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A New Stability Criterion of a Class of Neutral Differential Equations

WoE R AR
(Oh-Min Kwon * Ju-Hyun Park)

Abstract - In this letter, the problem for a class of neutral differential equation is considered. Based on the Lyapunov
method, a stability criterion, which is delay-dependent on both T and o, is derived in terms of linear matrix inequality
(LMD. Two numerical examples are carried out to support the effectiveness of the proposed method.
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1. Introduction

Since time delays are frequently occurred in many
industrial system such as large-scale system, power
system, chemical process, and network control systems,
many researchers have been focused on the stability
analysis of time-delay systems. For references, see [1-10]
and references there-in.
stability
differential equations of the form

Recently, the analysis of the neutral

—%[x(t) + px(t—1)]=— ax( + btanhx(t—o0), £0,(1)

has been investigated in [6-8]. This equation is special
case of the neural network model which has been
extensively investigated for the asymptotic stability and
can be applied to various systems such as pattern
classification, image processing, signal processing, and
fixed-point computation, and so on [11-12]. Here, @, T
and 0 are positive real scalar, b, and p are real
numbers, and [p<1. It is assumed that the delays T and
o are bounded as 0<t< 1t and (<0< 0. With each
solution of Eq. (1), the initial condition is defined as:

x(s) = o(s), s=[—86,0],

where §=max (1, 0), ®(s)=e([—5,0],R).

More recently, delay-dependent asymptotic stability for
Eq. (1), which gives a less conservative result than
delay-independent one when the size of delay is small,
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have been studied in [9-10].

In this paper, we propose a new stability criterion for
asymptotic stability of Eq. (1). The proposed criterion is
delay-dependent on both T and o. In order to derive a
less conservative results, an integral inequality lemma is
introduced and a new Lyapunov-krasovskii functional
with descriptor form are utilized in deriving the stability
criterion for Eq. (1). Unlike the methods in [9-10], we do
not use the model transformation technique, which leads
an additional dynamics. The proposed stability criterion is
represented in terms of an LMI which can be solved
efficiently by various convex optimization algorithms.
Two numerical examples are given to show the
effectiveness of the proposed method. Throughout this
paper, Y% represents the elements below the main
diagonal of a symmetric matrix. The notation X)Y,
where X and Y are matrices of same dimensions,
means that the matrix X—Y 1is positive definite.
C([0 ), R") denotes the Banach space of continuous

vector functions from [0 o) to R". diag{-} denotes
the block diagonal matrix.

2. Main result

Before deriving the main result, we need the following
facts and lemma.
Fact 1. (Schur Complement) Given constant symmetric

matrices Z|,%y,Z; where =,=%T and 0<(Z,=3I then
T, +2{2, 12,40 if and only if

=1 ZHT]«) [_22 23]<o
[23 —2, o 237 -2 '

Fact 2. For any real vectors @, b and any matrix Q>0
with appropriate dimension, the following inequality
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20Tb<aTQa+57Q ~1b
is always satisfied.
To derive a less conservative stability criterion, let us
introduce a new integral inequality which will be used to
derive the upper bound of Lyapunov function.

Lemma 1. For any scalar ¥>0, and n, the following

inequality holds:
¥ f:_ 2(8)d=< T (D Tty TTDFTR(H  (2)

where
(P 17

V()= x(t=1) ®)

tanhx(#)
tanhx(¢—0)

{ f:_otanhx( s)ds

F=[0000mn 000l (4)
F= diag{0,0,0,0,2n,0,0,0}. (5)
Proof. By utilizing Fact 2, we have ’
t. [
—yftﬂxz(s)ds < 2ft_Tx(s) F(fHds
+y [ U FTRU(Dds
< RTHTF(D+¥ *‘T@T(t)FTFs(t)

=17() F(tHy “TTFTFY(D),
6
where 7=[00001000]. This completes the
proof. |

For simplicity of matrix dimension, let us define the
matrix = in Appendix. Then, we have the following
theorem for asymptotic stability of Eq. (1).

Theorem 1. For given 1>0, and "0>0, every solution
x(8) of Eq. (2) satisfies x(#)—0 as #—oo, if there exist
scalar y{i=1,...,5),p,,9,and
., 17) such that the following LMI holds

positive any scalar
n,n, pi=2,
£ tF] oFf
* -1y, 0 <0, (7
* * — 0%j5
where X is defined in Appendix and
F=[0000m=n,0001,
F,=[0000000 ny.
Proof. For positive scalar ¥ i=1,...,5),p;, and any
scalar p(i=2,...,17), let us consider the following
Lyapunov function defined by
V=V,+V,+ V; ®
where
Vi=tT(DEF(Y),

2024

V2=Y1J; 22(s)ds+ yzf_ %2( )dst ygf_ tanhx?(s)ds,

Itanh x(w)duds,

10000000
ETZ{0000000 0,
00000000

Ps D3 Dy Ps Pg P7 Pg 9

D1 P11 P12 P13 Py P15 Pig Pz
and 1() is defined in (3) of Lemma 1.
First, the time derivative of V; along the solution of Eq.
(1) is obtained by
Vv, = 2H(HPTETL(PH

pp 0 0 0 0 0 0 O
Pols

x(9)
= nT(ppPT

0

x(D
= 7D PT| — () — ax( D+ btanhx(t—o0) —pa(t—1
t
W) —xt=0— [ #(9)ds
= ") (PTG+ G™PL(Y,
(10)
where
0 0 1 0 0000
G=|l—a 0 -1 —p 0 0560
1 =10 0 —-1000

Second, differentiating V, leads to

Vy = v (D —y =D+, 20— 5,2 (t— 1) ()
+ y;tanh >x(H —y stanh %x(#—0).

Last, V3 can be obtained as
Vy = v B0 v, [ #(9ds
+ysotanhzx(t)—¥5j:_0tanh2x(s)ds
< 37D, [ FH(5)ds
+ ¥ otanh 2x(8) — 5 f_gtanhzx(s)ds.
(12)

By utilizing Lemma 1, we have a new upper bound of
V, as
V, < v, 1% +x5_5tanh x( £)
+37() (Fy+3, TFIF + Tyt x5 ToFTF)UD)
(13)
where

T, = diag0,0,0,0,21,0,0,0},
F, = diag{0,0,0,0,0,0,0,2n,},

—

and F, and F, are defined in Theorem 1.
By utilizing the relation tanh?x()<x%(H, we have
—0x%() < —O6(tanhx(DH)?, (14)

where © is a positive constant to be chosen later.
From Eqgs. (10)-(14), we have the following upper bound

of V as



V < () (PTG+ GTPY(D) + 3 24 () —x 21— 1)

+ ¥, 22— %5 £2(t— 1) + ¥ stanh 2x(#) — ¥ stanh 2x(¢t— o)

+¥, 122D RO FRD+v, 'O FIF LD
+ v5 otanh 2 +3 7(8) FR(D) + 35 Tot T() FIF,(H)
+ 0x%(f) — 6tanh (D _

= (D (= +vy, ' FTF + x5 VoFIF)( ).

(15)
By Fact 1, S+vy, "tFTF, 4+ 3. "oFTF,<0 is equivalent to
the LMI (7). Therefore, if LMI (7) holds, V is negative.
V< —Ellx(D? for sufficiently small
k>0. According to the Theorem 9.8.1 in [1], we conclude

that if [pl<1 and the inequality (7) holds, then, system
(1) is asymptotically stable. This completes the proof. WM

This means that

Remark 1. The problem for solving LMI(7) in Theorem
1 is to determine whether the problem is feasible or not.
It is called the feasibility problem. The solutions of the
LMI (7) can be found by solving eigenvalue problem with
respect to ¥, P;, n; and ©, which is a convex
problem [13].
optimization algorithms can be used to check the
feasibility of the LMI in Theorem 1. In this letter, in
order to solve the LMI of Theorem 1, we utilize Matlab’s
LMI  Control Toolbox [14], which
state-of-the-art interior-point algorithms,
significantly faster than classical convex optimization

optimization Various efficient convex

implements
which is

algorithm [13]. Therefore, all solutions ¥; p;, n; and

6, can be obtained simuitaneously.

Remark 2. The
delay-dependent on both T and o.

criterion of Theorem 1 is

3. Numerical Examples

To demonstrate the effectiveness of the proposed
criterion, we give the following two examples.
Example 1. Consider the equation in [10]:

—j;[x<t)+o.35x(t—o.5)] =—1.5x(#) + btanhx(¢—0.5). (16)

For this system, the maximum allowable bound of & is
given in Table 1. From Table 1, one can see our result
gives a larger upper bound of & for guaranteeing the
asymptotc stability of (16) than those in other literature.
Example 2. Consider the neutral differential equation in
[10]:

& [ +0.24(t— 1] =—0.6x() +0.3tanha(t—0). (17)

The maximum allowable delay bound for stability in Park
and Kwon [10] with T1=0.1 was 1.902. However, by
applying Theorem 1 to the system (17), one can see that
the system (17) is asymptotically stable for any ¢=0 and

t2(). For reference, the LMI solution of Theorem 1 with
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Table 1 Upper bounds of & for guaranteeing stability in
Example 1.

Upper bounds of b
Agrawal and Grace [8] 0.318
El-Morshedy and

0.423
Gopalsamy [6]
Park [9] 0.423
Park and Kwon [10] 0.669
Theorem 1 1.40

“0=1=10° can be obtained as

¥, = 554.2395, y,=1.8001x10%, v,=1.0271x10%,

¥, = 1.3224x10 75, y,=4.0204x10 =7, ©=1.8079x10%,
n; = 3.0646x10 ~%, n,=—2.2595x10 8,

b, = 3.8021x10%, p,=2.0876x10°, py=594.2890,

D, = 2.0728x10°, py=—467.6535, pg= 675.2639,

b7 = 0, pg=576,1082, Pg=0,910=—375.8661,

pqy = 103.4981, p ,=—580.1084, p 3=—239.0418,

Py = 304.3665, DI5=0, 916:33.3565, 917:0.

Thus, Theorem 1 in this paper provides a much less
conservative result than the one in Park and Kwon [10].

4. Conclusions

In this paper, a new delay-dependent stability criterion
for a class of neutral differential equations is proposed.
To obtain a less conservative result, a new Lyapunov -
krasovskii functional of descriptor form which includes
zero equations is proposed in deriving the stability
criterion of Eq. (1). And an integral inequality lemma,
which includes free variables, is utilized in obtaining an
upper bound of the integral term. Through two numerical
examples, the effectiveness of the proposed stability
criterion is shown.
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Appendix

Z=(Z),475=1,...,8, = y=—2ap,+2p ;+¥,+0,
Zp=—apgtp =Py, X 3=—ap, T 0t PPy,
L= apst P3P0y, T 5=—aPgtp Py,
Zg=—ap;tp 5 = p=—apgtp g+ bpy,

T g=—apgtp g, Zu=—2p 7Y, Z93=—D 9~ D3,
Xy =Py P03 =Py Py, Zyg="0y

Ly =05t g, Tg=—0p, S =—20,+¥,+ Ty,

Xy == P50y, L ="Dg— D1y, = 3= Dy,
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Tg=—pgtbpy, Tx=""0y T y="20P5 Y,

L 5=—006—P 3, T 5= PPy, Z g=—pPgt bos,
Zg=—00g, T5=—20 20, Zg=—p4,
Sg=—ptbos E=—01y Sg=1v;+ 0¥;—6,
Lg=bp;, Lgg=0, X y=2bpg—¥3, T 3= bpy,

2 gg= 2Ny,
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