• Title/Summary/Keyword: k-record statistics

Search Result 141, Processing Time 0.021 seconds

CHARACTERIZATION OF CONTINUOUS DISTRIBUTIONS THROUGH RECORD STATISTICS

  • Khan, Abdul Hamid;Faizan, Mohd.;Haque, Ziaul
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.485-489
    • /
    • 2010
  • A family of continuous probability distribution has been characterized through the difference of two conditional expectations, conditioned on a non-adjacent record statistic. Also, a result based on the unconditional expectation and a conditional expectation is used to characterize a family of distributions. Further, some of its deductions are also discussed.

Bayesian Estimators Using Record Statistics of Exponentiated Inverse Weibull Distribution

  • Kim, Yong-Ku;Seo, Jung-In;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.479-493
    • /
    • 2012
  • The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate priors for shape and scale parameters. The results may be of interest especially when only record values are stored.

Estimation based on lower record values from exponentiated Pareto distribution

  • Yoon, Sanggyeong;Cho, Youngseuk;Lee, Kyeongjun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1205-1215
    • /
    • 2017
  • In this paper, we aim to estimate two scale-parameters of exponentiated Pareto distribution (EPD) based on lower record values. Record values arise naturally in many real life applications involving data relating to weather, sport, economics and life testing studies. We calculate the Bayesian estimators for the two parameters of EPD based on lower record values. The Bayes estimators of two parameters for the EPD with lower record values under the squared error loss (SEL), linex loss (LL) and entropy loss (EL) functions are provided. Lindley's approximate method is used to compute these estimators. We compare the Bayesian estimators in the sense of the bias and root mean squared estimates (RMSE).

Estimation for Two-Parameter Generalized Exponential Distribution Based on Records

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2013
  • This paper derives maximum likelihood estimators (MLEs) and some approximate MLEs (AMLEs) of unknown parameters of the generalized exponential distribution when data are lower record values. We derive approximate Bayes estimators through importance sampling and obtain corresponding Bayes predictive intervals for unknown parameters for lower record values from the generalized exponential distribution. For illustrative purposes, we examine the validity of the proposed estimation method by using real and simulated data.

A Bayesian Approach for Record Value Statistics Model Using Nonhomogeneous Poisson Process

  • Kiheon Choi;Hee chual Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.1
    • /
    • pp.259-269
    • /
    • 1997
  • Bayesian inference for a record value statistics(RVS) model of nonhomogeneous Poisson process is considered. We seal with Bayesian inference for double exponential, Gamma, Rayleigh, Gumble RVS models using Gibbs sampling and Metropolis algorithm and also explore Bayesian computation and model selection.

  • PDF

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

ON RELATIONS FOR QUOTIENT MOMENTS OF THE GENERALIZED PARETO DISTRIBUTION BASED ON RECORD VALUES AND A CHARACTERIZATION

  • Kumar, Devendra
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.327-336
    • /
    • 2013
  • Generalized Pareto distributions play an important role in re-liability, extreme value theory, and other branches of applied probability and statistics. This family of distribution includes exponential distribution, Pareto distribution, and Power distribution. In this paper we establish some recurrences relations satisfied by the quotient moments of the upper record values from the generalized Pareto distribution. Further a char-acterization of this distribution based on recurrence relations of quotient moments of record values is presented.

An Analysis of Record Statistics based on an Exponentiated Gumbel Model

  • Kang, Suk Bok;Seo, Jung In;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.5
    • /
    • pp.405-416
    • /
    • 2013
  • This paper develops a maximum profile likelihood estimator of unknown parameters of the exponentiated Gumbel distribution based on upper record values. We propose an approximate maximum profile likelihood estimator for a scale parameter. In addition, we derive Bayes estimators of unknown parameters of the exponentiated Gumbel distribution using Lindley's approximation under symmetric and asymmetric loss functions. We assess the validity of the proposed method by using real data and compare these estimators based on estimated risk through a Monte Carlo simulation.

RELATIONS OF DAGUM DISTRIBUTION BASED ON DUAL GENERALIZED ORDER STATISTICS

  • KUMAR, DEVENDRA
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.477-493
    • /
    • 2017
  • The dual generalized order statistics is a unified model which contains the well known decreasingly ordered random variables like order statistics and lower record values. With this definition we give simple expressions for single and product moments of dual generalized order statistics from Dagum distribution. The results for order statistics and lower records are deduced from the relations derived and some computational works are also carried out. Further, a characterizing result of this distribution on using the conditional moment of the dual generalized order statistics is discussed. These recurrence relations enable computation of the means, variances and covariances of all order statistics for all sample sizes in a simple and efficient manner. By using these relations, we tabulate the means, variances, skewness and kurtosis of order statistics and record values of the Dagum distribution.

Estimation for generalized half logistic distribution based on records

  • Seo, Jung-In;Lee, Hwa-Jung;Kan, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1249-1257
    • /
    • 2012
  • In this paper, we derive maximum likelihood estimators (MLEs) and approximate MLEs (AMLEs) of the unknown parameters in a generalized half logistic distribution when the data are upper record values. As an illustration, we examine the validity of our estimation using real data and simulated data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE) through a Monte Carlo simulation for various record values of size.