• Title/Summary/Keyword: latch-up

Search Result 149, Processing Time 0.044 seconds

IGBT Mesh-Topology Modeling And Its Application To Latch-Up Performance

  • Zhang H.;Duan F.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.22-25
    • /
    • 2001
  • A new mesh-topology model of IGBT is presented. It can be applied to the research of IGBT's static and dynamic latch-up (du/dt latch-up, overheat latch-up, overload latch-up, overvoltage latch-up) as well as the switching on-off behavior of the device. The overcurrent latch-up is analyzed.

  • PDF

Characteristics of Latch-up Current of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 Latch-up 전류 특성)

  • 이응래;오정근;이형규;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.799-805
    • /
    • 2004
  • Two dimensional MEDICI simulator is used to study the characteristics of latch-up current of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics, latch-up current density, ON-voltage drop and electrical property with the variations of p-base impurity concentrations. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have the better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer p-base structure under the floating $N^+$ emitter indicates to have the better characteristics of latch-up current and breakover voltage.

Investigations of Latch-up characteristics of CMOS well structure with STI technology (STI 기술을 채용한 CMOS well 구조에서의 Latch-up 특성 평가)

  • Kim, In-Soo;Kim, Chang-Duk;Kim, Jong-Chul;Kim, Jong-Kwan;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.339-341
    • /
    • 1997
  • From this first studies, We have investigated the latch-up characteristics of various CMOS well structures possible with high energy ion implantation processes. In this study, we also investigated those of STI(Shallow Trench Isolation} structures with varing n+/p+ spacing and the depth of trench. STI structure is formed by T-SUPREM4 process simulator, and then latch-up simulations for each case were performed by MEDICI device simulator for latch-up immunity improvement. STI is very effective to preventing the degradation of latch-up characteristics as the n+/p+ spacing is reduced. These studies will allow us to evaluate each technology and suggest guidelines for the optimization of latch-up susceptibility.

  • PDF

A study on latch-up immune structure by high energy ion implantation (고에너지 이온 주입을 이용한 latch-up 면역에 관한 구조 연구)

  • 노병규;안태준;강희원;조소행;오환술
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.441-444
    • /
    • 1998
  • This paper is concerned with researching latch-up immune CMOS structure was performed. By the simulation results, the connecting layer had more effect than the buried layer to latch-up immune. When the connecting layer was the dose 1*10$^{14}$ /cm$^{2}$ and the energy 500KeV, the trigger current was more 0.6mA/.mu.m and the trigger voltage was 6V. The more the connecting layer dose was lower, the more the latch-up immune characteristics was butter.

  • PDF

A Study of CMOS Latch-Up by Layout Dependence (레이아우트 변화에 대한 CMOS의 래치업 특성 연구)

  • 손종형;한백형
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.898-907
    • /
    • 1992
  • This paper deals with a detailed analysis of CMOS latch up dependancies on the layout and geo-metrical demensions on the mask using same materials and same processes. For this purpose, six different layout models depending upon the N+ / P+ spacing and three different guard ring models have been gesigned, fabricated, and tested. As a result, common emitter current gain, shunt resistance, and holeing current versus N+/P+ spacing have been measured and analyzed experimentally. Also the fact that guard ring is sffective in reducing the latchup possibility has been verified through this study.

  • PDF

The Study of Latch-up (펄스감마선에 의한 DC/DC 컨버터의 Latch-up현상에 대한 연구)

  • Oh, Seung-Chan;Lee, Nam-Ho;Lee, Heung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.719-721
    • /
    • 2012
  • In this study, we carried out transient radiation experiments for identify failure situation by a transient radiation effect on DC/DC converter device due to high energy ionizing radiation pulse induced to electronic device. This experiments were carried out using a 60 MeV electron beam pulse of the LINAC(Linear Accelerator) facility in the Pohang Accelerator Laboratory. In this experiment, we has found that the latch-up phenomena could be checked in more than $1.0{\times}10^8$rad(si)/sec condition.

  • PDF

Study on Latch Up Characteristics of Super Junction MOSFET According to Trench Etch Angle (Trench 식각각도에 따른 Super Juction MOSFET의 래치 업 특성에 관한 연구)

  • Chung, Hun Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.551-554
    • /
    • 2014
  • This paper was showed latch up characteristics of super junction power MOSFET by parasitic thyristor according to trench etch angle. As a result of research, if trench etch angle of super junction MOSFET is larger, we obtained large latch up voltage. When trench etch angle was $90^{\circ}$, latch up voltage was more 50 V. and we got 700 V breakdown voltage. But we analyzed on resistance. if trench etch angle of super junction MOSFET is larger, we obtained high on resistance. Therefore, we need optimal point by simulation and experiment for solution of trade off.

A New SOl LIGBT Structure with Improved Latch-Up Performance

  • Sung, Woong-Je;Lee, Yong-11;Park, Woo-Beom;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.283-285
    • /
    • 2001
  • In this paper, a new lateral insulated gate bipolar transistor (LIGBT) is proposed to improve the latch-up performance without current path underneath the n+ cathode region. The improvement of latch-up performance is verified using the two-dimensional simulator MEDICI and the simulation results on the latch-up current density are 3.12${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the proposed LIGBT and 0.94${\times}$10$\^$-4/ A/$\mu\textrm{m}$ for the conventional LIGBT. The proposed SOI LIGBT exhibits 3 times larger latch-up capability than the conventional SOI LIGBT.

  • PDF

Investigation of the Characteristic of Latch-up of 0.1 ${\mu}{\textrm}{m}$ Gate Length CMOS (0.1${\mu}{\textrm}{m}$ 게이트 길이의 CMOS소자의 Latch-up 특성에 대한 연구)

  • 김연태;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.164-167
    • /
    • 1994
  • In this Study, we design the process of 0.1$\mu\textrm{m}$ gate length CMOS that is immunized against Latch-up, and investigate the characteristic of Latch-up of this device by the design rule of layout. Using TSUPREM4 and MEDICI, we design the device and simulate the variable characteristics of it we could understand that the characteristic of Latch-up is changed for the better by varying the critical factor of it. We also investigate the structure of CMOS that can be immunized against Latch-up.

Experimental Analysis and Suppression Method of CMOS Latch-Up Phenomena (CMOS Latch-Up 현상의 실험적 해석 및 그 방지책)

  • Go, Yo-Hwan;Kim, Chung-Gi;Gyeong, Jong-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.50-56
    • /
    • 1985
  • A common failure mechanism in bulk CMOS integrated circuits is the latch-up of parasitic SCR structure inherent in the bulk CMOS structure. Latch-up triggering and holding charac-teristics have been measured in the test devicrs which include conventional and Schottky-damped CMOS structures with various well depths and n+/p+ spacings. It is demonstrated that Schottky-clamped CMOS is more latch-up immune than conventional bulk CMOS. Finally, the simulation results by circuit simulation program (SPICE) are compared with measured results in order to verify the validity of the latch-up modal composed of nan, pnp transistors and two external resistors.

  • PDF