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Delay—-dependent Stability Criteria for Uncertain Stochastic
Neural Networks with Interval Time—-varying Delays
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Abstract — In this paper, the problem of global asymptotic stability of uncertain stochastic neural networks with delay
is considered. The delay is assumed to be time-varying and belong to a given interval. Based on the Lyapunov stability
theory, new delay-dependent stability criteria for the system is derived in terms of LMI(linear matrix inequality). Three
numerical examples are given to show the effectiveness of proposed method.

Key Words

1. Introduction

During the last two decades, considerable efforts have
been done to the stability analysis of cellular neural
networks since cellular neural networks have been widely
applied to pattern recognition, associative memory, signal
processing, and fixed-point computation, For reference,
see [1-3] and reference therein. These applications rely
on the dynamic behaviors of the equilibrium point of the
related network.

In the processing of storage and transmission of
information, time-delays often occur due to the finite
switching speed of amplifiers in electronic networks or
finite speed for signal propagation in biological networks.
The important factor is that the delays may cause
instability and oscillation of neural networks. Therefore,
many researchers have focused on the stability analysis
of delayed cellular neural networks in recnet years [4-20].

Recently, some attentions for the stability analysis of
the stochastic neural networks have been paid by some
researchers[21-22] since the stochastic perturbations are
unavoidable when one models the neural networks. In
this regard, Zhang et al. [22] investigated the stability
Hop-field
The time-delays

problem for uncertain stochastic neural

networks with time-varying delays.

treated in the work [22] was restricted to be
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: Interval time-varying delays, Linear matrix inequalities, Lyapunov method, Stochastic neural networks.

differentiable and its derivative was less than one. More

recently, the delay-dependent stability criteria for
uncertain stochastic neural networks with no requirement
of the bounds of delay-derivative terms was proposed
[23-24].

On the other hands, the stability analysis of dynamic
systems with interval time-varying delay has been a
focused topic of theoretical and practical impotance
[25-28]. The system with interval time-varying delays
means that the lower bound of time-delay which
guarantees the stability of system is not restricted to
zero. A typical example of dynamic systems with interval
time-varying delays is networked control systems [26].
Michiels et al. [27] proposed a frequency-domain method
for the stability analysis of time-delay system with
periodic time-varying delay functions. Yu and Lien [28]
investigated the stability of neutral systems with interval
time-varying delays and two classes of uncertainties.

Unfortunately, to the best of authors’ knowledge, the
problem of stability analysis for uncertain stochastic
neural networks with interval time-delay has not been
investigated

With this motivation, in the paper, we propose a new
stability criterion for uncertain stochastic neural networks
with interval time-varying delays for the first time. By
constructing a suitable  Lyapunov  functional, a
delay-dependent criterion, which is less conservative than
delay-independent one when the size of delays is small,
is established in terms of LMI which can be solved
efficiently by using the interior-point algorithm [29].
Three numerical example are given to show the
effectiveness of the proposed method.



Notation @ R" is the n-dimensional Euclidean space,
R”°" denotes the set of mXn real matrix. Il + | refers
to the Euclidean vector norm and the induced matrix
norm. For symmetric matrices X and Y , the notation
X>Y is positive definite, (respectively, nonnegative).
diag{---} denotes the block diagonal matrix. « represents
the elements below the main diagonal of a symmetric

matrix. I is the identity matrix with appropriate

dimension, A T
For h>0, C(

means the transpose of the matrix A.

[—A, 0], R*) means the family of continuous

functions ¢ from [~k 0] to R’ with the norm
lol=sup , . o). Let (Q,F{F}, _,P) be a
complete probability space with a filtration {F},

satisfying the usual conditions (i.e. it is right continuous

and F, and contains all P-pull sets). Lf([—h, 0L.R") the

family of all F,-measurable C{—hk, 0,R")-valued random
variablesé = 1{£(6) : —h <9 <0} such that
sup ;. .. (B} <o where E{+}
mathematical expectation operator with respect to the
Denote by

stands for the
given probability measure P
C*'(R"XR*.R”) the family of all nonnegative functions
Viz.t) on R'XR™ which are
differentiable in = and differentiable in ¢ .

continuously  twice

2. Problem Statements

Consider the following uncertain neural networks with
discrete time -varying delays:
o(t) = (= A+ AAR))u(t) + (W, AW, (£))f (v(2))

+(W + AW () f (vt —h(t) +b (D
where  v(t) ={v, (¢), -
vector, n denotes the number of neurons in a neural
) =1f, (o, &)y f, (w, #)]TER"  denotes the
neuron activation

flolt— [y (o, (6 ~h{E)), o f, (v, =R TER",

)=
A= dtag{a} is a positive diagonal matrix, W, =(w

w,()]TER" is the neuron state

network, flv

function,

),

and W, =(u,),., are the interconnection matrices

I
repre@enting the weight coefficients of the neurons,
=[b.by.b, 1T means a constant input vector, and AA(t),
AW,( ), and AW, (t), are the uncertainties of system
matrices of the form
[ AA(t) AW(¢) AW, () |=DFWI E E, E |, (2
where the time-varying nonlinecar function F(t) satisfies
FIOFt) <, vt=0. (3)
The delays, h(t), are time-varying continuous function
that satisfies
0= h, <h{t) <h, hit) <hp, 4
where h;, and h, arc positive constants and h, is any

constant one.
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The activation functions, f,{v,(t)),i=1,-n, are assumed to
posses the following properties :
(Al) f; is bounded on R", i=1,2,,n
(A2) There exist real numbers [, >0 such that
I ()£ EN< & =€) & EER, & €, ij=1,n. (5)
Note that using the Brouwer’s fixed-point theorem [4], it
can be easily proven that there exists at least one
equilibrium point Eg. (1).
For simplicity, in stability analysis of the system (1), the
equilibrium point v =[v},~v, 1" is shifted to the origin by
utilizing the transformation z( ')=z(')~v*, which leads
the system (1) to the following form:
z(t) = (= A+ AA®)x (t) + (W, + AW, ()9 (= (t))
+(W, + AW, (t))g(x(t —R(t))) (6)
where z(t)= [z, (t),z,#)]TER" is the state vector of the
transformed  system, N=lg (z)),g, N7  and
g, (@, (£)) = £, (2, (t) +] )~ £, (v] ).
Here, the activation functions g; satisfy the following
properties:
(H1) g; is bounded on R*, i=1,2,-yn
(H2) There exist real numbers [, >0 such that
igi(g)—g]’(gj)ig|li(§—€j)|’ & EjER & =& bi=1n (7)
(H3) ¢,(0)=0 (i=1,-n).
In this paper, we consider the following uncertain
stochastic neural networks with interval time-varying
delays
de(t) =[(— A+ A4z (t) + W, + AW, (t))g(t))
+ (W + AW, (£))g(z (¢ —R(t))]dt
+{Hyz (t) + Hz(t —h(t)))dw(t) 8
where H, and H, are known constant matrices with

appropriate dimensions, w(t) is a scalar Wiener Process

(Brownian Motion) on (Q,F, {F } ‘s 0, which
satisfies E{dw(t)}=0 and E{du?(t)}=dt.
Now, system (8) can be written as:

t)=[~ Az (t)+ Wg(z(t)) + Wglax(t —h(t))) + Dp(t))ldt

+[Hz )+ H, (z—ht)]dw(t),

p(t) = Flt)g(t),

q(t) = Bx(t) + Bz (t)) + E g(z(t — h(t))). 9
Before deriving our results, we state the following facts,
lemma and definition.

Fact 1. (Schur complement) Given constant symmetric
matrices X}, £, X, where £, =57 and 0<%, =37, then
I +5]5,' 5, <0 if and only if

. x
Iy =%

<0, Tk <0
or IR N ’

Fact 2. For any real vectors @, b and any matrix @>0
with appropriate dimensions, it follow that:
2a"h < T Qu+bT +57Q 7 0.

Lemma 1.[30] For any constant matrix M &R"™",
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M=MT>0, scalar ¥>0, vector function z:[0, yY/>R" such
that the integrations concerned are well defined, then

i o f )= |

Def1n1t10n 1. For the

zT(S)Mw(S)ds. (10)

uncertain  stochastic neural

networks (9) and every ¢EL52‘0 [—h, 0, R"), the trivial

solution is globally asymptotically stable in the mean
square if, for all admissible uncertainties,
limElz(@,4) =0 an

tAVOO
In deriving our main results, Itd’s formula plays a key
role in stability analysis of stochastic systems (See
[31-32] for details).

3. Main results

In this section, we propose a new stability criterion for

uncertain  stochastic neural networks with interval
time-varying delays described by (6).
For each V € C*'([~h; o] xR*, R*), define a notation £

which means the weak infinitesimal operator [33]
associated with stochastic neural networks (9) from

R"xR" to R by

LV((t),t) =V, (z(t),t)+ V, (z(),t)[- Az(t) + Wyg(z(t))
+ Wiglz(t —h(t)) + Dp(t)]
+%tTaC€[[HOz(t)+Hlm(t——h(t))]T
v, (z(t),t) Hyz (t) + Hyz(t — h(t))]]
where

Vt(.’L‘(t),t)— 5V(-’I;it),t)’

A R

vV, (z(t)t)= %t—)—), 4 =1,n.

Before stating our main results, the notations of several
matrices are defined for simplicity in Appendix 1. Now,
we have the following theorem.

Theorem 1 For given hy, hy, hp, and L=diag{l; 1,1},
the equilibrium point of (9) is globally asymptotically
stable in the mean square if there exist positive diagonal
matrices ~ M(i=1,2),  positive
N, P, Q=12), R(i=1,4), §(=12) and any matrices
P, (i=2,3,,45) satisfying the following LML

definite matrices

r Py, PTy, Py, =zIp, Jh, =ls, (hy— hL )ZTS,  EIN]

* -5 0 0 0 0 0

* * -5 0 0 0 0 0

* * * -5 0 0 0 0

<0

* * * * —P, 0 0 0 (12)
* * * * * -8 0 0

PO * * * * —(hy —h 8% 0

* * * * * * -N

where X is defined in Appendix I, and
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P,0 0 0 0 0 0 0 0 0 0
P, Py P, Py P; P; Py Py Py Py Py
P=|Py Py Py Pg Py Py Py Py Py Py Pyl
Py Py, Py Py Py Py Py Py Py Py Py
Py Py Py Py Py Py Py Py Py Py Py

uf={o o -I o o],
ur=[o o o -1 o,
uf=[o 0o 0o o -1,
Z=[H o H 0 0 00 0 0 0 0]
s=[E 0o H o000 0 E E o
Proof. First of all, let us define
y(t) =— Az (£) + Wyg(x (£)) + Wig(a(t — h(¢))) + Dp(t),
m(t) = Hyz(t) + Hyz(t — h(t)). (13)
From [31], the following three equations
5020 -xt-h0)- [ ylohs-
t—hy
zz(t):z(t—hL)—x(t—h(t))

- y(s)ds—/tih m(s)dw(s) =0,

m(s)dw(s) =0,

t—hy

—h(t) —h(t)
2, () 2t —h () — 2(t—hy)
t—hi(t) t—h(t)
—f y(S)ds—/ m(s)dw(s)=0. (14)
t—hy t—hy
hold.

For positive definite matrices P, Q(i=1,2), R (i=1,-4),
§,(i=1,2),and any matrices P, (i=1,23,45), let us

consider the Lyapunovfkrasovskii functional candidate:

z(t)t) 2 V,(z (15)

i=1
where

V(2 (t),t) =T ()IP(t),
Vﬂ(w(“’“:ft_h ()R (s ds+ft y
*f o
+ )gT( z(s))R,g(z(s))ds,
t) ———hL/:_hL-/ tyT(U)Qly(u)duds,
)t —/: hL/y ) Q) duds,
_ / o / mT (w)S,m(u)duds
t
t—hy
+~/‘t_hl/‘m u)duds.

Here, E and ¢(t) in V, are defined as
I 0 0 0 0

2" (t)R, (s)ds

(s)z(s)ds

rr=

[l e B e B env)

0
0
0
0
0

oo o @
o000
[l e R )
coooo
oo o
[ e e i )
oocooQ
oo Q@
OO0 0O

t- hy T
) =|oT0) 2T =hy) 2T ) yTC—hy) yTO) (f y(s)ds)
t - hlt)



tohlr T
(/ y(s)r{s) gt ()
LR

Then, [V( (¢).t} can obtained as
LV (z(t),t)

Tzt —h () pT)]. (16)

— CT(t)P]‘

=xT@)p?! z

m’ (t)Pm{t)
=T E)PTG+GTP)C(t) +mT(t

+2CT(T)PTU]/[

t=hy

+2¢7(t) P’ U/ 5 (s)dw(s)

Ioht)

-l-2CT(t)PTU3 m(s)dw(s)

t-hy
<" (UP G+ G P+EPE ()
TW)P U, S 'USP+ P U,S, U P+ PTUS, U PX()

+(f" h,m(S)dW(S))TSI(‘/.;Vhl,m(S)dW(s))
+(/‘” h"’lfjm(s)dw(s))TS?(\/:»—hh(:)m(s)dw(s))

t-hit) T te k(1)

+( Ji m(s)dw(s)) s( / m(s)dw(s)), an
tohy t-hyp

where

0 0O 0 0 I 0 00 0 0 0
-A 0 0 0 -1 0 0 0 W, W, D

G-|1 I 0o © 0 -I 0 0 ©o 0 of (18
0 I -1 v o0 0 I o0 0 0 0
0 o I ~I 0o 0 0 I 0 0 0

and Fact 2 was utilized in obtaining an upper bound of
LV, (z(t),t).

Calculating £V, (z(t),t) gives that
2V, (z(t).t) <z"(t)Rax(t)~zT ¢t~k )R=z(t—h;)
+2 ()R (t)— (1—hy)z" (t~h(t)) Rz (t —h(t))
+xT )R () —zT (t—h )Rzt —h,)
+g" (z(t)R,g(s(t))
—(1—h,)g (xR Rzt —h (). (19)
By using Lemma 1, we can obtain an upper bounds of

LV, (z(t)t) and LV, (z(t),t) as follows:

[K,(I(t),t)=hin(t)Q\y(t)—tht y' (s)Quuls)ds

L

t T t
< hin(t)Q]y(t)—(/ . y(S)dS) Ql(f . y(S)ds),

t
V4(x(t),t):f v (s)Quuls)ds— f T(s )Qyy(s)ds
+ h
(th—hL)y t)sz(t)
7ZH AlY X|A0| EXisle BEA HEY 7Y WHEH XdeE otdY
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t—h,
==y Q- [ v ) Quls)as

(h —h )y sz {t)— /

t—hy

- ¥ (s)Quyt)ds

t-hy

< (hy—h)y" () Qu(t)

—(hU—hL)?1(/:::(2)‘1}(8) ) Qz(/i hh;)y(s)ds)
—(hU—hL)'1(/:::?1/(5)618) Q2(\/~::hhv(’)y(3)d3)-

By calculating £ V;(z{t),t), we have

(s)Quu(s)ds

2V,(e0).0) < bS5, 50 - [ C T (s)S,ms)ds

t—h,

+(hy—hy )T ()E]8,5(()

-,
—ft mT(s)Szm(s)ds
t- hit)
t=hy
- m” (s)Sym(s)ds (21)
t—he
Here note that Eq. (7) means that
g (z;(£) = Li(t) <0 (j=1,n). (22)
and
g (a,(t—h(t) L2l (t—h(t)) <0 (j=1,n). (23)

From two inequalities (22) and (23) above, for any

diagonal positive matrices M, =diag{m;;,~~my,} and

M, = diag{my,,~~m,, }, the following inequalities hold

0=- i‘mlj[g; (2, (£)) — B2 ¢)]

ng,[gj £))—La2(t—h(t))]
" (L M, Lz (t) ~ g" (x(t)) Mg (e (t))
+27(t—h() LML (t—h(t))
—g" (@t~ h(t) Mg (z(t—R(t)))- (24)
Since the following inequality holds from (3) and (9),

P p(t) < ¢" ()g(t) = T (£)Z] 5,C0), (25)
there exist a positive matrix N satisfying the following
inequlity

¢T@)ENEL(E) —pT @)NP(t) 2 0, (26)
where Z, is defined in Theorem 1.

From (17)-(26) and by applying S-procedure [29], the
5
(z(@)t) =YLV, (z(t)
i=1

,£) has a new upper bound as

< T ()o¢(t)

+(/:~h m(s)dw(s))rsl(fih m(s)dw(s))
+ (f::hh;)m(S)dw(S))Tsl(f::(i)m(S)dW(S))
+(/ ,,h .m’"(s)d"”(s))Tsl(/ ::hh,(t)m(s)dw(s))

LV(x(t)t)

E R 2069
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—/t mT(s)Slm(s)ds— o mT(s)SQm(s)ds
t—h, t—h(t)
t=h(t) °

—-/ . mT(s)Szm(s)ds. (27)

where
¢=5+PTUS U P+ PTU,S; ' U P+ PTULS, U P
+ =T (P, +h, S, +(hy—h;)S,)E +EINE,.
Using Fact 1. the inequality <0, is equivalent to the

LMI (29). Then, there exist a positive scalar v such that
&+diag{~l, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}<0.

E[( /,t,hlm(S)dw(S))TSI( /‘:_hLm(s)dw(s))]
=E{f ;_h ’"T(S)Slm(s)ds},

E{('/‘tt:hh(;m(s )dw(S))TS2 (/tt:hh(i)m(s Jus ))}

=E{ [ mT<s>52m(s>ds},

t—h(t)

E[( f ::hh'(t)m(s)dw(s))TSz( / tt__hhft)m(s)dw(s))}

:E{ i "“”mT(s)s2m(s)ds},

—hy

Since

by taking the mathematical expectation on both side of
(27), we have

E{ £V(z(t),)}<E{(" &)} <—Blz(t)?.  (28)
The obtained inequality (28) indicates that the system (9)
is globally asymptotically stable in the mean square. This
complete our proof. ]

Remark 1. The solutions of Theorem 1 can be obtained
by solving the eigenvalue problem with respect to
solution variables, which is a convex optimization
problem. In this paper, we utilize Matlab’'s LMI Control
Toolbox [34] which
algorithm. This algorithm is faster than classical convex

implements the interior-point

optimization algorithms [29].

Remark 2. By iteratively solving the LMI given in
Theorem 1 with respect to hy for fixed h;, and hp, one
can find the maximum upper bound of time delay h; for

guaranteeing asymptotic stability of system (6).

Remark 3. If h, =1, the restriction that time delay is to
be differentiable and its time-derivative is less than one
is not required, which is considered in [23].

hyy by hp,  and
L=diag{l;, L, 1.}, the equilibrium of (6) is globally

Corollary 1 For given

asymptotically stable in the mean square if there exist
positive diagonal matrices M, (i=1,2), positive definite

matrices N, P, Q,(i=1,2), R(i=1,-4), and any matrices

2070

P,(i=2,3,45) satisfying the following LML

> =ZIN]
[* _12\,]<0 (29)

where X, P, £, are the same ones in Theorem 1.

4. Numerical Example

Example 1. Consider the following two-neuron neural

networks
() == 0.8z, (t) +0.1f, (z, (t — h(t)) +0.3f, (z, (t — h(t)) +5,
Ty(p) = 5.3z, (t) +0.9f, (z, (¢ — h(¢)) +0.1f, (z, (t — h(t)) -3,
fi(e) = f, () = sin(a). (30)
From system (30), we can obtain the following system
matrices:
o8 o0 o 0© o1 03} , 1 ©
A_[o 5.3]’ WO_[O 0]’ Wl_lo.g 0.1}’ L_[o 1}
0 0
D=E=EU=E1=[O 0] (3D

By applying Corollary 1 to the system (30), one can
obtain the delay bounds for guaranteeing the asymptotic
stability of (30) for different values of hp as listed in
Table 2. From Table 2, Corollary 1 provides much larger
delay bounds than those of [13].

Example 2. Consider the uncertain stochastic neural
networks (9) with

4 0 _[o4 —07 _[-02 06
A‘[o 5]’ W[J_[O.l 0 } Wl_[O.S —0.1]’

o5 0 (04 -—07
HO_[O 0.5]’ Hl_[o.l 0 }

L=05I, D=1[01 -01]7,

E=[02 03], f,=[02 -03], E=[-02 —03],
By applying Theorem 1 to the above system, the
maximum delay bounds of k() with the condition hp=1
for different h; are shown in Table 1. From Table 2, one

can ses that hy increases as h; does.

Example 3. Consider the following uncertain stochastic
neural networks in [23]:
da(t) = [(= A+ AA(t)x (&) + (W, + AW, (£))g (= (¢))
+(W, + AW, (t)g((t—h(2)))]dt
+ [Hyz(t) + Hiz(t — h(2)) ]| dwt)

where
45 0 0 —1 04 —-05 05 07 1.1
A=|0520|, W,=|0 —07 07|, W;=|—-01 04 0 |,
0 0 3.6 0.2 0.6 0.8 0 -02-08
1.2 04 —08 02 01 —-04
Hy=[{-15 —138 09 |, HH={0 02 0.5 |,
0.5 1.1 2.1 06 0 0

L=04L D=101 0 02]7,

E=[040102], E,=[-020201], E =[02-0201],

In [24], the obtained maximum allowable delay bounds
with hj, =1 was 0.0664. However, by applying Theorem 1
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Table 1 Delay bounds k- with h, =0 and different values
of h;, (Example 1).

h,=0] h, <08 | h,=09 | h,=1
Chen et al 0.058 not not not
[13]. ' applicable | applicable | applicable
Corollary 1 o] co 9,9483 2.0128
x 2 ofd 20iM & i ciekst hp =03kol wWE otH
ME H&steE b2 A Bt
Table 2 Delay bounds h, with different h; (Example 2).
hy 0 0.1 0.3 0.5
Huang and 0.4109 not not not
Feng [24]. e applicable | applicable | applicable
Theorem 1 06519 | 0.7512 0.9475 1.1475
to the above system, one can obtain the maximum

=1 is 0.0833. This shows
our criterion gives a larger delay bound than the result in
[24].

allowable delay bounds with hj

5. Conclusion

In this paper, the problem of the global asymptotic
stability for uncertain stochastic neural networks with
interval time varying delays is considered. To obtain a
less conservative result, a Lyapounv-krasovskii functional
of descriptor form, which includes three zero equations, is
utilized by combining with the LMI framework for
obtaining the stability criterion of the neural network (1).
Through three numerical example, the effectiveness of the

proposed stability criterion is successfully verified.
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Appendix
=X, ) 4 j= 1,10,
., =—PJA-A'P,+PL+P +R +R,+R+L'ML
£, =—PLi+Pl-ATP,+P,,
Z,, —PL+PL—-ATP,+P,,
L., =—PL-ATP,+ P,
xrl.sv:p —PI-ATP,+P,,
Y =—PL—ATP, +P

18

ra
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T = P‘z{“A TP + Py

Lhs) == Py — A Py + Py,
Loy = P W, — Al P10+P21,
210y P W —A PH+P22,
2(1.”)=P2 ‘D—A P12+P23,
Zig9) =—P/ =P +Pg;+Py—R,
Sy == P+ P~ P+ Py,
Ziay = =Py~ Pig+ Py,
Eips) ==P =P+ Py
Ligg) =P, 'y Piy + Py,
Lgny == Py — Py + Py,
Ziog) == Py =Pyt Py

_ pT
2(2‘9) =Py Wy — Py + Py,

Zizao) =P W, =Py, + Py,

Loy =5 'D— P,,+P,,
2(33)=‘P26"P20+Px7+P3T7—‘(1—hD)R2+LTMzL’
L= — Py~ Py + Py,

2i3.5) =—P[= Py + Py,

6 =—PL— Py +Py,

Lan = P26 P+ P,

Zise == P =Py + Py,

— pT
2(3,9)'})4 VV(>_P32+P43’
_ pT
Ziga0) = Pf Wi =Py + Py

2311) P 'D— P34+P45,
Ly = Py~ —%*
2(4 5) = P — B,

L) =~ Pljé_Pw

L =—Py— Py,

Sus =Py~ Py

25.0) =PW,— Py,
Z‘(4,10 ‘P P44,

Ty = B D= Py,

Zss = B =P +h;Q +(h,
Zis6) =~ Ph—P,
5.1y :_P2€ — Py
5.8 =—P3€—P9,
Zi5.0) =P W, - Py,

_hL)Q27

Zis00) =P6TVV1 =P,
Zisan :PGTD_Plz’

.6 =—P-18-P5—Q,
Sioq) =" Pog = Piys

Zis5) =Py~ Pays

2(0.9) _P W le*
Ziga0) =P W= Py
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Zigan =P/ D= Py,

Ziam) = Py =P~ (hy—h,)7'Q,

Zir8) =—P; — Py,

Zi7.9) =P W, — Py,

Zir10) =B Wi = Pay:

Ly =P/D-Py,,

g g) = Fro —PL=(hy—h,) " W,

Lisoy = Py Wy~ Py,

Zis.10) :PQTW1 — Py,

g = P/D-P,,

Zig.0) =Py W, + WP, +R,—M,

Sion0) =Pio W + Wi Py,

Ty =P D+ WP,

Zi1010) =P W, + WP, —(1—hp)R, — M,
Zoony =PI D+ WP,

Sy =Py D+DTP,—N. (32)
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