Browse > Article
http://dx.doi.org/10.4134/JKMS.2014.51.4.665

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS  

Zhang, Tie (Department of Mathematics and the State Key Laboratory of Synthetical Automation for Process Industries Northeastern University)
Liu, Jingna (Department of Mathematics and the State Key Laboratory of Synthetical Automation for Process Industries Northeastern University)
Publication Information
Journal of the Korean Mathematical Society / v.51, no.4, 2014 , pp. 665-678 More about this Journal
Abstract
We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.
Keywords
discontinuous Galerkin method; first-order hyperbolic system; semi-explicit scheme; stability and error estimate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Ern and J. L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems, I. general theory, SIAM J. Numer. Anal. 44 (2006), no. 2, 753-778.   DOI   ScienceOn
2 B. Cockburn, G. E. Karniadakis, and C. W. Shu, Discontinuous Galerkin Methods, Theory, Computation and Applications, Lecture Notes Comput. Sci. Eng., Vol. 11, Springer-Verlag, Berlin, 2000.
3 B. Cockburn, B. Dong, and J. Guzman, Optimal convergence of the original DG method for the transport-reaction equation on special meshes, SIAM J. Numer. Anal. 46 (2008), no. 3, 1250-1265.   DOI   ScienceOn
4 B. Cockburn and C. W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems (review article), J. Sci. Compu. 16 (2001), no. 3, 173-261.   DOI   ScienceOn
5 R. S. Falk and G. R. Richter, Explicit finite element methods for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (1999), no. 3, 935-952.   DOI   ScienceOn
6 K. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333-418.   DOI
7 C. Johnson, U. Navert, and J. Pitkaranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984), no. 1-3, 285-312.   DOI   ScienceOn
8 P. Monk and G. R. Richter, A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media, J. Sci. Compu. 22 (2005), 443-477.
9 T. E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133-140.   DOI   ScienceOn
10 G. Richter, An optimal-order error estimate for discontinuous Galerkin method, Math. Comp. 50 (1988), 75-88.   DOI   ScienceOn
11 R. Winther, Astable finite element method for first-order hyperbolic systems, Math. Comp. 36 (1981), 65-86.   DOI   ScienceOn
12 D. N. Arnold, F. Brezzi, and B. Cockburn, et al., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 5, 1749-1779.
13 P. G. Cairlet, The Finite Element Methods for Elliptic Problems, North-Holland Publish, Amsterdam, 1978.
14 T. Zhang, Discontinuous Finite Element Theory and Method, Sincece Press, Beijing, 2012.