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Abstract

This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is
derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part
of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently
within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in
practice. A design example is given to illustrate the applicability of the proposed method.
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I. Introduction

Providing systematic controller design procedure is a very
important research topic in the area of fuzzy control [1-3]. In
this paper, we present a new design procedure yielding robust
and stabilizing controllers for the nonlinear systems described
by the TS (Takagi-Sugeno) fuzzy model [4-6]. Based on the
well-known fact that the robustness achieved as a result of the
optimality is largely independent of the particular choice of a
certain part of the cost function, we address the problem of
designing robust and stabilizing controllers for the TS fuzzy
systems in the framework of the optimal control theory. Also,
it is shown that with the optimal value functions which are
piecewise quadratic and continuous, the problem of finding the
parameters of the optimal controllers can be represented as an
EMI (linear matrix inequality) problem. Formulation of the
controller synthesis problems with LMIs is generally
considered to be a practical solution to the problem since they
can be solved by reliable and efficient convex optimization
tools [7], e.g., the LMI control Toolbox for use with Matlab
(8].

Throughout this paper, we use the following definitions and
notation, in which R " denotes the normed linear space of
real n-vectors. A symmetric matrix AeR™" is positive
definite if xTAx>0 for any x+0, and A>0 denotes this.
Also, the inequality A<(Q means that the symmetric matrix
A is negative definite, ie, xTAx<0 for any x=+0. L J(x)
denotes the Lie derivative of a scalar function i R"—>R with
respect to a vector field £fR">R” ie., LHh(x)2(8h/dx)Ax).
By I, we denote the identity matrix.

The rest of this paper is organized as follows: In Section 2,
preliminaries are provided regarding the TS fuzzy model and
optimal control theory. Our main results on the design of
optimal controllers for the TS fuzzy systems are presented in
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Section 3. In Section 4, controllers are designed for the
inverted pendulum system to illustrate the proposed method.
Finally, concluding remarks are given in Section 5.

2. Preliminaries

In this paper, we are concerned with the design of optimal
controllers for the systems described by the TS fuzzy model.
The IF-THEN rules of the TS fuzzy mode! are given in the
following form [4-6]:

Plant Rule I:
IF  x() is M and x (D is M,
THEN
WD=Ax(D+Bu(d+a, (1)
=1, - m
Here, x(p, i=1,~,nand M, i=1,---,n, [=1,

--.,m are state variables and fuzzy sets, respectively, x(t) €
D C R" and u(f) & R? are the state and input vector,
respectively, and m is the number of IF-THEN rules. Constant
matrices A,, B,, and g, of compatible dimensions represent
the /-th local model of the system. Following the usual
inference method utilizing the singleton fuzzifier, product
inference, and center-average defuzzifier, we have the
following state equation for the TS fuzzy system:

2w (x(9) {A;X(t)+B,u(t)+a,}
2 eywx(D)

In (2), the w, are defined as w/x()= IT"_, M ‘(x,;(),

?

()= (2)

where M “(x,(9) is the grade of membership of x/{#) in the
MY takes a

nonnegative value for each xe=R”, and usually satisfy

fuzzy set Each weight function w/x)

ﬁlwl(x»O for any x<D. 3

In this paper, we will assume that (3) holds always, and
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that the state vector x(#) is available in real time. With the
normalization of weight functions

w0 w(x)/ }f;1 w (%) (4)

the state equation (2) can be written in the following form :
(H= Z,U[(x(t)) {Ax(D+Bu(d+a}, (6))

where the normalized weight satisfy

ufx)=0,Vie(l, -, m}, and 3 ’7=1ﬂ1(x)=1 for any
xeD. For simplicity, we will denote the normalized weight
function g ,(x(9)) by u, from now on.

Now, let L&{l],--«,m} be the index set for the local
models (1), and let S, be the cell where the /-th local model

function g,

plays a dominants role, ie., for /=1, m,
Sa{xeR" | p (x)=px) forViel} 6)

In general, the cell S,CR" are n-dimensional convex

polyhedra, which will be assumed to be true throughout this
paper. Since the stability of the origin is of primal importance,
we let L ,CL be the index set for cells which do not contain

the origin, and let L, be the complement set of L, in L. For

notational convenience, we also introduce

A[ a; B[ X

AL , Ba , and x2 , (7)

0 0 0 1

where it is assumed that ¢,=0( for all /L. Using this

notation, the TS fuzzy system (5) can also be written as
LX) = (DD + (3 uBu(d) ®)

for x(HeS,, leL. For future reference , we also define
Na{ieL| £ (x)>0 for some xS}}.

i
Note that in S, both 21 u,; and u; have the same

meaning.
The TS fuzzy controller for the TS fuzzy system of (1) is
described by the following fuzzy IF-THEN rule [6,9]:
Controller Rule I
IF x,(f) is M} and .-
THEN

and x, (8 is M

n

uD=Kx(H)+k,, (9)
=1, 000, m.

In general, the value of 4%, in (9) is zero for /=L, to

meet the stability of x=1{. Note that the IF part of the
above controller rule shares the same fuzzy set with that of
the plant rule of (1). Also, note that the usual inference
method for the TS fuzzy model yields the following
representation for the TS fuzzy controller:

u(p) = ﬁﬂ, (K, x(D+ k). (10)

Here, the p, are the same as in (5), and the controller
parameters need to be found so that design goals such as
stability and robustness may be met. Our main strategy for
finding a satisfactory set of the K, and £k, is to utilize the
optimal control theory (see [10], for example).

One of the most important problems in the area of optimal
control is to find an optimal feedback control law for the
nonlinear system described by

(D= Ax(D)+ g(z(ul D).

to find a
can achieve the

(11)

control law
following: (1)

In the problem, we wish

u(®) = u(x(t)) which

Asymptotic stability of the equilibrium point x=0. (2)
Minimization of the cost function
J= [, () + ) TRGD)ud D), (12)

where X(x) is a positive definite function and R(x) = R(x)T
is a positive definite matrix for any x=R”. For a given
feedback control #(x), the value of cost J depends on the
initial state x(0). Thus, we write the value of J as J(x(0)),
or simply J(x). When J is at its minimum, J(x) is called
the optimal value functior. As is shown in the next lemma
[10], the above optimal control problem can be reduced to
solving the HIB (Hamilto1-Jacobi-Bellman) equation.

Lemma 1[10]. Suppose that there exists a positive definite
function V{(x)e C'(R™) which satisfies the HJB equation

(D) + LV =~ (L V)R M) (L, V) T=0,

V(0)=0 (13)

and the control u"=-— % R™Y ) (L, V()T achieves the

asymptotic stability of the equilibrium point x=0 for the
system (11). Then " is the optimal stabilizing control which
minimizes the cost function (12) over all u(f) guaranteeing
1}i}2x( D=0, and V(x) is the optimal value function

Many optimal control problems deal with the fixed cost
functions. However, to solve their corresponding HIB equation
is not a feasible task in general. On the other hand, it is
well-known that the robustness achieved as a result of the
optimality is largely indenendent of the particular choice of
Kx) when R(x)=I. Hence, it is motivated to pursue the
strategy in which the positive definite function /Ax) is a
posteriori determined at the stage of controller design. More
precisely, we use the following lemma [10]:

Lemma 2[10]. A stabil zing control " solves an optimal
control problem for system (11) if it is of the form

u=— (L, V)T, (14)

where V(x)e CYR™) is a positive definite function such
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that

()2 — LV + (L VL VN0 (15)

Jor any x¥+0.

In this paper, Lemma 2 is utilized in the following manner.
V(x)e CHR™)
satisfying the inequality (15) for any x=+0. Then, it is
obvious that the function V(x) satisfies the HJB equation
(13) with Xx) defined as in (15) and R(x)=1 Moreover,
under the condition that V(x) e C/(R") is a positive definite
function satisfying (15), the following holds true for any
x#0:

First, we find a positive definite function

dV(x) |
dt w=v

= (L, V() = 4 (L VDNL V)

—(L V()L V()74
=—Kx) -l <0.

= L V() =% (L VWXL V) 7

Thus, by the Lyapunov stability theorem [11], z" is a
stabilizing control. Therefore, we can conclude that under the
condition of Lemma 2, it is guaranteed that 2" obtained via

(14) is the optimal stabilizing feedback minimizing

J= fo (K0 + uTw)at.

Finally, in this paper, the problem of finding optimal
controllers for the TS fuzzy system will be formulated as the

LMI(linear matrix inequality) problem. An LMI is any
constraint of the form
A()2Ay+2,A, + -+ 23A K0, (16)

where z2(z, -, zy) is the variable, A,-, Ay are the given
symmetric matrices, and "<" stands for negative definiteness.
Since A(y)<0 and A(z)<0 imply A(Ay+(1—A)2z)<0 for
any A=[0,1], the LML (16) is a convex constraint on the
variable z. It is well known that the LMI feasibility problem
which finds a solution z satisfying (16) or determines that
there does not exist such z can be solved efficiently [7], and
a toolbox of Matlab for convex problems involving LMIs is
now available [8].

3.LMlI-based design procedure

In this section, we establish a design procedure for the
optimal control of the TS fuzzy systems. First, note that the
TS fuzzy system (5) is an example of the class represented by

the canonical form (11) with f(x)=zml;z,{Apc+ a;) and

g(x)= Zﬂl u,B, ; thus Lemma 2 is applicable to our problem.

Next, for the sake of convenience in controller design, we
restrict focus only on the cases that the optimal value function
V(%) can be expressed in a piecewise quadratic function
which is continuous across the cell boundaries. As shown in
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[5]. a convenient way to express such piecewise quadratic
functions is via constructing matrices F,=[F, f] with

f,=0 for le=L, satisfying

FI[’I‘]:T[T] for xS, NS, I jeL. 17)

Here, it is demanded that the F, and F, satisfy the
following rank condition: F, has full column rank for
lye Ly, and I_:‘,’ has the full column rank for /,eL,. A
systematic procedure for finding such F, and 7‘,‘ is given
in {5]. Once the F, and ?‘1. are constructed, a class of the

piecewise quadratic function that are continuous across the cell
boundaries can be parametrized as

xTP, x for xe S, l,eL
V=i, 0" L O )
[ 1] P, [ 1] for x€ S,,h€L,
with
P, 2Fl TF,, hely, (19)
P,aF,. T F,, Lel;, (20)

where the free parameters of V(x) are collected in the
symmetric matrix T. Note that with the parametrization (18),

the controller #* of (14) can be reduced to
Zml/z {(—BTP)x forxe TS,O, lyeL

*
u =

s _ 1)
Sul- B P ¥ ]torxe 5, 0eL,

Also, note that the optimal controller (21), which is
continuous since the F, and F, satisfy the continuity of

(17), takes the form of the TS fuzzy controller (10). For
related details on this observation, please refer to [12].
Applying Lemma 2 to the case with quadratic value

functions (18), we see that the TS fuzzy controller z* of (21)
becomes an optimal stabilizing comtroller for the TS fuzzy
system (5) if T>0 and the following holds for any
xe D — {0k

(x) & — L, V(@) + (L V)L, V(0) /4 =
_xT{(ﬁﬂ,—Ai)TP,u-I—P,ﬂ(;ml#iAi)
—qu(iﬂ,-B,-)(‘Zmlﬂ,-B,-) TP,ﬂ}x for x& S, LEL,
- ;T{(Zm]lﬂ,’/l—i)rﬁ,,+7,l(g;lﬂﬂ4—i)
P 3 B 0 B) B[ for = 5, heL,
& ’ (22)

where P, and P and matrices shown in (19) and (20),

Hence, we have the following :

Consider the

matrices F ,and F , satisfying (17). If there exists a positive

Theorem 1. TS fuzzy system (5), and
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definite matrix T such that
P,2 F,TTF,, LeL,
P,& F,.T F,, LeL,

satisfy (22), then the feedback (21) is the optimal stabilizing
control which minimizes the cost function

J= fo “UAD) + 1l DDt with Kx) of (22).

Theorem 1 can be extended toward directions that can
cover various controller design goals. In this paper, we
consider the case with a further design goal on the decay rate.
The decay rate of a given systems is defined to be the largest
B such that

lli{gexp(ﬁl)||x(t)l| ={ (23)

holds for each trajectory x(#) of the system [7]. Utilizing the
fact that the existence of positive definite quadratic function
V(x) satisfying dW(x)/dt<—28V(x) for all trajectories
guarantees the decay rate of the system greater than 2 [7],
we have the following conjecture: Consider the TS fuzzy
system (5), a desirable lower bound >0 for the decay rate,
and the matrices F, and f, satisfying (17). If there exists a

positive definite matrix T such that

P/,éFl._TTFL , hEL
P, o F,TTF, Lel
satisfy

(ﬁ]}#;/l,-) p, +P,y(lfjl,uiAi)+23pl

~P (e BXZuB) PO, x= Sy oLy (24)
and
(30 A) TP+ Py (S A)+26P,
= By (B e B) S u BP0, 2T, heL,  (29)

then the feedback (21) satisfies the following :
« [t is the optimal stabilizing control which minimizes the
cost function

J= fo KDY+ 1 DI with Kx) of (22).

« It makes the decay rate of the closed-loop greater than

£>0.

In order to find a positive definite matrix T satisfying the
above conditions, the method of this paper proceeds as
follows: First, note that by the congruence transformation [7],
the inequalities (24) and (25) are equivalent to (26) and (27)
below, respectively:

F®02Q(ZrA) +(XuA)e,

+280, = (S uB) 2 mB) 0, 2= T, he=ly  (26)

T, 02 Q (XA +(ZHuwA)Q,
+26Q,— (B BN Em B0, 2= S, L=, @)
where

LaPyl=(FYF,) 'FTT'F (FF,) ~! for

INSY o (28)
and
Q, & P,

=(F, F) 'F, ' T'F,( F,F,!
for LeL, (29)

Note that here (F,.TF,‘V) and ( T?I‘Tf‘,l) are all
invertible since F, and —f_?‘,l have full column rank for
=L, and /,L,, respectively.

Next, note that we can find the following bounds in each
cell S, :

—(R 4B R uB) T ~ El, (30)

Since the g, and B, are given precisely, the above bounds
can be easily found. For a hint on how to get these bounds,
see [13], for example. Also, (30) together with (7) give the
following bounds :

~ (BN R uB)s —E B2

(31

— EREL 0]
0 0

Thus, we have the following upper bounds in each cell S, :

Flﬂ(x) =<( anﬂfAi)Ql\,'f' QI“( g}lﬂr‘Ai) T

i (32)
+28Q,—E gE%p <0 for xe S,, LeL,
J— nm — — —_ W _ T
F/_X(X)S(IZI.U,‘A,') Q.+ Q[‘_(z—ZLﬂiAi) (33)
+28Q,—E ,3ET3 for x= S, /€L,
Hence, the following guarantee that [7,(x)<0 in each
S,, heLy, and T,(x)<0 ineach S,, LeL;:
r'2AQ,+Q,Al+28Q,~E zE3<0 for
iEN,,, lyeLy. (34)

Fiz,é A, 611'*‘ —Qz, Z;T‘*‘zﬂ_@/,—E,jET,]b( 0 for
ieN,, [1eLl,. (35)

Therefore, we have the

procedure:

following LMl-based design

|Design procedure]

Step 1: Given a TS fuzzy system (5), a desirable lower bound
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#>0 for the decay rate, and the matrices F, and F,

satisfying the continuity condition (17), solve the following
LMIs to obtain a symmetric matrix 7" :

0

A iQ 10+Q10A ;T+2.3Q o™
for l,eL ,ieN,

AiQnt QA T+28Q,—E 3ET5<0
for l)eL,ieN,

EusElp < 0

(36)
where @, and @, are defined as in (28) and (29),
respectively
Step 2: Compute
K,= — B,Q,' = — ByF,TF, for |, € L,
Ky = _B_HTQ—M_l = “EIZTF—;ITTE for I, € L,, (37)
and set

u = ,Zm:l”fox for xe E‘,ﬂ, el
Ii/l,—?(,—[ﬂ for x= TS,I ,hel,

(38)

4. A numerical example

In this section, we applied the proposed design procedure
to the problem of balancing an inverted pendulum on a cart
[9], The state equation for the pendulum system are

k1=x2

__gsin(x,) —ambdsin(2x)/2— acos (x)u
e 443 — amlcos?(x,)

where x, €(—x/2, 7/2) is the angle of the pendulum from

the vertical, x, is the angular velocity of the pendulum,

2=9.8m/s? is the gravity constant,  is the mass of the
pendulum, M is the mass of the cart, g is the constant
1/(m+ M), 2[ is the length of the pendulum, and # is the
force applied to the cart. In this numerical example, the
system with the following parameters was chosen:
m=2lkg)l, M=8lkg), 2/=1.0lm]. According to the usual
fuzzy approximation scheme, this system can be approximated
by a TS fuzzy model with the following four rules :

Rule 1 : IFx, is about 0° (where x;, < 0)
THEN x=Ax+Bu
Rule 2 : IF x, is about (° (where x, > 0)

THEN x= A, x+ Byu
Rule 3: IF x, is about - 83"

THEN x= Ax+ Bau+ a;
Rule 4 : IF x, is about +88°

THEN x= A,x+ Bu+a,
where the local models are represented by
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1
] |
17. 29410 0 -0. 1765
1
|y ] |
17. 29410 0 —0 1765
0
el ol kol
9.360 —0.0052 0
0 1 0 0
el bl bl
9.360 0 —0.0052 0

2

and the normalized membership function are

1+—27’} for —Z (x, <0
M=
0 for 0<x,<7ﬂ
{ 0 for —-—g(xl(O
Hy= >
1- 2;;1 for 03x1<~72T—
—72[x1 for ——g<x130
M3 =
0 for 0<x,<=5
0 for —7”<x1<0
= .
+—;—1 for O£x1<—72r

Based on the method of ([5], the
(17) were chosen as follows :

F,and F, satisfying

0 0 0 0
—4f/r 0 0 0
F1= 0 0,F2= 4/7T 0
0 0 0 0
0 1 0 1
—4/r 0 —1 0 0 0
|4 o0 2| 0 0 0
Fa=| 0 0 0|, F,=|-4/z0 2]|.
0 0 O 4/r 0 —1
0 1 0 1 0

For the bounds E g of (30), the following were used:

E;p=E,5= (B, +B,)/2 ,
Esp=E;z=B, .

The lower bound for the decay rate was set g=0(.5. By
solving the corresponding LMis (36) with the LMI Control

Toolbox [8], we obtained a solution for T. The resulting
controller
u = ,Zm"lﬂi'Kix for x& tS_‘,0 , hp=1,2
,Zml,u,-T{,-[ﬂ for x= —511 , 1=3.,4

yielded the responses shown in Fig. | for the initial conditions
x(0) = [x,(0) 017, where x,(0)=35°, 70°.
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5. Concluding remarks

In this paper, we considered the problem of designing
optimal controllers for the TS fuzzy systems in the framework
of the optimal control theory. Utilizing the optimal value
functions which are piecewise quadratic and continuous, we
derived an LMI-based design procedure. Since LMls can be
solved efficiently within a given tolerance by the interior point
methods, LMI-based controller design is useful in practice. A
numerical example of balancing the inverted pendulum on the
cart was considered for an illustration. Works yet to be done
include further studies for theoretical completeness and
extensive simulation studies to identify the strength and
weakness of the proposed method.

50k}

o ) 05 1 1f5
tmajzec)

Fig. 1 Responses of the controlled system for the g = 0.5

case
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