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ANOTHER PROOF THAT Aγ(G) AND A∆(G) ARE
BANACH ALGEBRAS

Hun Hee Lee*

Abstract. We provide another unified proof that Aγ(G) and A∆(G)
are Banach algebras for a compact group G, where Aγ(G) and
A∆(G) are images of the convolution and the twisted convolution,
respectively, on A(G × G). Our new approach heavily depends on
analysis of co-multiplication on V N(G), the group von-Neumann
algebra of G.

1. Introduction

Let G be a compact group. A well-known fact about L1(G), the
space of integrable functions on G with respect to the normalized Haar
measure, is a Banach algebra under the convolution product. Recall
that the convolution ∗ is defined by

f ∗ g(x) =
∫

G
f(y)g(y−1x)dy, f, g ∈ L1(G),

where dy denotes the normalized Haar measure on G. There is another
natural Banach algebra associated to G, namely the Fourier algebra
A(G). Among many equivalent definitions of A(G) we present the fol-
lowing definition using Fourier transform. Let Ĝ be the collection of
equivalence classes of irreducible unitary representations of G. Then for
any f ∈ L1(G) we define Fourier transform of f by the collection of
matrices (f̂(π))

π∈Ĝ
given by

f̂(π) =
∫

G
f(x)π(x)dx ∈ Mdπ ,
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where dπ is the dimension of π ∈ Ĝ and π is the conjugate representation
of π given by π(x) = (π(x−1))t, x ∈ G.

Now we define the Fourier algebra A(G) by

A(G) := {f ∈ C(G) : ‖f‖A(G) =
∑

π∈Ĝ

dπ

∥∥∥f̂(π)
∥∥∥

1
< ∞},

where ‖·‖1 is the Schatten 1-norm. It is well-known that A(G) is a
Banach algebra under the pointwise multiplication. A(G) can be defined
for general locally compact group, but compactness of G gives us another
option, namely the fact that A(G) is also a Banach algebra under the
convolution product. Thus, we may consider convolution product f ∗g of
two functions f, g ∈ A(G) and twisted convolution product f ∗ ǧ, where
ǧ(x) = g(x−1), x ∈ G, which we have f ∗ g, f ∗ ǧ ∈ A(G). Note that the
map f 7→ f̌ is an isometry on A(G). Then, it is natural to be interested
in the ranges of the above two operations, namely the ranges of Φ and
Ψ given by

Φ : A(G×G) → A(G), f ⊗ g 7→ f ∗ g

and
Ψ : A(G×G) → A(G), f ⊗ g 7→ f ∗ ǧ.

Recall that simple tensors of the form f ⊗ g spans a dense subspace
of A(G × G). Although, the operations Φ and Ψ look quite similar, it
turned out that their images are quite different, and actually they are the
spaces Aγ(G) and A∆(G), which will be defined below. Note that Aγ(G)
is the object originally considered by B. E. Johnson to get an example
of a compact group whose Fourier algebra is not an amenable Banach
algebra ([3]). The spaces Aγ(G) and A∆(G) are defined as follows.

Aγ(G) := {f ∈ C(G) : ‖f‖Aγ(G) =
∑

π∈Ĝ

d2
π

∥∥∥f̂(π)
∥∥∥

1
< ∞}

and

A∆(G) := {f ∈ C(G) : ‖f‖A∆(G) =
∑

π∈Ĝ

d
3
2
π

∥∥∥f̂(π)
∥∥∥

2
< ∞},

where ‖·‖2 is the Schatten 2-norm (or Hilbert-Schimidt norm).
The spaces Aγ(G) and A∆(G) are actually Banach algebras under

pointwise multiplication as is proved in [1] and [3] in quite different
styles. The main theme of this paper is to give a unified approach which
can be applied for both of the cases using a quantum group (or Kac
algebra) style of formulation.
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This paper is organized as follows. In section 2 we will collect prelim-
inaries which we will need in the proof of our main results, and our main
results will be presented in the latter section. We will assume that the
reader is familiar with standard functional analysis concepts including
Banach space tensor products.

2. Preliminaries

In this paper G is always a fixed compact group. A standard reference
for harmonic analysis on compact groups is [2]. The group von Neumann
algebra V N(G) is defined by the von Neumann algebra generated by
{λ(x) : x ∈ G} ⊂ B(L2(G)), where λ is the left regular representation
of G, or equivalently, λ(x) is the left translation operator with respect
to x ∈ G. The group structure of G is encoded in the following co-
multiplication.

Γ : V N(G) → V N(G×G) ∼= V N(G)⊗V N(G), λ(x) 7→ λ(x)⊗ λ(x),

where ⊗ is the von Neumann algebra tensor product. Recall that Γ is a
normal (or weak∗-continuous) injective ∗-homomorphism, in particular
it is a contraction.

Using a well-developed representation theory of compact groups we
could provide another realization of V N(G). Indeed, we have a unitary
equivalence

(2.1) V N(G) ∼=
⊕

π∈Ĝ

Mdπ ⊆ B(H),

where H =
⊕

π∈Ĝ
`2
dπ

. Note that the above direct sums over Ĝ assume
the repetition of the same component dπ-times for π ∈ Ĝ. Note also
that the left regular representation λ has the decomposition

(2.2) λ ∼=
⊕

π∈Ĝ

π,

where the unitary equivalence coincide with the one in (2.1).
For notational convenience we will frequently use vector-valued weighted

`p spaces indexed by Ĝ. The space `1(απ; Xπ) for απ > 0, π ∈ Ĝ and
Banach spaces Xπ’s, refers to the space of sequences (xπ)

π∈Ĝ
with the

norm ∥∥(xπ)
π∈Ĝ

∥∥
`1(απ;Xπ)

:=
∑

π∈Ĝ

απ ‖xπ‖Xπ
.
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Similarly, `∞(απ;Xπ) for απ > 0, π ∈ Ĝ and Banach spaces Xπ’s, is the
space of sequences (xπ)

π∈Ĝ
with the norm

∥∥(xπ)
π∈Ĝ

∥∥
`∞(απ ;Xπ)

:= sup
π∈Ĝ

απ ‖xπ‖Xπ
.

With the above notation we can write

(2.3)
⊕

π∈Ĝ

Mdπ = `∞(1;Mdπ).

Since A(G) can be identified as the predual of V N(G), we have the
following isometric isomorphism.

(2.4) A(G) ∼= `1(dπ;S1
dπ

),

where S1
n refers to the Schatten 1-class over `2

n. The additional factor
dπ comes from the duality bracket

〈(A(π))π, (B(π))π〉 =
∑

π∈Ĝ

dπtr(A(π)B(π))

for A = (A(π))π ∈ `∞(1; Mdπ) and B = (B(π))π ∈ `1(dπ;S1
dπ

), which is
usual in analysis of compact groups.

We also need vector-valued weighted `p spaces indexed by Ĝ × Ĝ.
The definition is similar to the above case, so we omit it. One example
is V N(G×G) ∼= V N(G)⊗V N(G). With this notation we can write

(2.5) V N(G×G) ∼=
⊕

π,π′∈Ĝ

Mdπ(Mdπ′ ) = `∞(1× 1;Mdπ(Mdπ′ ))

and

(2.6) A(G×G) ∼= `1(dπ × dπ′ ; S1
dπ

(S1
dπ′ )).

Recall that Mdπ(Mdπ′ )
∼= Mdπdπ′ and S1

dπ
(S1

dπ′
) ∼= S1

dπdπ′
isometrically.

We will denote an element B ∈ `∞(1× 1;Mdπ(Mdπ′ )) by

B = (B(π, π′))
π,π′∈Ĝ

.

The Fourier transform as a mapping is defined as follows.

F : L1(G) → `∞(1;Mdπ), f 7→ F(f),

where F(f)(π) = f̂(π), π ∈ Ĝ. The corresponding Fourier inverse trans-
form F−1 is defined as follows.

F−1 : `1(dπ; S1
dπ) → L∞(G), A = (A(π))

π∈Ĝ
7→ F−1(A)
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and
F−1(A)(x) =

∑

π∈Ĝ

dπtr(A(π)π(x)), x ∈ G.

As in the case of the Fourier transform on the real line we have the
following Fourier inversion formula. Note that the situation is simpler
this case since L∞(G) ⊂ L1(G) due to the compactness of G.

Proposition 2.1. If A ∈ `1(dπ; S1
dπ), then we have F(F−1(A)) = A.

We close this section with a notation concerning representation theory
of compact groups. For any π, π′ ∈ Ĝ we can consider their tensor
product π ⊗ π′. It is well-known that

(2.7) π ⊗ π′ ∼=
n⊕

k=1

τk

for some τk ∈ Ĝ.

Definition 2.2. Let τ, π, π′ ∈ Ĝ. We denote τ ⊂ π⊗ π′ if τ ∼= τk for
some k, where τk’s are from (2.7).

3. Main results

We begin with an observation how the co-multiplication Γ : V N(G) →
V N(G×G) is translated into

Γ : `∞(1;Mdπ) → `∞(1× 1;Mdπ(Mdπ′ )).

We will still denote the translation again by Γ.
Let A = (A(π))

π∈Ĝ
∈ `∞(1;Mdπ) with F = {π ∈ Ĝ : A(π) 6= 0} is a

finite set. Then we have A = F(f), where f(x) =
∑

ρ∈Ĝ
dρtr(A(ρ)ρ(x)),

x ∈ G by the Fourier inversion formula (Proposition 2.1). Let Γ(A) =
(Γ(A)(π, π′))

π,π′∈Ĝ
, then the decomposition (2.2) tells us that

Γ(A)(π, π′) =
∫

G
f(x)π(x)⊗ π′(x)dx

=
∑

ρ∈Ĝ

dρ

∫

G
tr(A(ρ)ρ(x))π(x)⊗ π′(x)dx

=
∑

ρ∈Ĝ

dρ

dρ∑

i,j=1

∫

G
Aij(ρ)ρji(x)π(x)⊗ π′(x)dx
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∼=
⊕

τ⊂π⊗π′

∑

ρ∈Ĝ

dρ

dρ∑

i,j=1

∫

G
Aij(ρ)ρji(x)τ(x)dx

=
⊕

τ⊂π⊗π′
A(τ).

The last equality comes from the Schur orthogonality relation and (τ(x))ij

= τ(x)ji. Note that we are taking multiplicity into account in the no-
tation τ ⊂ π ⊗ π′. From the weak∗-continuity of Γ we have shown the
following.

Proposition 3.1. For any A ∈ `∞(1;Mdπ) we have

Γ(A)(π, π′) ∼=
⊕

τ⊂π⊗π′
A(τ), ∀π, π′ ∈ Ĝ.

Recall that Γ is the adjoint map of the pointwise multiplication map
A(G × G) → A(G). Since we will consider pointwise multiplication as
algebra multiplications of Aγ(G) and A∆(G), we need to check that
Γ can be extended to contractions on A∗γ(G) → (Aγ(G) ⊗γ Aγ(G))∗

and A∗∆(G) → (A∆(G) ⊗γ A∆(G))∗, where ⊗γ is the projective tensor
product of Banach spaces. Note that

Aγ(G) ∼= `1(d2
π, S1

dπ
) and A∆(G) ∼= `1(d

3
2
π , S2

dπ
)

isometrically, so that we have




A∗γ(G) ∼= `∞(d−1
π ,Mdπ),

A∗∆(G) ∼= `∞(d
− 1

2
π , S2

dπ
),

(Aγ(G)⊗γ Aγ(G))∗ ∼= `∞(d−1
π × d−1

π′ ,Mdπ ⊗ε Mdπ),

(A∆(G)⊗γ A∆(G))∗ ∼= `∞(d
− 1

2
π × d

− 1
2

π′ , S2
dπ
⊗ε S2

dπ′
)

isometrically, where ⊗ε implies the injective tensor product of Banach
spaces.

Theorem 3.2. Aγ(G) and A∆(G) are Banach algebras under point-
wise multiplication.

Proof. First, we consider the case of Aγ(G). From the above obser-
vations it is enough to check that

d−1
π d−1

π′
∥∥Γ(A)(π, π′)

∥∥
Mdπ⊗εMdπ′

≤ sup
ρ∈Ĝ

d−1
ρ ‖A(ρ)‖Mdρ
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for any A ∈ `∞(d−1
π ,Mdπ) and π, π′ ∈ Ĝ. Indeed, we have

∥∥Γ(A)(π, π′)
∥∥

Mdπ⊗εMdπ′
≤

∥∥∥∥∥
⊕

τ⊂π⊗π′
A(τ)

∥∥∥∥∥
Mdπdπ′

= sup
τ⊂π⊗π′

‖A(τ)‖Mdτ

≤ ( sup
τ⊂π⊗π′

dτ ) sup
ρ∈Ĝ

d−1
ρ ‖A(ρ)‖Mdρ

≤ dπdπ′ sup
ρ∈Ĝ

d−1
ρ ‖A(ρ)‖Mdρ

.

The first ineqality comes from the contractive embedding Mnm ⊂ Mn⊗ε

Mm, and the last inequality comes from
∑

τ⊂π⊗π′ dτ = dπdπ′ . Note again
that we are taking multiplicity into account in the notation τ ⊂ π ⊗ π′.

Similarly, for the case of A∆(G) we need to check that

d
− 1

2
π d

− 1
2

π′
∥∥Γ(A)(π, π′)

∥∥
S2

dπ
⊗εS2

dπ′
≤ sup

ρ∈Ĝ

d
− 1

2
ρ ‖A(ρ)‖S2

dρ

for any A ∈ `∞(d
− 1

2
π , S2

dπ
) and π, π′ ∈ Ĝ. Indeed, we have

∥∥Γ(A)(π, π′)
∥∥2

S2
dπ
⊗εS2

dπ′
≤

∥∥∥∥∥
⊕

τ⊂π⊗π′
A(τ)

∥∥∥∥∥
2

S2
dπdπ′

=
∑

τ⊂π⊗π′
‖A(τ)‖2

S2
dτ

=
∑

τ⊂π⊗π′
dτd

−1
τ ‖A(τ)‖2

S2
dτ

≤ (
∑

τ⊂π⊗π′
dτ )

[
sup
ρ∈Ĝ

d
− 1

2
ρ ‖A(ρ)‖S2

dρ

]2

= dπdπ′
[
sup
ρ∈Ĝ

d
− 1

2
ρ ‖A(ρ)‖S2

dρ

]2
.

The first ineqality comes from the contractive embedding S2
nm ⊂ S2

n ⊗ε

S2
m.
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