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A SPACE-TIME DISCONTINUOUS GALERKIN METHOD

FOR FIRST ORDER HYPERBOLIC SYSTEMS

Tie Zhang and Jingna Liu

Abstract. We present a new space-time discontinuous Galerkin (DG)
method for solving the time dependent, positive symmetric hyperbolic

systems. The main feature of this DG method is that the discrete equa-

tions can be solved semi-explicitly, layer by layer, in time direction. For
the partition made of triangle or rectangular meshes, we give the stability

analysis of this DG method and derive the optimal error estimates in the

DG-norm which is stronger than the L2-norm. As application, the wave
equation is considered and some numerical experiments are provided to

illustrate the validity of this DG method.

1. Introduction

During the last decades, the discontinuous Galerkin (DG) finite element
methods have attracted more and more attention in the field of numerical
partial differential equations, see [1, 3, 5, 6, 14] and the references therein. In
this paper, we will consider the space-time DG method for solving the time-
dependent, positive symmetric hyperbolic systems. Traditionally, for time-
dependent problems, the fully discrete finite element methods are constructed
by using finite elements to discretize in space, but using finite difference or other
methods to discretize in time. The disadvantage of this kind of discrete methods
is that it is difficult to enhance the approximation accuracy in time direction.
However, this shortcoming can be overcome by adopting the space-time finite
element methods. Since 1980s, some explicit and semi-explicit (in time) space-
time finite element methods have been presented for first order hyperbolic
systems. Winther in [13] first gave an explicit scheme, but it is restricted to
one space dimension. Later, Johnson, et al. in [9] proposed the semi-explicit
method by using continuous finite elements in space and discontinuous trial
functions in time. Recently, Falk and Richter [7] construct a space-time DG
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method for hyperbolic systems, and this method is further developed by Monk
and Richter in [10]. The main feature of this two space-time DG methods is
that they are explicit or semi-explicit in time-direction. But, this two methods
are only available to the structured triangle meshes. More specifically, let nt
and nx = (n1, . . . , nd)

T be the time and spatial components of the unit outward
normal vector n = (nt, nx)T in the space-time domain ΩT , respectively, and
Th be the regular triangulation of domain ΩT . The structured triangle meshes
used in [7, 10] requires the key mesh condition, for some ε0 properly small,

(1.1)
|nx(t, x)|
|nt(t, x)|

≤ ε0, ∀ (t, x) ∈ ∂K\∂ΩT or ∂K∗\∂ΩT ,

where K ∈ Th is the space-time element (for the explicit method) and K∗

is the micro element in Th (for the semi-explicit method). It is easy to see
that condition (1.1) implies a time-step (CFL) constraint on the ratio 4t/4x,
where 4t and 4x are the mesh steps in the time-direction and space-direction,
respectively. Moreover, condition (1.1) can not be satisfied by the rectangular
meshes, in this case, for each K or K∗, there exists always a face FK ∈ ∂K (or
∂K∗) so that nt|FK

= 0.
The goal of this paper is to present a new space-time DG method for solving

the time-dependent, positive symmetric hyperbolic systems. For appropriate
shape-regular triangulations (including rectangular meshes) without restriction
condition (1.1), we construct a semi-explicit DG scheme by elaborately design-
ing the numerical traces on the element interfaces. The main feature of this
DG method is that the discrete equations can be solved semi-explicitly, layer
by layer, in time direction. We give the stability and error analysis for the
DG solution, and derive the optimal error estimates of order k + 1/2 in the
DG-norm if piecewise polynomials of degree k are used.

Throughout this paper, let Ω be a bounded open polyhedral domain in Rd,
d ≥ 1, the space-time domain ΩT = (0, T ] × Ω. For any open subset D ⊂ ΩT
and integers m ≥ 0, we denote by Hm(D) the usual Sobolev spaces equipped
with norm ‖ · ‖m,D and semi-norm | · |m,D, and denote by (·, ·)D and ‖ · ‖D
the standard inner product and norm in the space H0(D) = L2(D). When
D = ΩT , we omit the index D. We will also use letter C to represent a generic
positive constant, independent of the mesh size h.

The plan of this paper is as follows. In Section 2, the DG method is con-
structed. In Section 3, the stability and semi-explicit structure of this DG
method are analyzed. Section 4 is devoted to the optimal error estimates in
the DG-norm. Finally, in Section 5, we provide some numerical experiments
applied to the wave equation to illustrate the validity of our method.

2. Problem and its DG approximation

Let Ω be a bounded polyhedral domain in Rd, d ≥ 1, and u = (u1, . . . , um)T

denote the m-vector function on the space-time domain ΩT = (0, T ]×Ω. Con-
sider the following time-dependent first-order hyperbolic system:
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A0∂tu +

d∑
k=1

Ak∂ku +Bu = f , (t, x) ∈ (0, T ]× Ω,(2.1)

(M −D)u = 0, (t, x) ∈ (0, T ]× ∂Ω,(2.2)

u(0) = u0, x ∈ Ω.(2.3)

Here, A0 is a positive definite and symmetric matrix, independent of time t

(typically A0 = I), Ak = (a
(k)
ij (x)), B = (bij(x)) and M = (mij(x)) are some

given m×m matrices, D =
∑d
k=1Aknk, and nx = (n1, . . . , nd)

T is the spatial
component of the outward unit normal vector n = (nt, nx)T on ∂ΩT . We
assume that problem (2.1)-(2.3) is a positive and symmetric hyperbolic system
[8], namely,

Ak = ATk , k = 1, . . . , d, x ∈ Ω,(2.4)

B +BT −
d∑
k=1

∂kAk ≥ 2σ0I, x ∈ Ω,(2.5)

M +MT ≥ 0, x ∈ ∂Ω,(2.6)

Ker(M −D) +Ker(M +D) = Rm, x ∈ ∂Ω,(2.7)

where constant σ0 > 0, and by using the expression A ≥ 0 (A > 0) we imply
that matrix A is positive semi-definite (positive definite). In what follows,

we assume that the matrix elements a
(k)
ij (x), bij(x) and mij(x) are sufficiently

smooth and bounded.

Remark 2.1. For the linear time-dependent problem (2.1), condition (2.5) is
not essential. In fact, we always can use transformation u = eσtu in equation
(2.1) with σ > 0 properly large such that condition (2.5) holds naturally.

Problem (2.1)-(2.3) can describe many important physics processes. An
example of such positive and symmetric hyperbolic system is as follows.

Wave equation. Consider the wave equation in R2

utt −4u = f, (t, x) ∈ (0, T ]× Ω,(2.8)

u = 0, (t, x) ∈ (0, T ]× ∂Ω,

u(0, x) = ϕ, ut(0, x) = φ, x ∈ Ω,

where Ω ⊂ R2 is a bounded domain. Introduce the transformation: u0 =
∂tu, u1 = ∂1u, u2 = ∂2u, then we have the equivalent equations

(2.9)
∂u0

∂t
− ∂u1

∂x1
− ∂u2

∂x2
= f,

∂u1

∂t
− ∂u0

∂x1
= 0,

∂u2

∂t
− ∂u0

∂x2
= 0.

Now, the wave problem (2.8) can be written as the following positive and
symmetric hyperbolic system (setting u = (u0, u1, u2)T ),

∂tu +A1∂1u +A2∂2u = f , (t, x) ∈ (0, T ]× Ω,

(M −D)u = 0, (t, x) ∈ (0, T ]× ∂Ω,
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with the initial value u0 = (φ, ∂1ϕ, ∂2ϕ)T , vector function f = (f, 0, 0)T , and
matrices

A0 =

 1 0 0
0 1 0
0 0 1

 , A1 =

 0 −1 0
−1 0 0
0 0 0

 , A2 =

 0 0 −1
0 0 0
−1 0 0

 , B = 0,

and choosing the boundary matrix

M =

 1 −n1 −n2

n1 0 0
n2 0 0

 , M −D =

 1 0 0
2n1 0 0
2n2 0 0

 .

The conditions (2.4)-(2.7) can be verified directly.
In the above example, although the boundary matrix M should be deter-

mined by the boundary value condition of the problem, it is not unique. In
this example, we have chosen the boundary matrix M properly such that it
also satisfies our requirement for the error analysis, see (4.16).

Now let us introduce the space-time DG method for solving the problem
(2.1)-(2.3). Let Th =

⋃
{K} be a shape regular partition of the space-time

domain ΩT parameterized by mesh size h = maxhK so that ΩT =
⋃
K∈Th{K },

where hK is the diameter of element K. We say that the partition Th is shape
reqular, if the elements of Th are affine and there exists a positive constant γ
independent of K ∈ Th such that

hK/ρK ≤ γ, ∀K ∈ Th,
where ρK denotes the diameter of the biggest ball included in K. To partition
Th, we associate the finite-dimensional space Vh,

(2.10) Vh = [Sh]m, Sh = { v ∈ L2(ΩT ) : v|K ∈ Sk(K), ∀K ∈ Th },
where Sk(K) is the local finite element space composed of polynomials which
at least includes Pk(K). Typically, Sk(K) is the space Pk(K) of polynomials of
degree at most k on K for triangle meshes, or the space Qk(K) of polynomials
of degree at most k in each variable on K for rectangular meshes. We denote
by Eh =

⋃
{ ∂K : K ∈ Th} the union of all boundaries of elements.

Denote the piecewise smooth function space on Th by

Hs(Th) = { v ∈ L2(ΩT ) : v|K ∈ Hs(K), ∀K ∈ Th} , s ≥ 1 .

In order to cope with the discontinuity of function across the interfaces of
elements, we introduce the jump of function φ ∈ H1(Th) on ∂K by

(2.11) [φ ] = φ+ − φ−, φ−
∣∣
∂ΩT

= 0,

where φ+ and φ− are the traces of φ on ∂K from the interior and exterior of
K, respectively. Sometimes, for convenience, we will denote φ+ by φ on ∂K.
We will also use the discrete inner product notations

(u, v)Ω∆
T

=
∑
K∈Ω∆

T

(u, v)K =
∑
K∈Ω∆

T

∫
K

u v dK, 〈u, v〉S =
∑
∂K∈S

∫
∂K

uv ds ,
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where Ω∆
T is a subset of Th and S is a subset of Eh.

In order to define the semi-explicit space-time DG scheme, we need to in-
troduce some notations. First, we divide the boundary ∂ΩT into three parts:

(2.12) Γ0 = { (t, x) ∈ ∂ΩT : nt = 0 }; Γ± = { (t, x) ∈ ∂ΩT : nt = ±1 }.
Obviously, Γ0 = [0, T ]× ∂Ω, Γ+ = {t = T} × Ω, Γ− = {t = 0} × Ω. Introduce
the partial differential operator and its adjoint form (noting that ∂tA0 = 0)

Lt = A0∂t +

d∑
k=1

Ak∂k +B, L∗t = −A0∂t −
d∑
k=1

Ak∂k +BT −
d∑
k=1

∂kAk.

By using integration by parts, we have

(2.13)

∫
K

Ltu · v =

∫
K

u · L∗tv +

∫
∂K

Nnu · v, ∀K ∈ Th,

where the boundary matrix Nn = A0nt + D, D =
∑d
k=1Aknk. It easy to see

that

(2.14) Nn|Γ0
= D, Nn|Γ± = ±A0, D|Γ± = 0.

Introduce the bilinear form

aK(u,v) = (Ltu,v)K +
1

2
〈(A0 −Nn)[u ],v〉∂K\Γ0

+
1

2
〈(M −D)u,v〉∂K⋂

Γ0
, K ∈ Th.(2.15)

Let u ∈ [H1(Ω)]m be the solution of problem (2.1)-(2.3), from (2.14) we see
that u satisfies the following weak form

(2.16) aK(u,v) = (f ,v)K + 〈A0u0,v〉∂K⋂
Γ− , ∀K ∈ Th, v ∈ [H1(Th)]m.

Motivated by this weak formula, we define the DG approximation of problem
(2.1)-(2.3) by finding uh ∈ Vh, restricted to K ∈ Th, such that

(2.17) aK(uh,vh) = (f ,vh)K + 〈A0u0,v〉∂K⋂
Γ− , ∀K ∈ Th, vh ∈ Vh .

3. Stability analysis of the DG method

In this section, we will discuss the semi-explicit structure of discrete problem
(2.17) under appropriate partition condition and give the stability analysis.

For 0 ≤ t− < t+ ≤ T , let Ω∆
t = (t−, t+]× Ω ⊂ ΩT be a subdividing domain

composed of some elements of Th and its boundary ∂Ω∆
t = Γ0(Ω∆

t )
⋃

Γ±(Ω∆
t ),

where Γ0(Ω∆
t ) =

⋃
{∂K

⋂
Γ0 : K ∈ Ω∆

t } and Γ±(Ω∆
t ) = { (t, x) ∈ ∂Ω∆

t : nt =
±1 }. Now, summing (2.17) for K ∈ Ω∆

t , we obtain the expression of discrete
problem (2.17) on Ω∆

t : Find uh ∈ Vh such that

(3.1) aΩ∆
t

(uh,vh) = (f ,vh)Ω∆
t

+ 〈A0u0,vh〉Γ−(Ω∆
t )

⋂
Γ− , ∀vh ∈ Vh,

where

aΩ∆
t

(u,v) =
∑
K∈Ω∆

t

aK(u,v)
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= (Ltu,v)Ω∆
t

+
1

2

∑
K∈Ω∆

t

〈(A0 −Nn)[u ],v〉∂K\Γ0

+
1

2

∑
K∈Ω∆

t

〈(M −D)u,v〉∂K⋂
Γ0
.(3.2)

We first give a useful lemma.

Lemma 3.1. Bilinear form aΩ∆
t

(u,v) satisfies the following identity.

aΩ∆
t

(w,w) =
1

2
(Qw,w)Ω∆

t
+

1

2
〈Mw,w〉Γ0(Ω∆

t )

+
1

4

∑
K∈Ω∆

t

〈A0[w ], [w ]〉∂K\∂Ω∆
t

+
1

2
〈A0w,w〉Γ+(Ω∆

t )

+
1

2
〈A0w,w〉Γ−(Ω∆

t ) − 〈A0w
−,w〉Γ−(Ω∆

t ),(3.3)

where matrix Q = B +BT −
∑d
k=1 ∂kAk.

Proof. From (2.13)-(2.14), we have

(Ltw,w)K =
1

2
(Qw,w)K +

1

2
〈Nnw,w〉∂K ,

〈Nnw,w〉∂K⋂
Γ0

+ 〈(M −D)w,w〉∂K⋂
Γ0

= 〈Mw,w〉∂K⋂
Γ0
,

and

〈Nnw,w〉∂K\Γ0
+ 〈(A0 −Nn)[w ],w〉∂K\Γ0

= 〈A0[w ],w〉∂K\Γ0
+ 〈Nnw

−,w〉∂K\Γ0
.

Hence, from (3.2), we have the following identity

aΩ∆
t

(w,w) =
1

2
(Qw,w)Ω∆

t
+

1

2

∑
K∈Ω∆

t

〈Mw,w〉Γ0(Ω∆
t )

+
1

2

∑
K∈Ω∆

t

〈A0[w ],w〉∂K\Γ0
+

1

2

∑
K∈Ω∆

t

〈Nnw
−,w〉∂K\Γ0

.(3.4)

Now, let K and K ′ are two adjacent elements with interface FK = ∂K
⋂
∂K ′.

Since

(w+ −w−) ·w+
∣∣
FK

⋂
∂K

+ (w+ −w−) ·w+
∣∣
FK

⋂
∂K′

= (w+ −w−) ·w+
∣∣
FK

⋂
∂K

+ (w− −w+) ·w−
∣∣
FK

⋂
∂K

= [w] · [w]
∣∣
FK

⋂
∂K

= [w] · [w]
∣∣
FK

⋂
∂K′

,

then we have

1

2

∑
K∈Ω∆

t

〈A0[w ],w〉∂K\Γ0
=

1

4

∑
K∈Ω∆

t

〈A0[w ], [w ]〉∂K\∂Ω∆
t
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+
1

2
〈A0[w ],w〉Γ+(Ω∆

t ) +
1

2
〈A0[w ],w〉Γ−(Ω∆

t ).(3.5)

Next, noting that n|FK

⋂
∂K = −n′|FK

⋂
∂K′ and Nn = N T

n , we obtain

1

2

∑
K∈Ω∆

t

〈Nnw
−,w〉∂K\Γ0

=
1

2
〈Nnw

−,w〉Γ±(Ω∆
t )

=
1

2
〈A0w

−,w〉Γ+(Ω∆
t ) −

1

2
〈A0w

−,w〉Γ−(Ω∆
t ).(3.6)

Combining (3.4)-(3.6), we arrive at the conclusion of Lemma 3.1. �

From Lemma 3.1, we immediately obtain the following result.

Lemma 3.2. Let u−h |Γ−(Ω∆
t ) be given. Then the solution of discrete problem

(3.1) uniquely exists on subdividing domain Ω∆
t and satisfies the following sta-

bility estimate

σ0(uh,uh)Ω∆
t

+ 〈Muh,uh〉Γ0(Ω∆
t ) +

1

2

∑
K∈Ω∆

t

〈A0[uh ], [uh ]〉∂K\∂Ω∆
t

+ 〈A0uh,uh〉Γ+(Ω∆
t ) +

1

2
〈A0uh,uh〉Γ−(Ω∆

t )

≤ 1

σ0
‖f‖2Ω∆

t
+ 4〈A0u0,u0〉Γ−(Ω∆

t )
⋂

Γ− + 4〈A0u
−
h ,u

−
h 〉Γ−(Ω∆

t ).(3.7)

Proof. Since the equation (3.1) can be formulated as a linear algebraic system
on subdomain Ω∆

t , we only need to derive stability estimate (3.7). Taking
vh = uh in the equation (3.1), and then using Lemma 3.1 and the ε-inequality:
ab ≤ ε

2a
2 + 1

2εb
2 with ε = σ0, 4, we imminently obtain estimate (3.7). �

Now we are in the position to show the semi-explicit structure of discrete
problem (2.17). To this end, we require partition Th to be made by the following
manner. First, we divide the time interval [0, T ] into 0 = t0 < t1 < · · · <
tN = T , next we divide each subdomain Ω∆

tj = (tj−1, tj ]×Ω into shape-regular

meshes, and then the partition Th is formed by setting (see Fig. 1).

(3.8) Th =
⋃
{K : K ∈ Ω∆

tj , j = 1, . . . , N}

Theorem 3.1. Assume that Th is a shape-regular partition made by (3.8).
Then, the discrete problem (2.17) can be solved semi-explicitly, subdomain by
subdomain, in the order of Ω∆

t1 , . . . ,Ω
∆
tN .

Proof. Taking Ω∆
t = Ω∆

tj in equation (3.1) and noting that Nn = A0 on

Γ+(Ω∆
tj ), we see that the solution uh among {Ω∆

tj} is only coupled via bound-

aries Γ−(Ω∆
tj ). Since u−h |Γ−(Ω∆

t1
) = u−h |Γ− = 0, u−h |Γ−(Ω∆

tj
) = uh|Γ+(Ω∆

tj−1
),

therefor, by Lemma 3.2, the discrete problem (2.17) or (3.1) can be solved
semi-explicitly, in the order of Ω∆

t1 , . . . ,Ω
∆
tN . �
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Figure 1. The two dimensional space-time domain with sub-
dividing domains {Ω∆

tj }.

4. Error estimate

In this section, we will give the error estimates for the DG approximation
(2.17).

Let 0 < tj ≤ T and Ωtj = (0, tj ] × Ω be a subdividing domain of Th. In

the semi-explicit situation, we may take Ωtj =
⋃j
i=1 Ω∆

ti for some 0 < j ≤ N .

Let u ∈ [H1(ΩT )]m be the solution of problem (2.1)-(2.3). From equations
(2.16)-(2.17), we have the error equation:

(4.1) a
Ωtj

(u− uh,vh) = 0, ∀vh ∈ Vh.

Introduce the local L2-projection operator Ph : L2(ΩT ) → Sh, restricted to
K ∈ Th, Phu ∈ Sk(K) satisfies

(4.2) (u− Phu, v)K = 0, ∀ v ∈ Sk(K), K ∈ Th,
where Sk(K) is the local finite element space; see (2.10). Obviously Ph is
a linear continuous operator from Hk+1(K) into Sk(K) and Phv = v for all
v ∈ Pk(K) ⊂ Sk(K). Hence, by the interpolation theory of Sobolev space [2],
we have the standard approximation result

‖u− Phu‖L2(K) + hK‖u− Phu‖H1(K) + h
1
2

K‖u− Phu‖L2(∂K)

≤ Chk+1
K |u|Hk+1(K), k ≥ 0, K ∈ Th,(4.3)

where C is a constant independent of element K.
First let us consider the partition Th made of triangle meshes and Sk(K) =

Pk(K). In order to do the error analysis, we still need to introduce a special
projection mapping H1(Th) into Sh. For u ∈ H1(Th), the projection function
Pu ∈ Sh is defined by finding Pu ∈ Pk(K) such that, for K ∈ Th,∫

K

(u− Pu)v dx = 0, ∀ v ∈ Pk−1(K),(4.4) ∫
FK

(u− Pu)v ds = 0, ∀ v ∈ Pk(FK),(4.5)
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where FK be some one face of element K and the first condition is vacuous if
k = 0. Bear in mind that although element K may have several faces {FK},
we only select one face to define the projection in (4.5).

Lemma 4.1. The projection function Pu is well posed and satisfies the ap-
proximation property

‖u− Pu‖L2(K) + hK‖u− Pu‖H1(K) + h
1
2

K‖u− Pu‖L2(∂K)

≤ Chk+1
K |u|Hk+1(K), k ≥ 0, K ∈ Th,(4.6)

where C is a constant independent of element K.

Proof. Let us begin by proving the unique existence of function Pu ∈ Pk(K)
satisfying (4.4)-(4.5). Since

dim(Pk−1(K)) + dim(Pk(FK) = Ck−1+d
d + Ck+d−1

d−1 = Ck+d
d = dim(Pk(K)),

we see that the linear system (4.4)-(4.5) is square so that we only need to show
that Pu = 0 if u = 0. Without loss of generality, we assume that the face FK
in (4.5) lies on the hyperplane x1 = 0 and x1 < 0 when x ∈ K (otherwise we

may use the affine transformation F : K → K̂ such that FK̂ lies on x̂1 = 0,

and x̂1 < 0 when x̂ ∈ K̂). Let u = 0, then we have from (4.5) that Pu|FK
= 0

and hence Pu = x1p for some polynomial p ∈ Pk−1(K). Taking v = p in (4.4),
we get

(x1p, p)K = (x1, p
2)K = 0,

since x1 < 0 on K, we conclude that p = 0. This implies that Pu = 0 on K.
Now we are in the position to prove the approximation property (4.6). Let

Ph be the L2-projection defined by (4.2). From (4.5) we see that

〈Pu− Phu,Pu− Phu〉FK
= 〈u− Phu,Pu− Phu〉FK

,

hence

(4.7) ‖Pu− Phu‖L2(FK) ≤ ‖u− Phu‖L2(FK).

Introduce the polynomial space

P 0
k (K) = { v ∈ Pk(K) : (v, p)K = 0, ∀ p ∈ Pk−1(K) }.

It is easy to see that ‖·‖L2(FK) defines a norm on space P 0
k (K) (see the argument

of the unique existence) and this norm is equivalent to norm ‖ · ‖L2(K), since

P 0
k (K) is a finite dimensional space. Then, by a simple scaling argument, we

have

‖v‖L2(K) ≤ Ch
1
2

K‖v‖L2(FK), ∀ v ∈ P 0
k (K),

hence, noting that Pu− Phu ∈ P 0
k (K), it implies from (4.7) that

‖Pu− Phu‖L2(K) ≤ Ch
1
2

K‖Pu− Phu‖L2(FK) ≤ Ch
1
2

K‖u− Phu‖L2(FK).
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Hence, by using the triangle inequality and approximation property (4.3), we
obtain the estimate of ‖u−Pu‖L2(K). Furthermore, by using the finite element
inverse inequality

(4.8) hK‖v‖H1(K) + h
1
2

K‖v‖L2(∂K) ≤ C‖v‖L2(K), ∀ v ∈ Pk(K), K ∈ Th.
(taking v = Pu − Phu) and approximation property (4.3), we complete the
proof. �

In what follows, for vector function u, we set Phu = (Phu1, . . . , Phum)T ,
Pu = (Pu1, . . . ,Pum)T . We also denote by wc the piecewise constant approx-
imation of function w defined by

wc|K =
1

|K|

∫
K

w, ∀K ∈ Th,

which has the approximation property

(4.9) ‖w − wc‖0,∞,K ≤ ChK‖w‖1,∞,K , ∀K ∈ Th.
For the error analysis, we still need an additional assumption on the partition
Th,

(4.10)
Each element K ∈ Th at most has one face FK lying on Γ0 and

this face (if exist) is used in the interpolation condition (4.5).

Introduce the DG-norm

|||u|||2Ωtj
= σ0‖u‖2Ωtj

+
∑

K∈Ωtj

〈A0[u ], [u ]〉∂K\∂Ωtj

+ 〈A0u,u〉Γ+(Ωtj
) + 〈A0u,u〉Γ−(Ωtj

) + 〈Mu,u〉Γ0(Ωtj
).

Now we can state our error estimate result.

Theorem 4.1. Assume that Th is a shape-regular partition made of triangle
meshes and Sk(K) = Pk(K). Further, assume that condition (4.10) holds, and
let u and uh be the solutions of problems (2.1)-(2.3) and (2.17), respectively.
Then we have

(4.11) |||u− uh|||Ωtj
≤ Chk+ 1

2 |u|Hk+1(Ωtj
), k ≥ 0.

Proof. First we decompose the error by setting

u− uh = u− Pu + Pu− uh = η + θ.

From Lemma 3.1 and error equation (4.1), we obtain

1

4
|||u− uh|||2Ωtj

≤ a
Ωtj

(u− uh,u− uh) = a
Ωtj

(u− uh,u− Pu)

=
∑

K∈Ωtj

(Lt(u− uh),η)K

+
1

2

∑
K∈Ωtj

〈(A0 −Nn)[u− uh],η〉∂K\Γ0
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+
1

2
〈(M −D)(u− uh),η〉Γ0(Ωtj

)

= T1 + T2 + T3.(4.12)

Now let us estimate terms Ti, i = 1, 2, 3. Since

T1 =
∑

K∈Ωtj

(Ltθ,η)K +
∑

K∈Ωtj

(Ltη,η)K

=
∑

K∈Ωtj

((A0∂t +

d∑
k=0

Ak∂k)θ,η)K +
∑

K∈Ωtj

(Bθ,η)K +
∑

K∈Ωtj

(Ltη,η)K ,

then by the definition of P and noting that Ac0∂tθ and Ack∂kθ are in Pk−1(K),
we obtain

T1 =
∑

K∈Ωtj

(((A0 −Ac0)∂t +

d∑
k=0

(Ak −Ack)∂k)θ,η)K

+
∑

K∈Ωtj

(Bθ,η)K +
∑

K∈Ωtj

(Ltη,η)K

≤ C‖hKθ‖1,Ωtj
‖η‖Ωtj

+ |B|∞‖θ‖Ωtj
‖η‖Ωtj

+ C‖η‖1,Ωtj
‖η‖Ωtj

≤ C‖θ‖Ωtj
‖η‖Ωtj

+ C‖η‖1,Ωtj
‖η‖Ωtj

≤ C
(
‖η‖2Ωtj

+ ‖η‖1,Ωtj
‖η‖Ωtj

)
+

1

16
|||u− uh|||2Ωtj

,(4.13)

where we have used the approximation property (4.9) and the inverse inequality
(4.8).

Next, we write

T3 =
1

2
〈(M −D)θ,η〉Γ0(Ωtj

) +
1

2
〈(M −D)η,η〉Γ0(Ωtj

).

Since (M c − Dc)θ ∈ Pk(FK) on element face FK ∈ Γ0(Ωtj ) ⊂ Γ0, then by
using (4.5) and assumption (4.10) to obtain

T3 =
1

2
〈(M −D − (M c −Dc))θ,η〉Γ0(Ωtj

) +
1

2
〈(M −D)η,η〉Γ0(Ωtj

)

≤ 1

2
|M −D|1,∞‖hKθ‖L2(Γ0(Ωtj

))‖η‖L2(Γ0) +
1

2
|M −D|∞‖η‖2L2(Γ0)

≤ C‖θ‖Ωtj
‖η‖L2(Γ0) +

1

2
|M −D|∞‖η‖2L2(Γ0)

≤ C
(
‖η‖2Ωtj

+ ‖η‖2L2(Γ0)

)
+

1

16
|||u− uh|||2Ωtj

.(4.14)

Finally, we need to estimate

T2 =
1

2

∑
K∈Ωtj

〈(A0 −Nn)[u− uh],η〉∂K\∂Ωtj
+ 〈A0(u− uh),η〉Γ−(Ωtj

).
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By using the Cauchy inequality and noting that A0 > 0, we immediately obtain

(4.15) T2 ≤ C
∑

K∈Ωtj

‖η‖2L2(∂K) +
1

16
|||u− uh|||2Ωtj

.

Now, substituting the estimates of T1, T2 and T3 into (4.12), and using approx-
imation property (4.6) to estimate η = u− Pu, we arrive at the conclusion of
Theorem 4.1. �

Let us emphasize that the error estimate in Theorem 4.1 is optimal for DG
methods within quasi-regular meshes [11]. However, for a scalar hyperbolic
equation, this order of convergence can be further improved if some special
structured meshes are used, see [4, 12].

In the above estimate of T3, the projection P and assumption (4.10) play a
major role. But, it is easy to see that for rectangular meshes and d ≥ 2, there
must be a boundary element which at least has two faces lying on Γ0 such
that condition (4.10) is violated. In order to make the error estimate to be
applicable to the partitions including rectangular meshes, we need to present
a new assumption instead of (4.10). We assume that the boundary matrix M
satisfies, for any element face FK ∈ Γ0,

(4.16) |〈(M −D)w,v〉FK
| ≤ CM 〈Mw,w〉

1
2

FK
〈v,v〉

1
2

FK
, ∀w, v ∈ [L2(Γ0)]m,

where CM is a constant independent of w and v. In fact, for many physics
problems, we may choose the boundary matrix M properly such that both the
boundary value condition of the problem and assumption (4.16) can be satisfied
meanwhile. For example, the boundary matrix M selected carefully by us in
the example of wave equation (see Section 2) satisfies the assumption (4.16)

with CM =
√

5.

Theorem 4.2. Assume that Th is a shape-regular partition and condition
(4.16) holds, and let u and uh be the solutions of problems (2.1)-(2.3) and
(2.17), respectively. Then we have

(4.17) |||u− uh|||Ωtj
≤ Chk+ 1

2 |u|Hk+1(Ωtj
), k ≥ 0.

Proof. Let Ph be the local L2-projection operator defined by (4.2). By using
Phu instead of Pu in the argument of Theorem 4.1, we only need to estimate
T3 in (4.12). By assumption (4.16) we have

T3 =
1

2
〈(M −D)(u− uh),η〉Γ0(Ωtj

)

≤ 1

2
CM 〈M(u− uh),u− uh〉

1
2

Γ0(Ωtj
)‖η‖L2(Γ0)

≤ C‖η‖2L2(Γ0) +
1

16
|||u− uh|||2Ωtj

.

This is the same estimate as (4.14). The remainder argument is completely
similar to that of Theorem 4.1. �
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In Theorem 4.1 and Theorem 4.2, if we take Ωtj = ΩT , we immediately
obtain the global error estimates.

5. Numerical experiments

In this section, we will present some numerical results to show the validity
of our method. Let us consider the wave equation in two-dimensional domain,
written as a first order hyperbolic system as that in Section 2. We take Ω =
[0, 2π]2 and the exact solution

u0 = et sinx sin y, u1 = et cosx sin y, u2 = et sinx cos y.

In our numerical experiments, we partition the space-time domain ΩT into reg-
ular rectangular meshes of size h = 1/2l and use the Q1-finite element. The
numerical results are given in Table 5.1, in which the L2- errors are presented at
t = 1 and t = 2, respectively, for successively halving mesh size h. The numer-
ical convergence rate is computed by using the formula α = ln

(
eh/eh

2

)
/ ln 2,

where eh represents the error between the exact solution and the DG solution
in the L2-norm with mesh size h. We see that an O(h2) rate of convergence
is observed, in contrast to our theoretical estimate of O(h1.5) . The h1/2 gap
between theoretical and actual convergence rates is typical for the DG methods.

Table 5.1 Error and convergence rate

‖u− uh‖t=1 ‖u− uh‖t=2

mesh h error rate error rate

1/8 0.3442 - 0.4532 -

1/16 0.878e-1 1.971 1.178e-1 1.944

1/32 0.198e-1 2.146 0.285e-1 2.048

1/64 0.489e-2 2.019 0.698e-2 2.028

1/128 0.121e-2 2.005 0.174e-2 2.002
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