• 제목/요약/키워드: linear matrix inequality method

검색결과 283건 처리시간 0.031초

구간 시변 지연이 존재하는 불확실 확률적 뉴럴 네트웍의 지연의존 안전성 판별법 (Delay-dependent Stability Criteria for Uncertain Stochastic Neural Networks with Interval Time-varying Delays)

  • 권오민;박주현;이상문
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2066-2073
    • /
    • 2008
  • In this paper, the problem of global asymptotic stability of uncertain stochastic neural networks with delay is considered. The delay is assumed to be time-varying and belong to a given interval. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system is derived in terms of LMI(linear matrix inequality). Three numerical examples are given to show the effectiveness of proposed method.

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.

퍼지 기저함수에 종속적인 Lyapunov 함수를 이용한 T-S 퍼지 시스템의 H∞ 제어 (H∞ Control of T-S Fuzzy Systems Using a Fuzzy Basis- Function-Dependent Lyapunov Function)

  • 최현철;좌동경;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.615-623
    • /
    • 2008
  • This paper proposes an $H_{\infty}$ controller design method for Takagi-Sugeno (T-S) fuzzy systems using a fuzzy basis-function-dependent Lyapunov function. Sufficient conditions for the guaranteed $H_{\infty}$ performance of the T-S fuzzy control system are given in terms of linear matrix inequalities (LMIs). These LMI conditions are further used for a convex optimization problem in which the $H_{\infty}-norm$ of the closed-loop system is to be minimized. To facilitate the basis-function-dependent Lyapunov function approach and thus improve the closed-loop system performance, additional decision variables are introduced in the optimization problem, which provide an additional degree-of-freedom and thus can enlarge the solution space of the problem. Numerical examples show the effectiveness of the proposed method.

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and Controller Design

  • Park, Chang-Woo;Kang, Hyung-Jin;Kim, Jung-Hwan;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.274-284
    • /
    • 2000
  • In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the qualitative effects of the quantizers in digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-back controller whose output is delayed with unit sampling period and period and predicted. the analysis and the design problem considering time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the quantized fuzzy system. Our results prove that when quantization os taken into account, one only has convergence to some small neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system and design a DFC which guarantees the stability of the control system in the presence of time-delay.

  • PDF

제어기의 이득 섭동을 갖는 이산 시간지연 대규모 시스템을 위한 강인 비약성 제어기 (Decentralized Stabilization for Uncertain Discrete-Time Large-Scale Systems with Delays in Interconnections and Controller Gain Perturbations)

  • 박주현
    • 전자공학회논문지SC
    • /
    • 제39권5호
    • /
    • pp.8-17
    • /
    • 2002
  • 본 논문에서는, 섭동과 제어기 이득 섭동을 갖는 이산 대규모 시간지연 시스템의 강인 비약성 제어기 설계에 관하여 논한다. 리아프보프 해석법을 의거하여 선형행렬 부등식으로 표현되는 주어진 시스템의 강인 안정화를 꾀하는 상태 궤환 제어기의 존재를 보장하는 조건 식을 구한다. 이 조건 식의 해로부터 각 부 시스템에서의 제어기의 이득 및 제어기의 비약성 지수도 얻을 수 있다. 제시된 선형행렬 부등식은 잘 알려진 최적화 기법으로 쉽게 풀 수 있으며, 예제를 통하여 제어기 설계 방법을 보인다.

헬리콥터 시스템의 퍼지 분산 제어기 설계 (A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems)

  • 김문환;박진배;이호재;차대범;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.80-84
    • /
    • 2002
  • 본 논문은 2자유도 실험용 헬리콥터 시스템의 제어를 위한 분산 제어기 설계 기법을 제안한다. 분산제어기법은 특히 대규모 제어 시스템에 적합하다고 알려져 있다. 본 논문에서는 Lyapunov 안정도 설계 방법을 이용하여 상호 연결된 TS 퍼지 시스템의 안정도 조건을 유도하고 선형 행렬 부등식을 이용하여 제어기 설계 조건을 공식화한다. 제안된 방법의 유용성을 검증하기 위해, 컴퓨터 시뮬레이션뿐 만 아니라 실험을 통해 그 결과를 도출한다.

적분 슬라이딩 모드 제어기의 LMI 기반 설계 (LMI-based Design of Integral Sliding Mode Controllers)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.563-566
    • /
    • 2009
  • This paper presents an LMI-based method to design a integral sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a sliding surface. And we give a switching feedback control law. Our method is a generalization of the previous integral sliding mode control design methods. Since our method is based on LMIs, it gives design flexibility for combining various useful design criteria that can be captured in the LMI-based formulation.

뉴트럴 미분방정식의 새로운 안정성 판별법 (A New Stability Criterion of a Class of Neutral Differential Equations)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제56권11호
    • /
    • pp.2023-2026
    • /
    • 2007
  • In this letter, the problem for a class of neutral differential equation is considered. Based on the Lyapunov method, a stability criterion, which is delay-dependent on both ${\tau}\;and\;{\sigma}$, is derived in terms of linear matrix inequality (LMI). Two numerical examples are carried out to support the effectiveness of the proposed method.

Robust Guaranteed Cost Filtering for Uncertain Systems with Time-Varying Delay Via LMI Approach

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.27-31
    • /
    • 2001
  • In this paper, we consider the guaranteed cost filtering design method for time-varying delay system with parameter uncertainties by LMI(Linear Matrix Inequality) approach. The objective is to design a stable guaranteed cost filter which minimizes the guaranteed cost fo the closed loop systems in filtering error dynamics. The sufficient conditions for the existence of filter, the guaranteed cost filter design method, and th guaranteed cost upper bound are proposed by LMI technique in terms of all finding variables. Finally, we give an example to check the validity of the proposed method.

  • PDF