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A SIMPLE PROOF OF THE IMPROVED JOHNSON BOUND

FOR BINARY CODES

Le Thi Ngoc Giau and Phan Thanh Toan

Abstract. In this paper, we give a simple proof of the improved Johnson

bound for A(n, d), the maximum number of codewords in a binary code of
length n and minimum distance d, given by Mounits, Etzion and Litsyn.

1. The improved Johnson bound for A(n, d)

Let F = {0, 1} and let n be a positive integer. The (Hamming) distance
between two vectors u and v in Fn, denoted by d(u, v), is the number of coordi-
nates where they differ. The (Hamming) weight of a vector u in Fn, denoted by
wt(u), is the distance between it and the zero vector. The minimum distance
of a subset of Fn is the smallest distance between any two different vectors in
that subset. An (n, d) code is a subset of Fn having minimum distance ≥ d. If
C is an (n, d) code, then an element of C is called a codeword and the number
of codewords in C is called the size of C, denoted by |C|. The largest possible
size of an (n, d) code is denoted by A(n, d). An (n, d, w) constant-weight code
is an (n, d) code such that every codeword has weight w. Denote by A(n, d, w)
the largest possible size of an (n, d, w) constant-weight code.

The problem of determining the values of A(n, d) is one of the most funda-
mental problems in coding theory [15]. The exact value of A(n, d) is extremely
difficult to find even for relatively small values of n. Hence, lower bounds and
upper bounds for this function are usually considered. While lower bounds are
obtained from explicit code constructions [3, 6, 10, 11, 13, 14, 16, 19, 21], upper
bounds involve analytic methods [1, 8, 12,17,18,20,22]. The following equality
is well-known (see for example [15]).

Lemma 1. A(n, d) = A(n+ 1, d+ 1) if d is odd.
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One of the basis upper bounds on A(n, d), d = 2δ+ 1, is the sphere packing
bound or the Hamming bound.

Theorem 2 (Sphere packing bound).

(1) A(n, 2δ + 1) ≤ 2n

δ∑
i=0

(
n
i

) .
The sphere packing bound follows from the fact that the spheres of radius

δ centered at the codewords of an (n, 2δ + 1) code are disjoint, and each of

which contains
∑δ
i=0

(
n
i

)
vectors in Fn. Codes that attain the sphere packing

bound are called perfect codes. So for a perfect code, the corresponding spheres
cover the whole space Fn. In [9], Johnson considered spheres of radius δ + 1
(the spheres may not be disjoint) and improved this sphere packing bound by
showing:

Theorem 3 (Johnson bound).

(2) A(n, 2δ + 1) ≤ 2n

δ∑
i=0

(
n
i

)
+

( n
δ+1 )−( 2δ+1

δ )A(n,2δ+2,2δ+1)

A(n,2δ+2,δ+1)

.

Since A(n, 2k, k) =
⌊n
k

⌋
, we have:

Corollary 4.

A(n, 2δ + 1) ≤ 2n

δ∑
i=0

(n
i

)
+

(
n
δ+1

)
−
(

2δ+1
δ

)
A(n, 2δ + 2, 2δ + 1)⌊
n
δ+1

⌋
.(3)

Codes that attain the Johnson bound are called nearly perfect codes. For
more information on perfect codes and nearly perfect codes, see [4] and [15].

Besides other good bounds such as linear programming bound [5, 15] and
semidefinite programming bound [7, 22], the Johnson bound is still one of the
best known upper bounds on A(n, d). In [17], Mounits, Etzion and Litsyn
further improved the Johnson bound by showing the following.

Theorem 5 (Improved Johnson bound).

(4) A(n, 2δ + 1) ≤ 2n

δ∑
i=0

(
n
i

)
+

(n+1
δ+2 )−( 2δ+2

δ+2 )A(n+1,2δ+2,2δ+2)

A(n+1,2δ+2,δ+2)

.

They proved that this bound is always at least as good as the Johnson bound
and that for each δ ≥ 1, there exist infinitely many values of n for which the
bound is better than the Johnson bound.
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2. A simple proof of the improved Johnson bound

In this section, we give a simple proof of the improved Johnson bound. In the
proof of the improved Johnson bound, Mounits, Etzion and Litsyn considered
A(n, 2δ + 1) and since 2δ + 1 is odd, an (n, 2δ + 1) code can have both odd
weight codewords and even weight codewords, which makes it more difficult
to handle the codewords. In our proof the key difference is that we consider
A(n + 1, 2δ + 2) instead of A(n, 2δ + 1). For this, we restate the improved
Johnson bound as below. The advantage of using A(n+ 1, 2δ+ 2) is that every
codeword of an (n+ 1, 2δ + 2) code can be assumed to have even weight since
2δ + 2 is even. This makes the code simpler and hence so is the proof of the
theorem (as showed below). Our proof is a modification of the proof of the
Johnson bound in [15].

Theorem 6 (Improved Johnson bound).

(5) A(n+ 1, 2δ + 2) ≤ 2n

δ∑
i=0

(
n
i

)
+

(n+1
δ+2 )−( 2δ+2

δ+2 )A(n+1,2δ+2,2δ+2)

A(n+1,2δ+2,δ+2)

.

Proof. (i) Let C be an (n + 1,M, 2δ + 2) code, i.e., an (n + 1, 2δ + 2) code of
size M , with M = A(n + 1, 2δ + 2) such that C contains the zero vector and
each codeword in C has even weight. First we consider the case when δ is even.
Let Fn+1

even be the set of vectors in Fn+1 of even weight and let Si be the set of
vectors in Fn+1

even at distance i from C, i.e.,

(6) Si={u ∈ Fn+1
even | d(u, v) ≥ i for all v ∈ C and d(u, v) = i for some v ∈ C}.

Thus S0 = C and Si is empty if i is odd (since the distance between two vectors
of even weight is always even). We have

(7) S0 ∪ S2 ∪ · · · ∪ S2δ = Fn+1
even,

for if there were a vector of even weight at distance ≥ 2δ + 2 from C, then we
could add it to C and get a larger code.

(ii) Pick an arbitrary codeword P and move it to the origin. The codewords
of weight 2δ + 2 form a constant-weight code with distance ≥ 2δ + 2, i.e., the
number of codewords of weight 2δ + 2 is ≤ A(n+ 1, 2δ + 2, 2δ + 2).

(iii) Let Wδ+2 be the set of vectors in Fn+1 of (even) weight δ + 2. Any
vector in Wδ+2 belongs to either Sδ or Sδ+2. Corresponding to each codeword

Q of weight 2δ+ 2, there are
(

2δ+2
δ+2

)
vectors of weight δ+ 2 at distance δ from

Q. These vectors are in Wδ+2 ∩ Sδ and are all distinct. Therefore,

|Wδ+2 ∩ Sδ+2| = |Wδ+2| − |Wδ+2 ∩ Sδ|

≥
(
n+ 1

δ + 2

)
−
(

2δ + 2

δ + 2

)
A(n+ 1, 2δ + 2, 2δ + 2).(8)

(iv) A vector R in Wδ+2 ∩ Sδ+2 is at distance δ + 2 from at most A(n +
1, 2δ + 2, δ + 2) codewords. For move the origin to R and consider how many
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codewords can be at distance δ + 2 from R and have mutual distance 2δ + 2.
The number of such codewords is ≤ A(n+ 1, 2δ + 2, δ + 2).

(v) Now let P vary over all the codewords. For each i = 0, 2, . . . , δ, we get

|Si| = A(n+ 1, 2δ + 2)

(
n+ 1

i

)
= A(n+ 1, 2δ + 2)

[(
n

i− 1

)
+
(n
i

)]
.(9)

Also,

|Sδ+2| ≥ A(n+ 1, 2δ + 2)

(
n+1
δ+2

)
−
(

2δ+2
δ+2

)
A(n+ 1, 2δ + 2, 2δ + 2)

A(n+ 1, 2δ + 2, δ + 2)
.(10)

The result then follows since

|S0|+ |S2|+ · · ·+ |Sδ|+ |Sδ+2| ≤ |Fn+1
even| = 2n.(11)

The case when δ is odd is proved similarly, where Fn+1
even is replaced by Fn+1

odd ,
the set of all vectors in Fn+1 of odd weight. �

3. Some examples

In this section, we give examples illustrating that the improved Johnson
bound is one of the best upper bounds on A(n, d) and that it is really better
then the Johnson bound. We first show known upper bounds on A(n, 4, 3) and
A(n, 4, 4) (see [15] or [18]), which will be used in the examples.

Theorem 7.

(12) A(n, 4, 3) =


⌊
n

3

⌊
n− 1

2

⌋⌋
if n 6≡ 5 (mod 6),⌊

n

3

⌊
n− 1

2

⌋⌋
− 1 if n ≡ 5 (mod 6).

Theorem 8.

(13) A(n, 4, 4) =



n(n− 1)(n− 3)

24
if n ≡ 1 or 3 (mod 6),

n(n− 1)(n− 2)

24
if n ≡ 2 or 4 (mod 6),

n(n2 − 3n− 6)

24
if n ≡ 0 (mod 6),

(14) A(n, 4, 4) ≤


n3 − 4n2 + n− 6

24
if n ≡ 5 (mod 12),

n3 − 4n2 + n− 18

24
if n ≡ 11 (mod 12).
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Example 9. Consider n = 22 and δ = 1. By Theorem 7, we have

(15) A(22, 4, 3) = 73.

The Johnson bound gives

A(22, 3) ≤ 222

1∑
i=0

(
22
i

)
+

( 22
2 )−( 3

1 )A(22,4,3)

b 22
2 c

=
222

1 + 22 + 231−3·73
11

=
46137344

265
< 174104.(16)

Hence,

(17) A(23, 4) = A(22, 3) ≤ 174103.

On the other hand, by Theorems 7 and 8, we have

(18) A(23, 4, 3) = 83

and

(19) A(23, 4, 4) ≤ 419.

In fact, A(23, 4, 4) = 419 (see [2]) but this equality is not necessary in evaluating
the upper bound. The improved Johnson bound gives

A(23, 4) ≤ 222

1∑
i=0

(
22
i

)
+

( 23
3 )−( 4

3 )A(23,4,4)

A(23,4,3)

=
222

1 + 22 + 1771−4·419
83

=
87031808

501
< 173717.(20)

Therefore,

(21) A(23, 4) ≤ 173716 < 174103.

The best known upper bound of A(23, 4) is

(22) A(23, 4) ≤ 172361,

which is from [18].

Example 10. Consider n = 23 and δ = 1. By Theorems 7 and 8, we have

(23) A(n+ 1, 2δ + 2, δ + 2) = A(24, 4, 3) = 88
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and

(24) A(n+ 1, 2δ + 2, 2δ + 2) = A(24, 4, 4) = 498.

The improved Johnson bound gives

A(24, 4) ≤ 223

1∑
i=0

(
23
i

)
+

( 24
3 )−( 4

3 )A(24,4,4)

A(24,4,3)

=
223

1 + 23 + 2024−4·498
88

=
23068672

67
< 344309.(25)

Therefore,

(26) A(24, 4) ≤ 344308.

The upper bound A(24, 4) ≤ 344308 is the best known upper bound for A(24, 4)
up to now.
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