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A PROOF OF A CONVEX-VALUED
SELECTION THEOREM WITH THE
CODOMAIN OF A FRECHET SPACE

MyUNG-HyuN CHO AND JUuN-Hul Kim

ABSTRACT. The purpose of this paper is to give a proof of a gen-
eralized convex-valued selection theorem which is given by weak-
ening a Banach space to a completely metrizable locally convex
topological vector space, i.e., a Fréchet space. We also develop the
properties of upper semi-continuous singlevalued mappings to those
of upper semi-continuous multivalued mappings. These properties
will be applied in our further considerations of selection theorems.

1. Introduction

Let X and Y be topological spaces, and 2¥ be the family of nonempty
subsets of Y. A mapping I : X — 2Y is called a set-valued mapping. A
selection for F : X — 2Y¥ is amap f : X — Y such that f(z} € F(x)
for every £ € X. Of course the axiom of choice (which in this paper
is assumed as part of the axiomatics) guarantees that F(z) admits a
selection. However, if we look for selections that satisfy some regular-
ity condition, like continuity, the problem of existence becomes more
difficult.

In this paper we concentrate our attention to the question of exis-
tence of continuous selections. A set-valued mapping F : X — 2V is
called lower semi-continuous (respectively, upper semi-continuous) or
lLs.c. (respectively, u.s.c.) if for every open subset V of Y,

Fi(V)y={z€ X :Fz)nV #8}
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(respectively, F# (V) ={z € X : F(z) C V})

is an open subset of X.

The fundamental results in selection theory stemmed from the mid
1950’s by E. Michael ([6], [7], [8], [9], [10]). Most of the classical Michael’s
selection theorems establish that existence of continuous selections for
lower semicontinuous set-valued mapping F : X — 2¥ with non-empty
convex values which is equivalent to some higher separation axioms
(i.e., paracompactness, collectionwise normality, normality, etc) of X.
As classical theorems, there are four main selection theorems: convex-
valued, zero-dimensional, compact-valued, and finite-dimensional theo-
rems. These theorems were obtained by different authors with various
methods ([2], [4], [5], [11], [14]). Moreover, it was pointed out that the
proof of some of these theorems were erroneous and this has not been
recognized for a long time (see [12], [13]).

First of all, consider the following general question: Under what con-
ditions on the topological spaces X and Y, on the family of subsets of
Y where the multivalued map F: X — 2¥ takes its values, and on the
type of continuity of the multivalued map F, does F have a continuous
single-valued selection?

The following theorem is called a convex-valued selection theorem:
Let X be a Hausdorfl paracompact space, B a Banach space and F :
X — 2% a lower semicontinuous mapping with nonempty closed convex
values. Then F admits a continuous singlevalued selection.

The purpose of this paper is to give a proof of a generalized convex-
valued selection theorem which is given by weakening a Banach space
to a completely metrizable locally convex topological vector space, i.e.,
a Fréchet space. We also develop properties of upper semi-continuous
singlevalued mappings to those of upper semi-continucus multivalued
mappings. These properties will be applied in our further considerations
of selection theorems.

Throughout this paper, by a space and a selection we always mean
a T topological space and a continuous selection respectively. Also the
upper-case-letters F, G, and H, etc., denote multivalued mappings and
the lower-case-letters f, g, and h, etc., denote singlevalued mappings.
As far as topological concepts are concerned, we follow [1] and [3].

2. Preliminaries

We first introduce some terminologies which will be used throughout



A proof of a convex-valued selection theorem 279

the rest of this paper. A Hausdorff space X is said to be paracompact
if every open covering of X admits a locally finite open refinement. A
family {e}aca of nonnegative continuous functions on a topological
space X is said to be a locally finite partition of unity if for every z € X,
there exists a neighborhood W of z and a finite subset A(z) C A such
that Z exly) = 1 forall y € W and ex(y) = 0 for y € W and
a€A(x)

a € A(z). A locally finite partition of unity {es}aeca is said to be
inscribed into an open covering {G,},er of a topological space X if for
any o € A, there exists v ¢ I' such that

supp(eq) = {z € X|e,(z) > 0} C G,.

It is well-known([3]) that a Hausdorff space X is paracompact if and
only if each open covering of X admits a locally finite partition of unity
inscribed into this covering. A topological vector space is a pair (E,7T),
where E is a vector space and 7 is a topology in E such that the vector
operations (z,y) — = + ¥, (A, ) — Az are continuous mappings with
respect to the topology 7. A topological vector space E is called locally
conver if there exists a local basis By at the origin consisting of convex
subsets of E. The intersection of all convex subsets of E which contain
a subset 5 is called the conver hull of § and is denoted by convS.

A prototype of an upper semicontinuous multivalued mapping is F :
R — 2F with non-empty convex closed values defined by

(-1} ifs<0
F(z)={ [-1,1] ifz=0
{+1} ifz>0.

It is easy to see that this multivalued mapping cannot have a contin-
uous selection. So the class of upper semicontinuous multivalued map-
pings does not seem to be the right one for the continuous selection
problem. However, we have the sufficient condition for the lower semi-
continuity of a given multivalued mapping(see [8], [15]).

THEOREM 2.1. ([8], [15]) If F : X — 2Y is lower semicontinuous,
W is open in Y, and F(z) "W # § for each x € X, then the mapping
G : X — 2Y defined by G(z) = F(z) "W is lower semicontinuous.

In the following theorem, (Y, p) is a topological space with a metric
.p and D(z,€) means an open ball with center z and radius €.
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THEOREM 2.2. ([15]) Let F : X — 2Y¥ be a lower semicontinuous
mapping of X into a metric space (Y, p) and let f : X — Y be a singleval-
ued continuous mapping such that for some € > 0, F(z)ND{f(x),€) #
for each x € X. Then the mapping G : X — 2Y defined by G(z) =
F(z)n D(f(x), €} is lower semicontinuous.

3. A Generalization of Convex-valued Selection Theorem

In this section, we will prove a generalized convex-valued selection
theorem obtained by weakening a Banach space to a completely metriz-
able locally convex topological vector space. The main idea of a proof of
the theorem is to consider a well-known method of outside approxima-
tions which gives another proof of the convex-valued selection theorem
(see [15]).

DEFINITION 3.1. Let F : X — 28 be a multivalued mapping of a
topological space X into a locally convex topological vector space B.
Then a singlevalued mapping f : X — B is said to be an V-selection
of F if F(z) N (f{z) +V) # 0 for all z € X, where V is a convex
neighborhood of the origin O € B.

PROPOSITION 3.2. Let X be a paracompact space, B a locally convex
topological vector space, and I/ : X — 28 a convex-valued lower semi-
continuous map. Then for every convex neighborhood V of the origin
O € B, there exists a continuous singlevalued V-selection fy : X — B
of the map F'.

PROOF. Let V be a convex neighborhood of the origin O € B. Then
Vy, = y + V is a convex neighborhood of y for all y € B. Let U, =
F-YV,) = {z € X|F(z) NV, # 8}. Then {Uy,},ep is an open covering
of X. Since X is paracompact, there exists a locally finite partition of
unity {eq}aca inscribed into {Uy}yep- Let y, be an arbitrary element

of B such that supp{es) C Uy, and let fyv(z) = Zea(w) - Yo- Then
acA

fv is a well-defined continuous mapping since fy (z) is a sum of a finite

number of continuous mappings e, (z) - o in some neighborhood of z.

Claim : (fy(z)+V)NF(z) #0 forall z € X.
For a given x € X, let {a € A|x € supp(ea)} = {@1,--- ,on}. Then
x € suppleq,) C Uy, , e, Flz)nV,, # 0. Letz € F(z)nV,,

a;?
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ki3
for each i = 1,2,--- ,n and let z = Zeai(m) - z;. By the convexity
i=1

of F(z), z € F(z). Also z; € yo, +V, i€, 2i — Yo, € V for each

H

1=1,2,--- ,n. Since V is convex, Zeai(w)(z,- — Yo, ) =2~ fu{z) e V.

Hence z € fy(z) + V. Thus (fy(m)tz—; VYN F(x) #0. O

PROPOSITION 3.3. Let X be a paracompact space, B a locally convex
metrizable space and F : X — 2P a convex-valued lower semicontinuous
map. Then for every countable basis {V,,} of convex neighborhoods
of the origin O € B, where diamV,, converges to zero, there exists a
uniformn Cauchy sequence {f,.} of continuous singlevalued V,,-selections
fn: X — B of the map F.

PROOF. Let p be a metric on B which induces the topology on B.
We shall construct by induction a sequence of continuous lower semi-
continuous mappings {F, : X — 28}, .y and a sequence of continuous
singlevalued mappings {fn : X — B}pen such that :

(i) F(z) = EFo(z) D Fi(z) D -+ D Fu(z) D Foqa(z) D - -+, forallz € X;
(ii) diam F,,(z) < diam V,,;
(iii) f, is a V;,-selection of the mapping F,,_; for every n € N.

Base of induction : We apply Proposition 3.2 for the spaces X and
B, the mapping F = Fp, and for V = V;. Then there exists a V-
selection f; of Fp. Let Fi(z) = Fo(z) N (fi(z) + Vi). Then Fi(z) is
a nonempty convex subset of Fp(z), diam Fi(z) < diam (f1(z) + V1) =
diam V1, and by Theorem 2.1, F} : X — 28 is lower semicontinuous.

Inductive step : Suppose that Fy, Fs, -, Fp, 1, f1-+-, frme—1 have
properties (i)-(iii)). We apply Proposition 3.2 for spaces X and B,
mapping F,,_; and for the convex neighborhood V,,. Let F,,(z) =
Friot N (fm{z) + V). Then F,(z) is a nonempty convex subset of
Fro1(z), diam Fi,(z) < diam (f,(z) + V) = diam V,,,, and by Theo-
rem 2.1, F,, : X — 27 is lower semicontinuous.

Claim : {f.}nen is a uniform Cauchy sequence of continuous single-
valued V) -selections f, : X — B of F.

Since Fr_1{z) C F(z), f, is a continuous V,-selection of F. For
every n,p € N and z € X, we can choose y1 € Fp_1(x) N (fn(z) + Vo)
and y2 € Fryp 1{(2)N(frip(@)+ Vitp). Note that Frpp 1(z) C Froi(z)
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and diam F,,_;(z) < diam V,,_;. Then

plfa(@), frep(@)) < p(frlz), v1) + Py, 42) + p(v2, frip(T))
< diam V,, + diam F,,_(z) + diam Vi1,
< diam V;, + diam V,_; + diam V4.

Since diam V;, converges to zero, { fn }nen is a uniform Cauchy sequence.[]

THEOREM 3.4. Let X be a paracompact space, B a completely metriz-
able locally convex space, i.e., a Fréchet space, and F : X — 28 a lower
semicontinuous map with closed convex values. Then F' admits a con-
tinuous singlevalued selection.

PROOF. Let p be a complete metric on B which induces the topology
on B. Choose a countable basis {V,,} of convex neighborhoods of the
origin O € B where diam V,, converges to zero, and let {f,}nen be a
uniform Cauchy sequence of continuous singlevalued V,,-selections f,, :
X — B of F constructed in Proposition 3.3.

For z € X, pick ¢ > 0 and N € N such that diamV, < 5 and
p(fa(z), fayp(z)) < § forall n > N and p € N. For each » € N, we can
find an element z,(x) € F(x)} such that z,(z) € (fa(x) + V»). Hence

p(zn(x), 2nap(x)) < pl2n(x), frlz)) + p(frlz), fatp(2))
-+ p(fn+p($)azn+p($))
< diam V,, + % + diam Vi4p < €.

Therefore {z,(z)}nen is a Cauchy sequence in the complete subspace
F(z) of the metric space B and there exists le zn(x) = z(z) € F(x).
L— 00

Finally, lim p(zn(z), fo{z)) = 0 because diam V), converges to zero. So
n—oo
there exists li_)’m fu(z) = f(z) and 2(z) = f(z). Hence f(z) € F{x)
n—0o0
and the map f is continuous as the pointwise limit of a uniform Cauchy
sequence { f, }nen of continuous functions. |

COROLLARY 3.5. {Convex-valued Selection Theorem) Let X be a
paracompact space, B a Banach space and F : X — 2% a lower semicon-
tinuous mapping with nonempty closed convex values. Then F' admits
a continuous singlevalued selection.

ProoF. It follows directly from the fact that every Banach space is
a completely metrizable locally convex topological vector space. O
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4. More on Michael’s Selection Theorems

Historically, the two kinds of semi-continuity, lower semi-continuity
.and upper semi-continuity, of a multivalued mapping were introduced
independently by Kuratowski and Bouligrand in 1932. In general, the
definitions given by different authors do not coincide whenever we deal
with non-compact spaces (at least for upper semi-continuity, which is
more important from the point of view of applications). The definitions
adopted in section 4 are given by C. Berge, i.e., 2 multivalued mapping
F: X — 2Y is said to be upper semi-continuous on X if it is upper
serni-continuous at every point in X and if also, F(z) is compact for
each z € X.

In this section, we develop properties of upper semi-continuous singl-
evalued mappings to those of upper semi-continuous multivalued map-
pings. These properties will be applied in our further considerations of
selection theorems. Of course a multivalued mapping is called continu-
ous if it is both lower semi-continuous and upper semi-continuous.

The following theorem is well-known as a Maximum Theorem:

LEMMA 4.1. If f : Y — R is continuous and F': X — 2Y is continu-
ous, then the real-valued function m defined by m(x) = max{f(y) |y €
F{x)} is continuous on X and the mapping G defined by G(z) = {y |y €
F(z), f(y) =m(z)} is an u.s.c. mapping of X into 2Y.

Let f : Y — R be a continuous function defined on a topological
space Y. A family X = {K,, |y € T'} of compact subsets of ¥ is called
selective with respect to f if for each v € T there exists one and only
one a, € K., such that f(ay) = max{f(y) | y € K,}.

In other words, the maximum of f is attained at only one point of
the set K.

For example, every family of closed balls in R” is selective with re-
spect to f(y) = pra(y), where pr, is the projection map onto the nth
coordinate space. In particular, every family of compact sets in R is
selective with respect to f(y) = y.

THEOREM 4.2. Let F : X — 2Y be a continuous mapping. If the
family {F(z) | z € X} is selective, then there exists a continuous selec-

tion f for F.

ProoF. Let g : Y — R be continuous for which {F(z) |z € X}
is selective. If G{z) = {y | v € F(z),9(y) = m(z)}, where m is the
function defined in Lemma 4.1, then G is a single-valued mapping of X
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into Y. Moreover, it is u.s.c. by Lemma 4.1 and so is continuous (since
it is single-valued).

The mapping f(x) = G{z) satisfies f(z) € F(z) for every z € X, i.e.,
f is the continuous selection f for F. O

COROLLARY 4.3. If F : X — 2R js continuous, then there exists a
continuous selection f for F.

ProoF. It is sufficient to take f(y) = y, whence f(z) = max F(x).0O
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