• Title/Summary/Keyword: mathematical error

Search Result 942, Processing Time 0.026 seconds

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

ERROR ESTIMATES FOR A GALERKIN METHOD FOR A COUPLED NONLINEAR SCHRÖDINGER EQUATIONS

  • Omrani, Khaled;Rahmeni, Mohamed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.219-244
    • /
    • 2020
  • In this paper, we approximate the solution of the coupled nonlinear Schrödinger equations by using a fully discrete finite element scheme based on the standard Galerkin method in space and implicit midpoint discretization in time. The proposed scheme guarantees the conservation of the total mass and the energy. First, a priori error estimates for the fully discrete Galerkin method is derived. Second, the existence of the approximated solution is proved by virtue of the Brouwer fixed point theorem. Moreover, the uniqueness of the solution is shown. Finally, convergence orders of the fully discrete Crank-Nicolson scheme are discussed. The end of the paper is devoted to some numerical experiments.

1학년 수와 연산 영역에서 학습자의 오류 분석을 통한 교과서 재구성 방안

  • Choi, Ho-Hee;Choi, Chang-Woo
    • East Asian mathematical journal
    • /
    • v.27 no.2
    • /
    • pp.163-180
    • /
    • 2011
  • The purpose of this study is to look for the plan of reconstructing a textbook through error analysis and the process of its correction in numbers and operations of the first grade. The Research materials are collected and analyzed through the journal about every lessons, the recording sheets of students' activity, the recording videotapes during lessons, the individual interview and observation. This study investigated 4 errors which are useful for reconstructing textbook, the errors of understanding relation between numerical expression and number line, the errors of drawing-strategy, the errors of understanding relation between additive expression and subtractive expression, the errors of subtraction has to be regrouped. The errors are classified into some types and analyzed focusing on content of each error. Reinstructing are carried out based on material analyzed for correcting errors.

A Study on Anti-Sway of Crane using Neural Network Predictive PID Controller (Anti-Sway에 관한 연구)

  • 손동섭;이진우;민정탁;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.219-227
    • /
    • 2002
  • In this paper, we designed neural network predictive PID controller to control sway happened in transfer of trolley for automatic travel control system. We include dynamic character of nonlinear system, and mathematical expression veny simple used neural network. When various establishment location and surrounding disturbance were approved based on mathematical modelling of crane, controller designed to become effective control location error and vibration angle of two control variables that simultaneously can predictive control. Neural network predictive PID controller produced parameter of PID controller using neural network self-tuner. Neural network self-tuner's input used crane's output and neural network predictive output. Neural network self-tuner using error back propagation algorithm. We analyzed control performance comparison through computer simulation when applied disturbance about sway of location and angle in transfer of crane. The results show that the proposed neural network predictive PID controller has better performances than general PID controller, neural network PID controller.

  • PDF

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • v.5 no.1
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

On the Definition of Geometrical Progression of the High school (등비수열의 정의에 대한 연구)

  • Lee, Min-Jung;Lee, Yang
    • The Mathematical Education
    • /
    • v.51 no.3
    • /
    • pp.211-221
    • /
    • 2012
  • We discovered that definition of a Geometrical Progression(Sequence) have some differences in domestic textbooks & some foreign countries' books. This will be able to cause a chaos when students divide whether a sequence is a Geometrical Progression(Sequence) or not, and a question error when teachers compose questions about convergence conditions of Infinite Geometric progressions & series. We took a question investigation for students about definition of a Geometrical Progression(that is called G. P.), we discovered that high level students have an error about definition of a G. P.. So We modified expressions of terminology in domestic textbooks appropriately through a Geometrical Progression(Sequence), infinite series, & infinite geometrical series in some foreign countries' books.

Conceptual errors related to zero by secondary school gifted student and preservice teachers (중학교 영재학생과 예비교사의 영(0)에 관한 인식과 오류)

  • Park, Jee-Hyun
    • The Mathematical Education
    • /
    • v.46 no.4
    • /
    • pp.357-369
    • /
    • 2007
  • Teachers and students' knowledge of zero was investigated through data collected from 16 preservice secondary mathematics teachers and 20 gifted secondary school students. Results showed that these teachers and students had an inadequate knowledge about zero. They exhibited a reluctance to accept zero as an attribute for classification, confusion as to whether or not zero is a number, and stable patterns of computational error. Although leachers and researchers have long recognized the value of analyzing student errors for diagnosis and remediation, students have not been encouraged to take advantage of errors as learning opportunities in mathematics instruction. The article suggests using errors as springboards for inquiry in action, discusses its potential contributions to mathematics instruction by analyzing students and preservice teachers errors related to zero.

  • PDF

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

A ROBUST NUMERICAL TECHNIQUE FOR SOLVING NON-LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH BOUNDARY LAYER

  • Cakir, Firat;Cakir, Musa;Cakir, Hayriye Guckir
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.939-955
    • /
    • 2022
  • In this paper, we study a first-order non-linear singularly perturbed Volterra integro-differential equation (SPVIDE). We discretize the problem by a uniform difference scheme on a Bakhvalov-Shishkin mesh. The scheme is constructed by the method of integral identities with exponential basis functions and integral terms are handled with interpolating quadrature rules with remainder terms. An effective quasi-linearization technique is employed for the algorithm. We establish the error estimates and demonstrate that the scheme on Bakhvalov-Shishkin mesh is O(N-1) uniformly convergent, where N is the mesh parameter. The numerical results on a couple of examples are also provided to confirm the theoretical analysis.

UNCONDITIONAL STABILITY AND CONVERGENCE OF FULLY DISCRETE FEM FOR THE VISCOELASTIC OLDROYD FLOW WITH AN INTRODUCED AUXILIARY VARIABLE

  • Huifang Zhang;Tong Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.273-302
    • /
    • 2023
  • In this paper, a fully discrete numerical scheme for the viscoelastic Oldroyd flow is considered with an introduced auxiliary variable. Our scheme is based on the finite element approximation for the spatial discretization and the backward Euler scheme for the time discretization. The integral term is discretized by the right trapezoidal rule. Firstly, we present the corresponding equivalent form of the considered model, and show the relationship between the origin problem and its equivalent system in finite element discretization. Secondly, unconditional stability and optimal error estimates of fully discrete numerical solutions in various norms are established. Finally, some numerical results are provided to confirm the established theoretical analysis and show the performances of the considered numerical scheme.