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Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and
Controller Design

Chang-Woo Park, Hyung-Jin Kang, Jung-Hwan Kim, and Mignon Park

Abstract: In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the
qualitative effects of the quantizers in the digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-
back controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering
time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the
digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the
quantized fuzzy system. Our results prove that when quantization is taken into account, one only has convergence to some small
neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the
consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system
and design a DFC which guarantees the stability of the control system in the presence of time-delay.

Keywords: time-delay, quantization, linear matrix inequality, digital fuzzy control

L. Introduction

Digital fuzzy control systems are hybrid dynamical systems
which usually consist of an interconnection of a continuous-
time plant and discrete time fuzzy controller. The analysis and
design of such fuzzy systems have been of continuing interest
for several decades. Since Takagi-Sugeno(TS) fuzzy model was
presented[1], various kinds of TS fuzzy model based control-
lers have been suggested[2]-[4] and systematic design of the
fuzzy controller can be possible. The stability of the overall
fuzzy systems could be determined by the Lyapunov stability
analysis and recently linear matrix inequality(LMI) based ap-
proaches have been used to determine the existence of a com-
mon positive definite matrix[S][6].

However, most of these results do not take into account time-
delay and quantization effects in digital implementation of the
fuzzy control systems. A linear controller like PID controllers
has a short time-delay in calculating the output since its algo-
rithm is so simple. On the other hand, in the case of a complex
algorithm like fuzzy logic, a considerable time-delay can occur
because so many calculations are needed to get the output. And
quantization error can occur in the discrete fuzzy controller and
the interconnection elements such as A/D and D/A converters.
Extensive research has already been done in the conventional
control to find the solutions.[7]-[10] However, for fuzzy control
systems, there are few studies on the stabilization problem for
especially systems with time-delay and quantizers.[11][12]

In the present paper, we propose the design method of a
fuzzy feedback controller which guarantees the stability of the
system in the presence of time-delay and investigate the quali-
tative stability analysis of the digital fuzzy control systems with
quantizers in both the controller and the interconnection ele-
ments.

We first study the design method of digital fuzzy control-
ler(DFC) considering time-delay. If the system has a consider-
able time-delay, the analysis and the design of the controller are
very difficult since the time-delay makes the output of the con-
troller not synchronized with the sampling time. We propose
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the fuzzy feedback controller whose output is delayed with unit
sampling period and predicted using current states and the con-
trol input to the plant at previous sampling time. The analysis
and the design of the controller become very easy because the
output of the proposed controller is synchronized with the sam-
pling time. Therefore, the proposed control system can be de-
signed using the conventional methods such as parallel distrib-
uted compensation(PDC)[13] and LMI based analysis.

Next, we study the qualitative effects of quantization of the
proposed digital fuzzy control system. It is shown that if the
trivial solution of the fuzzy control system without quantization
is asymptotically stable, then the solutions of the digital fuzzy
control system with quantizers are uniformly ultimately
bounded.

To verify the validity and the effectiveness of the scheme,
the proposed fuzzy feedback controller is applied to backing up
control of a computer-simulated truck-trailer with time-delay
and quatizers.

I1. Discrete TS fuzzy model based control
In the discrete time TS fuzzy systems without control input,
the dynamic properties of each subspace can be expressed as
the following fuzzy IF-THEN rules[1].

Rulei: Ifx(k)isM, --- andx (k)is M, . 12 ,
t=1,2-,
THEN x(k +1) = G x(k),
ey

where x(k) = [xl (k) x,(k) X, (k)]T € R" denotes
the state vector of the fuzzy system, r is the number of the IF-
THEN rules, and Mj; is fuzzy set.

If the state x(k) is given, the output of the fuzzy system
expressed as the fuzzy rules of Eq. (1) can be inferred as
follows.

Y wi () G x(k)

x(k +1)=-2 = ih,. k)G x(k), ()

2 w, (k) =
i=1
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where wi(k)=In-[M—,.j(xj(k)), M (x,(k)) isthe grade

j=1
of membership of x;(f) in M, and h (k)= rWi(k)

2wk

A sufficient condition for ensuring the stability of the fuzzy
system(2) is given in Theorem 1.

Theorem 1: The equilibrium point for the discrete time
fuzzy system (2) is asymptotically stable in the large if there
exists a common positive definite matrix P satisfying the fol-
lowing inequalities.

GI'PG,-P<0,i=12,--,r. 3)

Proof : The proof will be given in Appendix A.

In the discrete time fuzzy system with control input to the
plant, the dynamic properties of each subspace can be ex-
pressed as the following fuzzy IF-THEN rules.

Rulei: Ifx(k)isM, --- andx,(k)is M

=1,2,,r
THEN x(k +1) = A x(k) + Bu(k),

“)
where ,
u(k) = i, (k) u,(k)
input of the fuzzy system.
If the set of (x(k),u(k)) is given the output of the fuzzy
system (4) can be obtained as follows.

u, (k)]‘r € R™ denotes the

iw,. (k){A x(k) +B,u(k)}
x(k +1) = = _
Yk

_ zh,.(k){A,.x(k)+Biu(k)}, )

where w,.(k):ﬂﬁ,,(xj(k)), M (x,(k)) isthe grade

j=1

(k
of membership of x;(f) in M, and h,(k):L),

3wy (k)
i=1

In PDC, the fuzzy controller is designed distributively
according to the corresponding rule of the plant[13]. Therefore,
the PDC for the plant (4) can be expressed as follows.

Rulej: Ifx(k)isM, --- andx,(k)is M, 12

=1, 4,000, T
THEN u(k) = —F x(k). J

(6)

The fuzzy controller output of Eq. (6) can be inferred as fol-
lows.

2 w, (k) F;x(k)
uk)=-F—-—>-=-3Sn & Fxk), O
> w, (k)
i=l

where £ ; (k) is the same function in Eq. (5).
Substituting Eq. (7) into Eq. (5) gives the following closed

loop discrete time fuzzy system.

x(k+1) = ih,.(k){Aix(k)—Biihj (k)F x(k)}
i=] J=1

=2 D (k) (A, ~BF xk).  (8)
i1 j=1
Defining G; =A, -B,F, , the following equation is
obtained.

x(k+1)= ih,-(k) B (k) Gx(k)

23 B k) b, (k) {—%—A}x(k). ©)

i<j

Applying Theorem 1 to analyze the stability of the discrete
time fuzzy system (9), the stability condition of Theorem 2 can
be obtained.

Theorem 2: The equilibrium point of the closed loop
discrete time fuzzy system (9) is asymptotically stable in the
large if there exists a common positive definite matrix P which
satisfies the following inequalities for all i/ and j except the set
(i, j) satistying h,(k)-h;(k)=0.

G'PG,-P<0 (10a)

+G

G;+G )TP(GiJ'
2

y-P<0,
> )

( i<j (ob

Proof: The proof of this result is similar to the proof of
Theorem 1.

If B=B, =B, =---=B, in the plant (5) is satisfied, the
closed loop system (8) can be obtained as follows. i

x(k+1)= Y h () A X(K) - B b, (0F x(k))
i=1 j=1

= S hKHA, ~BE k) = Y ARG K  aD

where G, =A,; -BF,
Hence, Theorem 1 can be applied to the stability analysis of
the closed loop system (11).

III. LMI based approach for fuzzy system design

To prove the stability of the discrete time fuzzy control
system by Theorem 1 and Theorem 2, the common positive
definite matrix P must be solved. LMI theory can be applied to
solving P [14]. LMI theory is one of the numerical optimization
techniques. Many of the control problems can be transformed
into LMI problems and the recently developed Interior-point
method can be applied to solving numerically the optimal
solution of these LMI problems[15].

Definition 1: Linear matrix inequility can be defined as
follows.

F(x)=F,+ Y xF, >0, 12)
i=]

where x= [xl X, X m]r is the parameter, the
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symmetric matrices F, =F/ e R™",i=0,--,m are given,
and the inequality symol “>0” means that F(x) is the
positive definite matrix.

LMI of Eq. (12) means the convex constraints for Xx. Convex
constraint problems for the various x can be expressed as LMI
of Eq. (12). LMI feasibility problem can be described as
follows.

LMI feasibility problem: The problem of finding X
which satisfies F(x™%®) >0 or proving the unfeasibility in
the case that LMI F(x) > 0 is given.

And the stability condition of Theorem 1 can be transformed
into the LMI feasibility problem as follows.

LMI feasibility problem about the stability condition of
Theorem 1: The problem of finding P which satisfies the
IMI's, P>0 and G,.TPGi -P<0, i=12,---,r or
proving the unfeasibility in the case that A, € R™",
i=12,---,r aregiven.

If the design object of a controller is to guarantee the stabil-
ity of the closed loop system (5), the design of the PDC fuzzy
controller(7) is equivalent to solving the following LMI feasi-
bility problem using Schur complements[14].

LMI feasibility problem equivaient to the PDC design
problem (Case I): The problem of finding X >0 and
M,.M,,---,M, which satisfy the following inequalities.

feasp

7

[ X (A'X_B"M’):|>0, i=12,-,r

AX-BM, X

X /2(AX+AX-BM,-BM)|

1/2(A,X+A,X-BM,-B M} X
i<
where X=P"', M,=FX, M,=FX, - and
M, =F.X.

If B=B,=B,=---=B, is satisfied, the design of the

PDC fuzzy controller(7) is equivalent to solving the following
LMI feasibility problem.

LMI feasibility problem equivalent to the PDC design
problem (Case II): The problem of finding X >0 and
M,.M,,---,M, which satisfy the following equations.

T
X AX-BMI g o120
AX-BM, X
where X=P', M,=FX, M,=FX, -, and
M, =F,X.

The feedback gain matrices F,,F,,---,F, and the common
positive definite matrix P can be given by the LMI
solutions, X and M,;,M,,---, M, as follows.

P=X",
F, =M, X"

F,=MX"' , F,=M,X"', - and

1V. Digital fuzzy control system with time-delay
In real control systems, a considerable time-delay can occur
due to a sensor and a controller. Let 7 be defined as the sum
of all this time-delay. In the case of the real system, the ideal
fuzzy controller of Eq. (6) can be described as follows due to
the time-delay.

Rule j: If x)(kT)is M ;, ---and x, (kT)is M ;,
THEN u(kT +7) =—F ;x(kT)
j=1»27"'vr (13)

Because the time-delay makes the output of controller not
synchronized with the sampling time, Theorem 1 can not be
applied to this system. Therefore the analysis and the design of
the controller are very difficult. In this paper, DFC which has
the following fuzzy rules is proposed to consider the time-delay
of the fuzzy plant (4). In this scheme, the computing time-delay
is approximated to be one sampling period and the output of the
fuzzy controller is delayed with unit sampling period and pre-
dicted. Hence the analysis and the design of the controller are
very easy because the output of the proposed controller is syn-
chronized with the sampling time.

Rule j: If x;(k)is M ;; ---and x,, (k)is M j,
THEN u(k +1) =D ju(k) + E ;x(k)
j=L2-r. (14)

The output of DFC (14) is inferred as follows.
Y w; (k) D u(k)+E ;x(k)}

u(k+1) =22 :
2 w; (k)
j=1

=Y h,(0) D, uk) +E x(K)}. (15
=1

J

The general timing diagram of fuzzy control loop is shown
in Fig. 1. T is the sampling period of the control loop, 7, and
T, are the delay made by sensor system and fuzzy controller
respectively. Therefore the output of the controller is applied to
the plant after overalldealy 7=7,+7,.

Sensor System Controller
Delay T, | Delay 1,

™ > Time

KT (k+1)T
—»l

Control Loop
Overall Delay
T=T,4T,

r Control Loop
|

Sampling Period T

Fig. 1. Timing diagram of the fuzzy control loop.

The output timing of a ideal controller, a delayed controller,
and the proposed controller is shown in the Fig. 2. In the ideal
controller, it is assumed that there is no time-delay. If this
controller is implemented in real systems the time-delay 7 is
added like Eq. (13). The analysis and the design of this system
with delayed controller are very difficult since the output of
controller is not syncronized with the sampling time.

On the other hand, the analysis and the design of the
proposed controller are very easy because the controller output
is syncronized with the sampling time delayed with unit
sampling period. Using this proposed controller, we can realize
a control algorithm during the time interval 7 —7, in Fig. 1.
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In this time interval, a complex algorithm such as not only
fuzzy algorithm but also nonlinear control algorithm can be
sufficiently realized in real time.

Ideal Controller

Delayed Controller ~ Proposed Controller

—>

time

Time Delay ©

Sampling Time T
kT kT+t &+1)T

Fig. 2. Output timing of the controllers (Three cases).

Combining the fuzzy plant (5) with the DFC (15), the closed
loop system is given as follows.

x(k+1)] < A; B; | x(k)
{u(k+l):|—2h"(k){Ei D,}[u(k)]' (16)

i=1

x(k
Defining the new state vector as w(k) = [ Ek;jl , the closed
u

loop system (16) can be modified as

wk+1) = ih,. *)G,w(k), a7

A. B,
where Gi=l: ! '].
E, D,

Hence, the stability condition of the closed loop system (17)
becomes the same as the sufficient condition of Theorem 1 and
the stability can be determined by solving LMI feasibility
problem about the stability condition of Theorem 1. Also, the
design problem of the DFC guaranteeing the stability of the
closed loop system can be transformed into LMI feasibility
problem. To do this, the design problem of the DFC is
transformed into the design problem of the PDC fuzzy
controller.

PDC design problem equivalent to DFC design problem:

The problem of designing the PDC fuzzy controller

v(k) = —z h; (k) Fjw(k) in the case that the fuzzy plant

j=t

wk+1)= ihi (k) (A, w(k)+Bv(k)} is given.

i=1

— A, B, =~ {0 —
where A; = 0 NE B= 1 , and Fj=—lEj DjJ.

Therefore, using the same notation in section 3, the design
problem of the DFC can be equivalent to the following LMI
feasibility problem.

LMl feasibility problem equivalent to DFC design
problem: The problem of finding X>0 and
M,,M,,---,M_ which satisfy following equation.

X AX-B MYV
_ {AX-B M} >0, i=1,2,,r
AX-B M, X

where X =P, M, = EX , M, = EX , -+, and
M, =FX.

The feedback gain matrices E ,E e ,F, and the common
positive definite matrix P can be given by the LMI solutions,

Xand M| ,M,,---,M , as follows.

P=X", F=MX"', F,=M, X", ...,F. =M, X"".
(18)

Therefore, the control gain matrices D,---,D,,E,---,E,
of the proposed DFC can be obtained from the feedback gain
matrices F,F,,--- F, .

V. Digital fuzzy control system with quantizers

In the implementation of digital fuzzy controllers, quantiza-
tion is unavoidable. This is due to the fact that computers store
numbers with finite bits. In this present section, we investigate
the nonlinear effects caused by quantization.

If xe Ris the input to a quantizer and Q(x)is the output
of a quanizer, the quantization processing can be described as
follows.

Q(x)=x+p(x), 19)

where  p(x) describes the nonlinearities

determined by the several method of quatization such as round

quantization

off, value truncation, magnitude truncation, etc. There are many
types of quantization. Presenstly, we will concern ourselves
primarily with the most commonly used fixed-point quantiza-
tion which can be characterized by the relation

|p0| <e, 20)

where positive constants, € in Eq. (20) is quantization error
determined by the charateristics of a quatizer.

Therefore, the quantized state Q, (x(k)) with respect to
the system state X € R” can be defined as the following form.

0.(x®)] [x®] [p,(x k)
6= 0, iy =| &2 || 2200|2250
0.(x, k)| |x,®] |p,x, 0
= x(k) + P, (x(K)) , @1)

where |px(x(k))||S£x.

A Similar definition can be obtained for the quatizated
controller Q, (u(k)) with respect to the control input
ue R” as

Q. (k) | [wk)| | p, (k)
u, (k) = @, (a(k) = Qu(u:z(k)) _ usz) N pu(uzz(k))
Q. G, (k)] [u, kY] | PG, (k)

=u(k)+p, k), (22)
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where "pu (u(k))” <eg,.
In real digital control systems, the TS fuzzy plant model in-
cludes the quantized input term as

x(k+D) =Y hAX® +Bu )}, @)

i=]

In order to control this fuzzy plant model with quantized
input, the proposed digital fuzzy controller(15) can be
transformed into the Eq. (24)

u,(k+1)=0, (El: b, (O){D,u, (k) +Ex (k) })
= Zhi (k){])iuq k) + Eixq k)}+4,(k), @49
where,
A= Q“<§h.-<k>{n,-uq ©)+Ex,k)})
—Z h (k) (D, () + Ex, ()}
=p, (Z 1 () (D, (6) + E,x, (0)})..

The state x(k) in the fuzzy plant model(23) and the state
X, (k) in the fuzzy controller(24) need to be unified to derive
the closed loop equation. Therefore, we apply the quantization
operator to the equation of the fuzzy plant model(23).

%,k +D) = 0,(x0 +1) = 0, S A (A XM+ B ()
=ghi(k){Aix..(k)+B,.uq(k)}+Ax(k), 25)
where,
A,(k)=Q<§h(k){A,x(k)+B,uq(k)})
3R (A%, 00+ B, 60)
=g(§h(k){Alx<k>+B.uq<k)}>
-3 R0 AQ () + B, ()
=Q(§,h () (A, x() + By, ()})
~3 R OA, (), (x0)+ B, ()
=Q,(§h(k){A,X(k)+Bluq(k)})
—§n<k){A,x(k)+B,uq (k)}—g,h ()A,p, (<))
=p,(§,h, (o) (A X()+ B,u, ()})

=Y h (A, p, (x(k)) .

Hence, the state space model of the quatized closed loop
system can be obtained from Eq. (25) and (24) as

w(k+1)= zr:hi k)G ,w(k)+ Ak), (26)

i=1

X, (k)
u, (k)

A, B, A (k)
G, = , Ak) = .
E, D, A, k)
If there exists any reference signal or noise, the state space
model (26) can be

where w(k):': :I is the augmented state and

wk+1)= 2 h (k)G w(k)+ AK)+r(k), @7

i=l

where r(k) is due to the reference signal or noise.
Now, we analyze the stability of the digital fuzzy systems
considering quantization effects. Let us define the norm
llell, in R" to obtain the stability condition for the closed
loop system (27) as follows.

1
lw(k) llp= (W (k)Pw(k))? , (28)

where Pe R™" is symmetric positive definite matrix.

Definition 2[16]: The digital fuzzy system (27) is said to be
uniformly ultimately bounded with bound ¢ if and only if for
any B >0 there exists 7(f)>0, independent of K >0, such
that whenever IWKIS B and k>T(B) , one has
|w k4K | <a.

Remark 1: Uniform ultimate boundness is similar to uni-
form asymptotic stability, except that the attracting point
x=0 is now replaced by an attracting set given by
{xe R":|q<a}.

Theorem 3: If the following two conditions are satisfied,
there exist a very small positive constant & such that
lAGk)ll, <& for all integers k and positive constant J
such that the closed loop system (27) is uniformly ultimately
bounded by bound J§ .

1) There exists a common positive definite matrix P for the
system

wk+1) =Y h(k)G,wk), (29)
i=1

which satisfies the sufficient condition (3) in Theorem 1.

2) There exists 3-)0 such that r(k)e Bg{xlllxll(g} for
k>0.
Proof :

If there exists a commom positive definite matrix P
satisfying the sufficient conditi0n1(3) in Theorem 1,

V(w(k)) = |w(k)|, = (W' (k)PW(k))> can be a norm

Lyapunov function for the system (29).
Since the system(29) satisfies the asymptotical stability by
assumption, there exists a constant ¢ such that
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AV oo (W(K)) =V (W(k + 1)) -V (W(k))
Ili‘,h,-(k )G W) lp —1l wik ) lle
(c-1) V(w(k)) ,

fV(w)(w(k)) denotes the first forward difference

< (c-Diiwtk ) lle

O<cx<l,

i

where -
along the solution of the system(29).

The first forward difference for the closed loop system (27)
can be given as

AV, (wik)k) = Ilzh, ()G wlk )+ Atk ) +r(e)ll, —llwlk)

i

A

< llih(k)G,W(k)llp =Iwk) e HAG) L Hirdk) e

i=l

< (e-1) V(w(k)) HIAGO N, HirGe) [l
< (c-1) V(w(k) )+ SHir (k) |, -

Therefore, whenever W(K) is picked so that
V(w(K))=|| w(K)|lp < B then V(W(K)) must be less
than the solution of the following comparison equation[17].

X =Xy =(c-DX, +d3+|r(K) s, Xg=8,
or
Xpg=cX, +3+|r(B)|lp, Xg=8
for all integers k2 K . 30)

The solution of the comparison equation (30) can be
obtained as

Xpx =¢B o1 5 +Zc" MG +K), - @Y

Because 0<c<1 in Eq. 31), ¢ —)0 as k—)oo

And y,(K)= ZC"’"r(]+K)" (520-1— 1=t

1-c

Now we can say that V., converges umformlyt IL
—-C

(§+8) for K>0 as k— o from the comparison

1 5
equation (30) and J=T——(1+—g) will do because
-c

V(W) S X gk n
If the closed loop system(26) is uniformly ultimately
bounded by bound JJ , the system converges to the
attractiong ~ set {WG‘R'"*":HWHP <JS8} , not to the
equlibrium point w=0 . If A(k)=0 in closed loop
system(26), that is, quatization error does not exist, the constant

J§ is zero and the attracting set becomes to w =0 . In this .

case, the closed loop system is asymptotically stable.

Theorem 3 shows the analysis of qualitative characteristics
of the fuzzy control systems considering quantization. The
positive constant J is related to the equationw(k +1)=
> h(k)G,w(k), not to A(k) . Therefore, once the digital
fuzzy control system is stably designed, it does not diverge
although quantization errors exist and the smaller the
quatization errors become, the more the asymptotic stability is
guaranteed.

VI. Backing up control of computer-simulated
truck-trailer

We have shown an analysis technique of the proposed DFC
under the condition that time-delay and quantizers exist. Some
papers have reported that backing up control of a computer-
simulated truck-trailer could be realized by fuzzy con-
trol[5][13}{18]. However, these studies have not analyzed the
time-delay and quantization effects to the control system. In
this section, we apply the proposed controller to backing up
control of a truck-trailer system with time-delay and investigate
the quantization effects to the system.
1. Models of a truck-trailer

M. Tokunaga derived the following model about the truck-
trailer system [18]. Figure 3 shows the schematic diagram of
this system.

xo(k+1) = x, (k) +vT /I tan[u(k)]
x, (k) = x, (k) — x, (k)
x,(k+1)=x,(k)+vT/ Lsin[x, (k)]
x,(k +1)=2x,(k)+vT cos{x,(k )]sin{{x,(k +1)+x,(k)}/2]
x,(k +D)=x,(k)+vT cos[x,(k)]cos[{x,(k +1)+x,(k)}/2]
(32)

where u(k) : The steering angle of the truck
[ : The length of the truck, L : The length of the trailer
v : The constant backward speed

T : Sampling time,

Fig. 3. Truck trailer model and its coordinate system.

K. Tanaka defined the state vector as x(k)=
[x,(k) x,(k) x,(k)]" in the truck-trailer model (32) and
expressed the plant as two following fuzzy rules{13].

Rulel: If x, (k) +vT /{2L} x,(k)is M,
THEN x(% +1) = A, x(k) + B u(k)

Rule2: If x, (k) + VT /{2L} x, (k) is M, %)
THEN x(k +1) = A x(k) + B,u(k)"

where
1-2T o o 12T o o
L L
A= Xy o] A= Iy o
2L2 {JZ
VT or o T w11
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[=28[m], L=55[m], v=-1.0[m/s], T=2.0[s],
d=10"2/x

_ ] ‘ T 7 7 (rad)
xz(k)+2—L x (k)

Fig. 4. Membership function.

2. Fuzzy control system without time-delay and
quantizers
In this subsection, backing up control of a truck-trailer is
simulated by the conventional discrete time fuzzy controller
under the assumption that no time-delay and quantizers exist.
To solve the backward parking problem of Eq. (33), the PDC
fuzzy controller can be designed as follows.

Rulel: If x, (k) +vT /{2L}- x,(k)is M,
THEN u(k) = F/ x(k)
Rule 2: Ifx,(k)+vT/(2L}- x,(c) isM,

34

THEN u(k) = F/x(k), Gy
1.2837 0.9773
where F, =|-0.4139| and F, =|-0.0709
0.0201 0.0005

Ricatti equation for linear discrete systems was used to
determine these feedback gains. The detailed derivation of
these feedback gains was given in [13].

Substituting Eq. (34) into Eq. (33) yields the following
closed loop systemdueto B=B, =B, .

x(k+D =3 A (0G x(K), 35)
i=l

where

0448 0296 -0.014
G, =|-0364 1 0 | and
0364 -2 1

0.448 0.296 -0.014
G,=| -0.364 1 0
0.116x107% —0.637x107* 1

Since there exists the common positive matrix P which
satisfies the stability sufficient condition (3), the closed loop
system is asymptotically stable in the large. That is, the

backward parking can be accomplished for all initial contitions.
Common positive definite matrix:

1139 -92.61 2.540
P=|-9261 1107 -3.038].
2540 -3.038 0.5503

Two initial conditions used for the simulations of the truck-
trailer system are given in Table 1.

Table 1. The initial conditions of the truck-trailer system.

CASE x(O)ideg] | x;(0)ideg] %3(9)m]
CASEI 0 0 20
CASEII -90 135 -10

Figure 5(a) and (b) show the simulation results for CASE I
and CASE II. As can be seen in these Figures, the backing up
control for each initial condition is accomplished effectively.

Initial Position

o 20
 freif

(a) Fuzzy control system without time-delay and quantizers
for CASEL

Initial Plollﬂon
U

. "
E R R R I
stfm}

(b) Fuzzy control system without time-delay and quantizers
for CASE 11

Fig. 5. Simulation results without time-delay and quantizers.
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3. Fuzzy control system with time-delay and without

quantizers

In many cases, vision sensor is generally needed to measure
the state X(k) of the truck-trailer system[19). The time-delay
can be made by the vision sensor in the transferring of image
and the image processing. Also, it can be made by the digital
hardware in the calculation of the fuzzy algorithm and by the
actutor in adjusting the steering angle. Let T be defined as
the sum of all this time-delay. In the case of the real system, the
ideal fuzzy controller of Eq. (34) can be described as follows
due to the time-delay.

Rulel: If x,(kT) +VvT /{2L}- x,(kT)is M,
THEN u(kT + 1) = F x(kT)
Rule 2: Ifx,(kT)+vT/{2L}- x,kT)isM,

(36)
THEN u(kT +7) = F} x(kT).

The simulations are executed in the case that the time-dealy
T is a half of the sampling time (7 =1 [sec]). Figure 6 (a) and
(b) show that the truck-trailer system is oscillating and the
fuzzy controller can not accomplish the backing up control
effectively.

Inttial Position

3 fm}

(a) Fuzzy control system with time-delay( T =1) and without
quantizers for CASE I

Initial P,oslﬂon

Py
ah
]
&

(b) Fuzzy control system with time-delay( 7 =1) and without
quantizers for CASE II

Fig. 6. Simulation results with time-delay and quantizers.

4. Proposed fuzzy control systems with time-delay and
quantizer
In the present subsection, we design the DFC considering
time-delay and analyze the quantization effects to the control
system. Following the design technique of DFC in section 4,
we can construct the DFC for the backing up control problem
as follows.

Rulel: If x, (k) +vT /{2L} x,(k)is M,
THEN u(k +1) =Du(k) + E, x(k)
Rule 2: Ifx,(k)+vT/{2L} x,(k)isM,

37
THEN u(k +1) = D,u(k) + E,x(k).

Combining Eq. (33) with Eq. (37), the augmented closed
loop system is given as follows.

wk+1)= ihi(k)G,.w(k), (38)

A, B A, B
where Gl:l:El DI:I’ G, =|:E2 Dz}
1 1 2 2

To obtain the control gain matrices D,,D,,E E,
guaranteeing the stability of the closed loop system (38), we
solve the LMI feasibility problem equivalent to DFC design
problem as follows.

The problem of finding X >0 and M,;,M, which
satisfy the following inequalities:

X AX-B M)
_ _ A i >0
AX-B M, X
— [A, B, = [o] .
where A; = and B= , i=12.
0 o0 I

The matrices X and M;,M, in LMDs are determined
using a convex optimization technique offered by [20].

157.0056 61.9680 -1.6565 220.727
| 619680 50.4822 69.8423  53.4329
—-1.6565 69.8423 489.4416 -2.3866|

2207727 53.4329 —2.3866 442.6866
M, =[-96.3672 -43.1521 41.8056 —5.8356],
M, =[-116.3143 —66.0021 13065 —-22.9842].

The feedback gains and a common positive definite matrix,
P are determined by the relationship (18) as follows.

0.0995 -0.1036 0.0149 -0.0370
Pox- o —-0.1036 0.1373 -0.0198 0.0350 ’
0.0149 -0.0198 0.0049 -0.0050
-0.0370 0.0350 -0.0050 0.0165
(39
F=MX"'= - [E D] = [-39047 26765 -0.3020 1.5869],

F,=M,X" =—[E, D,] = [-3.8624 2.1564 —0.3102 1.6123].
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Therefore, the closed loop system is asymptotically stable in
the large and the control gain matrices are given as follows by
PDC design problem equivalent to DFC design problem.

D, =-1.5869, D,=-16123,
E,=[3.9047 -2.6765 03020], E,=[3.8624 -2.1564 03102].

Next, we analyze the stability of the fuzzy control system
with the consideration of quantization. The quantization
problem is unavoidable because digital sensors such as vision
sensors and encoders are to be needed in order to control the
truck-trailer system.

There exists a common positive definite matrix P (39) for the
closed loop system (38) and r(k)=0 since it is a regulation
problem. Hence, all the sufficient conditions of Theorem 3 are
satisfied. Therefore, we can say that the closed loop fuzzy
system is uniformly ultimately bounded and does not diverge.

Figure 7 (a) shows the simulation result of the designed DFC
with time-delay( T =1[sec]) and quantizers with the precision,
€=10"“. The output of proposed fuzzy controller is delayed
with unit sampling period and predicted using current state and
previous control input . Hence, the ouput of the controller is
synchronized with sampling time and the stability in the digital
implementation of the control system can be guaranteed. As

initial Position:
| B

(a) Result by proposed DFC with time-delay and quantizers
for CASE I

Initial-Position ——4

T O—

-
L

(b) Result by proposed DFC with time-delay and without
Quantizers for CASE I

Fig. 7. Simulation results with time-delay and quantizers.

can be seen in the figure, the backward parking is accomplished
successfully for CASE I compared with Fig. 6 although a
considerable time-delay exists. However, due to the
quantization effects, the solution of the present feedback
control system seems to have oscillation with small amplitude.
Thus, we can say that the closed loop system converges to
some small neighborhood of origin. On the other hand, Fig. 7
(b) presents the simulation result for CASE II under the
assumption that the same time-delay exists and there is no
quantization. Clearly, the system tends to zero asymptotically
with no oscillation in the presence of time-delay.

VII. Conclusions

In this paper, we have developed a DFC framework for a
class of systems with time-delay and quantizers. Because the
proposed controller was syncronized with the sampling time
delayed with unit sampling period and predicted, the analysis
and the design problem considering time-delay could be very
easy. Convex optimization technique based on LMI has been
utilized to solve the problem of finding stable feedback gains
and a common Lyapunov function. Therefore, the stability of
the system was guaranteed in the existence of time-delay and
the real-time control processing could be possible. Furthermore,
we have proved that quantization has the effect of replacing
convergence of solutions to the origin by convergence to some
small neighborhood of the origin. To show the effectiveness
and feasibility of the proposed degin and analysis scheme, we
have developed a digital fuzzy control system for backing up a
computer-simulated truck-trailer with time-delay and quantiz-
ers. Through the simulations, we have shown that the proposed
DFC could achieve backing up control of a truck-trailer suc-
cessfully although a considerable time-delay existed. It was
also shown that in the presence of quantizers, the system was
uniformly ultimately bounded.
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Appendix A
The proof of Theorem 1
A lemma is necessary in order to prove the condition of
Theorem 3-2. The proof of the lemma is given in [2].
Lemma [2]: Let P be a positive definite matrix such that

A"TPA-P<0 and B'PB-P<0,
then
A'PB+B"PA-2P<0,
where A,B,Pe R™

Let us consider a scalar function V(x(k)) such that

V(x(k)) = x" (k)Px(k),

where P is a positive definite matrix. This function satisfies the
following properties.

a) V({0)=0
b) V(x(k)) >0 for x(k)#0
¢) V(x(k)) > oo as |x(k)| > o,

And we can obtain AV (x(k)) as follows.

AV (x(k)) = V(x(k +1)) -V (x(k))
=x" (k +DPx(k +1)-x" (k)Px(k)

= {3 1 (0) G XY PLY A (k) G, x(K)}- X7 (k)PX(K)
i=1 i=1
=x" (O 1 () G, ) P(3 A, (k) G, }- PIx(k)
i=1 i=1

=3 ()5 (VG PG, - PIx(k)

i=]

+2h,.(k)hj(k)xf (k){G,'PG;+G"PG,-2P}x(k).

i<j

By using Lemma [2] and Eq. (3), we can obtain
AV(x(k))<0.
Hence, V(x(k)) is a Lyanupov function and the discrete
time fuzzy system (2) is asymptotically stable in the large. W
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