of coset spaces, Studia Math. 196 (2010), no. 3, 223-249.
  2. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, II. Springer Verlage, 1963.
  3. B. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), no. 2, 361-374. https://doi.org/10.1112/jlms/50.2.361