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Abstract
The inverse Weibull distribution(IWD) is a complementary Weibull distribution and plays an important role

in many application areas. In this paper, we develop a Bayesian estimator in the context of record statistics
values from the exponentiated inverse Weibull distribution(EIWD). We obtained Bayesian estimators through the
squared error loss function (quadratic loss) and LINEX loss function. This is done with respect to the conjugate
priors for shape and scale parameters. The results may be of interest especially when only record values are
stored.
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1. Introduction

The probability density function(pdf) and cumulative distribution function(cdf) of the random variable
X having the exponentiated inverse Weibull distribution are given by

f (x;α, β, γ) =
αγ

βγ
exp

(−α(βx)−γ
)

x−γ−1 (1.1)

and

F(x;α, β, γ) = exp
(−α(βx)−γ

)
, x > 0, α, β, γ > 0. (1.2)

The kth moment of this distribution that was introduced by Ali et al. (2007) is

E
(
Xk

)
=
α

k
γ

βk Γ

(
1 − k

γ

)
, γ > k. (1.3)

Therefore, the mean and the variance of the exponentiated inverse Weibull distribution can be written
as follows.

E (X) =
α

1
γ

β
Γ

(
1 − 1

γ

)
(1.4)

and

Var (X) =
α

2
γ

β2

Γ (1 − 2
γ

)
−

{
Γ

(
1 − 1

γ

)}2 , for γ > 2. (1.5)
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Both the mean (1.4) and the variance (1.5) increase as α increases, when γ > 2. From (1.2), the
reliability function of the exponentiated inverse Weibull distribution is given by

R(t) = 1 − F(t) = 1 − exp
(−α(βt)−γ

)
, t > 0. (1.6)

Note that the inverse Weibull distribution is a special case of (1.1) when α = 1. The inverse Weibull
distribution is the complementary Weibull distribution and plays an important role in many applica-
tions including the dynamic components of diesel engines, the times to breakdown of an insulating
fluid subject to the action of constant tension and flood data (see Nelson, 1982; Maswadah, 2003).
In addition, it has been used quite extensively when the data indicate a monotone hazard function
because of the flexibility of the pdf and its corresponding hazard function. Studies for the inverse
Weibull distribution have been conducted by many authors. Calabria and Pulcini (1994) studied Bayes
2-sample prediction for the inverse Weibull distribution. Mahmoud et al. (2003) considered the order
statistics arising from the inverse Weibull distribution and derived the exact expression for the single
moments of order statistics. They also obtained variances and covariances based on the moments of
order statistics.

Chandler (1952) introduced the study of record values and documented many of the basic prop-
erties of records. Record values arise in many real-life situations that involve the weather, sports,
economics and life tests. Record model is related to the order statistics model, both of which appear
in many statistical applications and are widely used in statistical modeling and inference because it
can be viewed as order statistics from a sample whose size is determined by the values and the order
of occurrence of observations. In particular, Balakrishnan et al. (1992) established some recurrence
relations for the single and double moments of lower record values from Gumble distribution. Soli-
man et al. (2006) obtained Bayes estimators based on record statistics for two unknown parameters
of the Weibull distribution. Recently, Sultan (2008) derived the Bayes estimators and obtained the
estimators of the reliability and hazard functions for the unkonwn parameters of the inverse Weibull
distribution based on lower record values.

The squared error loss function(SELF) is a symmetric loss function assigning equal losses to
overestimation and underestimation. Therefore, under the SELF, Bayes estimator is defined by the
posterior expectation. However, such a restriction may be impractical because an overestimate is
usually more serious than an underestimate in the estimation of reliability and failure rate functions.
In this case the use of a symmetrical loss function might be inappropriate. To cover this drawback,
we consider two types asymmetric loss functions known as the LINEX loss function(LLF) and the
SQUAREX loss function(SLF). The LLF was introduced by Varian (1975) and received significant
popularity due to Zellner (1986). It may be expressed as L(△) ∝ exp(c△) − c△ − 1, c , 0, where
△ = θ̂ − θ and θ̂ is an estimator of θ. The sign and magnitude of the shape parameter c represents
the direction and degree of symmetry, respectively. When c is positive, the overestimation is more
serious than underestimation and the situation is reverse when c is negative. For c = 1, the LLF is
quite asymmetric (about zero) with overestimation being more costly than underestimation. If c is
close to zero, the LINEX loss is approximately the squared error loss and therefore almost symmetric.
By Zellner (1986), the Bayes estimator of θ under the LLF was given by θ̂L = −(1/c) log[Eπ(e−cθ)],
provided that the expectation exists and is finite.

Secondly, the SLF proposed by Thompson and Basu (1996), is a generalization of LLF. It has the
following form. L(△) ∝ exp(c△) + d△2 − c△ − 1, d > 0, c and △ are as before. Hence, if d = 0, the
SLF is identical with the LLF; if c = 0, it reduces to the SELF. Under the SLF, the Bayes estimator of
θ is θ̂S L = θ̂L + (1/c) log[1 + (2d/c)(θ̂s − θ̂S L)].

The exponentiated inverse Weibull distribution is the most attractive generalization of inverse
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Weibull distribution and provides a better fit for real life data compared to an inverse Weibull distri-
bution. In this paper, we develop a Bayesian estimator in the context of record statistics values from
the EIWD. We obtained Bayesian estimators using the squared error loss function (quadratic loss)
and LINEX loss function. This is done with respect to the conjugate priors for the shape and scale
parameters.

The outline of the remaining sections is as follows. In Section 2, we develop the exact form of
the single moment and the maximum likelihood estimators(MLEs) of lower record values from the
EIWD. Section 3 details Bayesian estimation in the context of record statistics values from the EIWD
under three types loss functions. In Section 4, we also analyze application examples to illustrate the
application of different derived estimators. Finally, in the estimated risks, the Bayes estimators are
compared with MLEs through Monte Carlo simulations.

2. Maximum Likelihood Estimation

In this section, we consider the MLEs of the unknown parameters and reliability function R(t) in
an exponentiated inverse Weibull distribution based on lower record values. Let X1, X2, X3, . . . be
a sequence of independent and identically distributed(iid) random variables with cdf F(x) and pdf
f (x). Setting Yn = min(X1, X2, . . . , Xn), n ≥ 1, we say that X j is a lower record and denoted by XL( j)
if Y j < Y j−1, j > 1. The indices at which the lower record values occur are given by the record
times {L(n), n ≥ 1}, where L(n) = min{ j| j > L(n − 1), X j < XL(n−1)}, n > 1, with L(1) = 1. The
corresponding likelihood function of the first n lower record values, xL(1), . . . , xL(n) is

L = f (xL(n))
n−1∏
i=1

f (xL(i))
F(xL(i))

. (2.1)

Suppose we observe n lower record values xL(1), . . . , xL(n) from the exponentiated inverse Weibull
distribution with pdf (1.1). It follows, from (1.1), (1.2), and (2.1), that

L(α, β, γ) =
(
αγ

βγ

)n

exp
(
− α

(βxL(n))γ

) n∏
i=1

x−γ−1
L(i) . (2.2)

As a property of lower record values, its kth moment can be obtained by

E
(
Xk

L(n)

)
=
α

k
γ

βk

Γ(n − k/γ)
Γ(n)

, γ > k. (2.3)

Now, we derive the MLEs of the parameters of the exponentiated inverse Weibull distribution
when record values are given as data. From (2.2), the natural logarithm of the likelihood function is
given by

log L(α, β, γ) = n logα − nγ log β + n log γ − α

(βxL(n))γ
− (γ + 1)

n∑
i=1

log xL(i). (2.4)

From the log-likelihood function (2.4), we obtain the likelihood equations for α, β, and γ as

∂ log L
∂α

=
n
α
−

(
1

βxL(n)

)γ
= 0, (2.5)

∂ log L
∂β

= −γn
β
− αγ

β

(
1

βxL(n)

)γ
= 0, (2.6)
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and

∂ log L
∂γ

=
n
γ
− n log β +

α log
(
βxL(n)

)(
βxL(n)

)γ −
n∑

i=1

log xL(i) = 0. (2.7)

By solving the above equations, we can find the following MLEs of the unknown parameters α, β,
and γ.

α̂ = n
(
β̂xL(n)

)γ̂
, (2.8)

β̂ =

(
α̂

n

) 1
γ̂

x−1
L(n), (2.9)

and

γ̂ =
n

n log β̂ +
∑n

i=1 log xL(i) − α̂
(
β̂xL(n)

)−γ̂
log

(
β̂xL(n)

) . (2.10)

The MLE γ̂ in (2.10), in conjunction with the MLE β̂ in (2.9), reduces to

γ̂ =
n∑n

i=1 log xL(i) − n log xL(n)
. (2.11)

By the invariance property of the MLE, we can obtain the MLE of reliability function R(t) to be

R̂(t) = 1 − exp

− α̂(
β̂t

)γ̂
 . (2.12)

3. Bayesian Estimation

In this section, we estimate α, β, γ, and R(t), through consideration of symmetric loss function and
two types of asymmetric loss functions and discuss method to obtain hyperparameters.

3.1. Unknown parameter α

Under the assumption that parameters β and γ are known, a natural conjugate prior for the parameter
α is a gamma prior as follows.

π(α) =
ba

Γ(a)
αa−1e−αb, α > 0, a, b > 0. (3.1)

It follows, from (3.1), that the posterior distribution of α is given by

π(α|x) =
(
b + (βxL(n))−γ

)n+a

Γ(n + a)
αn+a−1e−α(b+(βxL(n))−γ), (3.2)

which is a Gamma
(
n + a, b + (βxL(n))−γ

)
.

From (3.2), the Bayes estimators of α and R(t) based on the SELF can be derived, respectively, as

α̂s =

∫ ∞

0
απ(α|x)dα =

n + a
b + (βxL(n))−γ

(3.3)
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and

R̂s(t) =
∫ ∞

0
R(t)π(α|x)dα = 1 −

(
1 +

(βt)−γ

b + (βxL(n))−γ

)−(n+a)

. (3.4)

Likewise, the Bayes estimators of α and R(t) based on the LLF can be derived, respectively, as

α̂L = −
1
c

log
∫ ∞

0
e−cαπ(α|x)dα =

n + a
c

log
(
1 +

c
b + (βxL(n))−γ

)
(3.5)

and

R̂L(t) = −1
c

log
∫ ∞

0
e−cR(t)π(α|x)dα

= −1
c

log

e−c
∞∑

m=0

cm

m!

(
1 +

m(βt)−γ

b + (βxL(n))−γ

)−(n+a)
= 1 − 1

c
log

 ∞∑
m=0

cm

m!

(
1 +

m(βt)−γ

b + (βxL(n))−γ

)−(n+a) . (3.6)

Also, the Bayes estimators of α and R(t) based on the SLF are

α̂S L = α̂L +
1
c

log
[
1 +

2d
c

(α̂s − α̂S L)
]

(3.7)

and

R̂S L(t) = R̂L(t) +
1
c

log
[
1 +

2d
c

(
R̂s(t) − R̂S L(t)

)]
. (3.8)

Since the Bayes estimators (3.7) and (3.8) are not explicit form, we can solve through the use of a
numerical method such as Newton-Raphson.

To assess the performance of the MLEs and the Bayes estimators, we simulate the estimated risks
of all derived estimators through a Monte Carlo simulation method when the parameters β and γ are
known. The following procedure is required to obtain estimated risks. After setting E(α) and Var(α)
from the prior density (3.1), we obtain the hyperparameters a and b of the gamma prior (3.1) by
solving them. Note that E(α) is the actual value for α. We generate the lower record values from
the exponentiated inverse Weibull distribution with α = E(α). By using these values, we can finally
obtain the Bayes estimators. The estimated risks for each estimator are calculated as the average of
their squared deviations for 10,000 repetitions. It is expressed as

1
n

n∑
i=1

(
θt − θ̂

)2
.

Here θt and θ̂ is the actual value and the estimate of θ, respectively. The estimated risks of α and R(t)
are given in Table 1. The Bayes estimators based on the SELF, the LLF, and the SLF are denoted by
BS, BL, and BSL, respectively.
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3.2. Unknown parameters (α, β)

In the case of the two parameters problem, we need to specify a general joint prior for α and β that
may lead to computational complexities. To avoid this problem, we consider Soland’s method. Soland
(1969) considered a family of joint prior distribution that places continuous distribution on the scale
parameter and discrete distributions on the shape parameter.

Suppose that β is restricted to the values β1, β2, . . . , βJ with prior probabilities η1, η2, . . . , ηJ , that
is,

π(β j) = P[β = β j] = η j, j = 1, 2, . . . , J. (3.9)

Further, suppose that the conditional α upon β = β j has a natural conjugate prior as gamma(a j, b j)
with pdf

π(α|β = β j) =
ba j

j

Γ(a j)
αa j−1e−αb j , α > 0, a j, b j > 0. (3.10)

Combining (2.2) and (3.10), we get the conditional posterior of α|β = β j as

π(α|β = β j, x) =

(
b j + (β jxL(n))−γ

)n+a j

Γ(n + a j)
αn+a j−1e−α(b j+(β j xL(n))−γ) (3.11)

which is a Gamma(n + a j, b j + (β jxL(n))−γ).
In view of the discrete version of Bayes theorem, we obtain the marginal posterior of β as

πM(β j|x) ∝
∫ ∞

0
L(α, β)π(α|β = β j)π(β j)dα

=
η jb

a j

j Γ(n + a j)γn ∏n
i=1 x−γ−1

L(i)

Γ(a j)β
γn
j

(
b j + (β jxL(n))−γ

)n+a j
. (3.12)

Hence, we get

πM(β j|x) = G(β)
η jb

a j

j Γ(n + a j)γn ∏n
i=1 x−γ−1

L(i)

Γ(a j)β
γn
j

(
b j + (β jxL(n))−γ

)n+a j
, (3.13)

where G(β) is the normalizing constant given by

G−1(β) =
J∑

j=1

η jb
a j

j Γ(n + a j)γn ∏n
i=1 x−γ−1

L(i)

Γ(a j)β
γn
j

(
b j + (β jxL(n))−γ

)n+a j
. (3.14)

Multiplying (3.11) by (3.13), we also obtain the marginal posterior of α as

πM1 (α|x) =
J∑

j=1

π(α|β = β j, x)πM(β j|x). (3.15)
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From (3.13) and (3.15), the Bayes estimators of α, β, and R(t) based on the SELF are derived, respec-
tively, as

α̂s =

∫ ∞

0
απM1 (α|x)dα =

J∑
j=1

πM(β j|x)
∫ ∞

0
απ(α|β = β j, x)dα

=

J∑
j=1

πM(β j|x)

(
b j + (β jxL(n))−γ

)n+a j

Γ(n + a j)

∫ ∞

0
e−α(b j+(β j xL(n))−γ)αn+a j dα

=

J∑
j=1

πM(β j|x)
n + a j

b j + (β jxL(n))−γ
, (3.16)

β̂s =

J∑
j=1

β jπM(β j|x), (3.17)

and

R̂s(t) =
∫ ∞

0
πM1 (α|x)R(t)dα =

∫ ∞

0
πM1 (α|x)

(
1 − e−α(β jt)−γ

)
dα

=

∫ ∞

0
e−α(b j+(β j xL(n))−γ)αn+a j−1

(
1 − e−α(β jt)−γ

)
dα ×

J∑
j=1

(
b j + (β jxL(n))−γ

)n+a j

Γ(n + a j)

= 1 −
J∑

j=1

πM(β j|x)
(
1 +

(β jt)−γ

b j + (β jxL(n))−γ

)−(n+a j)

. (3.18)

The Bayes estimator of a function g(α, β) based on the LLF is given by

ĝ(α, β) = −1
c

log
[
E

(
e−cg(α, β)

)]
(3.19)

which can be written as

ĝ(α, β) = −1
c

log

 J∑
j=1

πM(β j|x)
∫

e−cg(α, β)π(α|β = β j, x)dα

 . (3.20)

By using (3.20), the Bayes estimators of α, β, and R(t) based on the LLF are derived, respectively, as

α̂L = −
1
c

log
∫ ∞

0
πM1 (α|x)e−cαdα

= −1
c

log

 J∑
j=1

πM(β j|x)
(

b j + (β jxL(n))−γ

b j + (β jxL(n))−γ + c

)n+a j


= −1
c

log

 J∑
j=1

πM(β j|x)
(
1 +

c
b j + (β jxL(n))−γ

)−(n+a j)
 , (3.21)

β̂L = −
1
c

log

 J∑
j=1

πM(β j|x)e−cβ j

 , (3.22)
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and

R̂L(t) = −1
c

log
∫ ∞

0
πM1 (α|x)e−cR(t)dα

= −1
c

log

e−c
J∑

j=1

∞∑
m=0

πM(β j|x)
cm

m!

(
1 +

m(β jt)−γ

b j + (β jxL(n))−γ

)−(n+a j)


= 1 − 1
c

log

 J∑
j=1

∞∑
m=0

πM(β j|x)
cm

m!

(
1 +

m(β jt)−γ

b j + (β jxL(n))−γ

)−(n+a j)
 (3.23)

because of

exp
(
ce−α(βt)−γ

)
=

∞∑
m=0

cm

m!
exp

(
− αm

(βt)γ

)
. (3.24)

On the basis of the Bayes estimators based on the SELF and the LLF, we can find the following
Bayes estimators based on the SLF.

α̂S L = α̂L +
1
c

log
[
1 +

2d
c

(α̂s − α̂S L)
]
, (3.25)

β̂S L = β̂L +
1
c

log
[
1 +

2d
c

(
β̂s − β̂S L

)]
, (3.26)

and

R̂S L(t) = R̂L(t) +
1
c

log
[
1 +

2d
c

(
R̂s(t) − R̂S L(t)

)]
. (3.27)

As mentioned in the Section 3.1, α̂S L, β̂S L, and R̂S L(t) are obtained by applying the numerical method.

3.3. Unknown parameters (α, β, γ)

For the same reason, we expand the method employed by Soland (1969). Suppose that β and γ
are restricted to a finite number of values β1, β2, . . . , βJ and γ1, γ2, . . . , γK with prior probabilities
η1, η2, . . . , ηJ and ζ1, ζ2, . . . , ζK , respectively. That is,

π(β j) = P[β = β j] = η j, j = 1, 2, . . . , J (3.28)

and

π(γk) = P[γ = γk] = ζk, k = 1, 2, . . . ,K. (3.29)

Now, assume that the conditional α upon β = β j and γ = γk, j = 1, 2, . . . , J and k = 1, 2, . . . ,K
has a gamma (a jk, b jk) prior with pdf

π(α|β = β j, γ = γk) =
ba jk

jk

Γ(a jk)
αa jk−1e−αb jk , α > 0, a jk, b jk > 0. (3.30)
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Then, the conditional posterior of α|β = β j, γ = γk and the marginal joint posterior of (β, γ) can be
obtained by

π
(
α|β = β j, γ = γk, x

)
=

(
b jk + (β jxL(n))−γk

)n+a jk

Γ(n + a jk)
αn+a jk−1e−α(b jk+(β j xL(n))−γk ) (3.31)

and

πM(β j, γk |x) = G(β, γ)
η jζkba jk

jk Γ(n + a jk)γn
k
∏n

i=1 x−γk−1
L(i)

Γ(a jk)βγkn
j

(
b jk + (β jxL(n))−γk

)n+a jk
, (3.32)

where G(β, γ) is the normalizing constant given by

G−1(β, γ) =
J∑

j=1

K∑
k=1

η jζkba jk

jk Γ(n + a jk)γn
k
∏n

i=1 x−γk−1
L(i)

Γ(a jk)βγkn
j

(
b jk + (β jxL(n))−γk

)n+a jk
. (3.33)

Note that α|β = β j, γ = γk has a Gamma(n + a jk, b jk + (β jxL(n))−γk ).
Using (3.31) and (3.32), we can obtain the marginal posterior of α as

πM2 (α|x) =
J∑

j=1

K∑
k=1

π
(
α|β = β j, γk, x

)
πM

(
β j, γk |x

)
. (3.34)

From (3.32) and (3.34), the Bayes estimators of α, β, γ, and R(t) based on the SELF are derived,
respectively, as

α̂s =

∫ ∞

0
απM2 (α|x)dα =

J∑
j=1

K∑
k=1

πM(β j, γk |x)
∫ ∞

0
απ(α|β = β j, γ = γk, x)dα

=

J∑
j=1

K∑
k=1

πM(β j, γk |x)
n + a jk

b jk + (β jxL(n))−γk
, (3.35)

β̂s =

J∑
j=1

K∑
k=1

β jπM(β j, γk |x), (3.36)

γ̂s =

J∑
j=1

K∑
k=1

γkπM(β j, γk |x), (3.37)

and

R̂s(t) =
∫ ∞

0
πM2 (α|x)R(t)dα =

∫ ∞

0
πM2 (α|x)

(
1 − e−α(β jt)−γk

)
dα

=

J∑
j=1

K∑
k=1

πM(β j, γk |x)
∫ ∞

0
π(α|β = β j, γ = γk, x)

(
1 − e−α(β jt)−γk

)
dα

= 1 −
J∑

j=1

K∑
k=1

πM(β j, γk |x)
(
1 +

(β jt)−γk

b jk + (β jxL(n))−γk

)−(n+a jk)

. (3.38)
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Similarly, the Bayes estimators of α, β, γ, and R(t) based on the LLF are obtained by

α̂L = −
1
c

log
∫ ∞

0
πM2 (α|x)e−cαdα

= −1
c

log

 J∑
j=1

K∑
k=1

πM(β j, γk |x)
(
1 +

c
b jk + (β jxL(n))−γk

)−(n+a jk)
 , (3.39)

β̂L = −
1
c

log

 J∑
j=1

K∑
k=1

πM(β j, γk |x)e−cβ j

 , (3.40)

γ̂L = −
1
c

log

 J∑
j=1

K∑
k=1

πM(β j, γk |x)e−cγk

 , (3.41)

and

R̂L(t) = −1
c

log
∫ ∞

0
πM2 (α|x)e−cR(t)dα

= −1
c

log

e−c
J∑

j=1

K∑
k=1

∞∑
m=0

πM(β j, γk |x)
cm

m!

(
1 +

m(β jt)−γk

b jk + (β jxL(n))−γk

)−(n+a jk)


= 1 − 1
c

log

 J∑
j=1

K∑
k=1

∞∑
m=0

πM(β j, γk |x)
cm

m!

(
1 +

m(β jt)−γk

b jk + (β jxL(n))−γk

)−(n+a jk)
 . (3.42)

Finally, the Bayes estimators of α, β, γ, and R(t) based on the SLF are given by

α̂S L = α̂L +
1
c

log
[
1 +

2d
c

(α̂s − α̂S L)
]
, (3.43)

β̂S L = β̂L +
1
c

log
[
1 +

2d
c

(
β̂s − β̂S L

)]
, (3.44)

γ̂S L = γ̂L +
1
c

log
[
1 +

2d
c

(γ̂s − γ̂S L)
]
, (3.45)

and

R̂S L(t) = R̂L(t) +
1
c

log
[
1 +

2d
c

(
R̂s(t) − R̂S L(t)

)]
. (3.46)

In order to apply the methods discussed in this section, we should first extract the values of (β j, η j),
(γk, ζk) and the hyperparameters (a jk, b jk) in the conjugate prior (3.30). For each choice of (a jk, b jk), it
is difficult to find the prior of α conditioned on each value of β j and γk. An alternative method to obtain
the values (a jk, b jk) can be based on the expected value of the reliability function R(t) conditional on
β = β j and γ = γk, which is given using (3.30) by

E
[
R(t)|β = β j, γ = γk

]
=

ba jk

jk

Γ(a jk)

∫ ∞

0

(
1 − exp

(
−α(β jt)−γk

))
αa jk−1 e−αb jk dα

= 1 −
(
1 +

(β jt)−γk

b jk

)−a jk

, t > 0. (3.47)
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Table 1: The maximum flood level over a 20 four–year period (1890–1969)
0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

If we are able to specify two values (t1,R(t1)) and (t2,R(t2)) from prior beliefs about the distribu-
tion, the values of a jk and b jk can be obtained numerically from (3.47). Otherwise, a nonparametric
procedure can be used to estimate the corresponding two different values of R(t). We use mid-point
estimator for R(t) as a nonparametric method.

4. Application

We present two examples to illustrate the methods of inference discussed in the previous sections.

4.1. Real data

Consider the real data given by Dumonceaux and Antle (1973) which represent the maximum flood
level (in millions of cubic feet per second) of the Susquehenna River at Harrisburg, Pennsylvania over
a 20 four–year period (1890–1969). This data given in Table 1 has been utilized by some authors
such as Maswadah (2003) and Sultan (2008). Maswadah (2003) showed that this real data follow an
inverse Weibull distribution giving a rough indication of the goodness of fit for the model.

During this period, 6 lower records of the maximum flood level are observed, they are

0.654, 0.613, 0.315, 0.297, 0.269, 0.265.

In this example, we use gamma prior for the parameter α and discrete priors for the parameters β
and γ. The values of β j, γk and the hyperparameters of the gamma prior (3.30) are derived by the
following steps. First, we estimate two values of the reliability function using the mid-point estimator
for R(ti = xL(i)) = (n−i+0.5)/n, i = 1, 2, . . . , n. Here, we assume that the reliability for t1 = 0.613 and
t2 = 0.269 are, respectively, R(t1) = 0.25, and R(t2) = 0.75. Next, we obtain the MLE γ̂ = 2.93565
from (2.11) based on the above 6 lower record values when β = 1. Finally, we assume that γk =

2.6(0.1)3.2 and β j = 0.8(0.1)1.2. Therefore, the values of the hyperparameters a jk and b jk at each
value of β j and γk are obtained by solving the following equations using Newton-Raphson method.

1 −
(
1 +

(β j 0.613)−γk

b jk

)−a jk

= 0.25 (4.1)

and

1 −
(
1 +

(β j 0.269)−γk

b jk

)−a jk

= 0.75. (4.2)

Table 2 shows the values of the hyperparameters and posterior probabilities obtained for each β j

and γk. By using entries of Table 2, the ML estimates, and the Bayes estimates of α, β, γ, and R(t)
are calculated. The results are given in Table 3. Note that the positive value of c is considered here
because overestimation is more serious than underestimation in this example. We see that the MLEs
are nearly equal to the Bayes estimates. To check the goodness of fit for the exponentiated inverse
Weibull distribution with α̂, β̂, and γ̂, we conduct a simple test. A simple plot of 6 lower records of
the maximum flood level against the expected values of the first exponentiated inverse Weibull lower
record values indicate a very strong correlation (0.895). Besides, we have nearly the same results for
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Table 2: Prior information, hyperparameters and the posterior probabilities
j (η j = 1/5) β j k (ξk = 1/7) γk a jk b jk π jk

1 2.6 1.087650 21.060400 0.027100
2 2.7 0.963320 19.674200 0.028722
3 2.8 0.866560 18.673900 0.029543

1 0.8 4 2.9 0.789100 17.950100 0.029683
5 3.0 0.725400 17.419000 0.029269
6 3.1 0.672210 17.045500 0.028424
7 3.2 0.626990 16.791200 0.027258
1 2.6 1.087670 15.505300 0.027100
2 2.7 0.963390 14.316900 0.028721
3 2.8 0.866620 13.429800 0.029543

2 0.9 4 2.9 0.789070 12.755200 0.029683
5 3.0 0.725440 12.235600 0.029269
6 3.1 0.672230 11.832200 0.028424
7 3.2 0.627070 11.521700 0.027259
1 2.6 1.087550 11.787600 0.027101
2 2.7 0.963320 10.770700 0.028722
3 2.8 0.866610 9.998600 0.029543

3 1.0 4 2.9 0.789040 9.396400 0.029683
5 3.0 0.725470 8.920400 0.029269
6 3.1 0.672240 8.535700 0.028424
7 3.2 0.627030 8.223100 0.027258
1 2.6 1.087570 9.200600 0.027101
2 2.7 0.963320 8.327000 0.028722
3 2.8 0.866710 7.658500 0.029543

4 1.1 4 2.9 0.789140 7.129100 0.029683
5 3.0 0.725490 6.702600 0.029270
6 3.1 0.672170 6.350600 0.028423
7 3.2 0.627140 6.064100 0.027260
1 2.6 1.087660 7.339000 0.027100
2 2.7 0.963380 6.584200 0.028722
3 2.8 0.866710 6.002500 0.029543

5 1.2 4 2.9 0.789080 5.538300 0.029683
5 3.0 0.725530 5.163300 0.029270
6 3.1 0.672220 4.850000 0.028424
7 3.2 0.627080 4.589200 0.027259

the Bayes estimates of α, β, and γ. Therefore, the assumption that these record values are from the
exponentiated inverse Weibull distribution seems quite reasonable. The data given in Table 4 are the
expected values of the first exponentiated inverse Weibull lower record values with the MLEs α̂, β̂,
and γ̂.

4.2. Simulation study

Similarly, we also consider simulated data consisting of 6 record values from an exponentiated inverse
Weibull distribution. A set of lower record values is generated from the standard exponentiated inverse
Weibull distribution with α = 0.5 and γ = 2.5. The actual generated population values of R(t = 0.5)
is 0.94089. The following are the simulated 6 lower record values.

1.20300, 1.06597, 0.47784, 0.40798, 0.40367, 0.38334.

Using the formulae presented in Section 2 and Section 3, we obtain the Bayes and ML estimates of α,
β, γ, and R(t). For α and γ, the Bayes estimates are closer to the actual values. Specially, the closest
estimate to the actual value is asymmetric Bayes estimate under SLF with c = 1.5 and d = 3.0. We
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Table 3: Estimates of α, β, γ, and R(t = 0.5) for real data
BL (BSL)

MLE BS c = 0.5 c = 1.5 c = 2.5
(d = 0.5) (d = 0.5) (d = 0.5)

α 0.12162 0.13884 0.13684 0.13310 0.12965
(0.13844) (0.13486) (0.13092)

β 1.00000 1.00000 0.99500 0.98507 0.97533
(0.99900) (0.98966) (0.97872)

γ 2.93565 2.90122 2.89134 2.87179 2.85291
(2.89925) (2.88081) (2.85953)

R(t) 0.60565 0.58662 0.58106 0.56982 0.55847
(0.58551) (0.57498) (0.56234)

Table 4: Expected values and real data for the simple plot
i 1 2 3 4 5 6

E
(
XL(i)

)
0.66710 0.43986 0.36494 0.32350 0.29595 0.27579

Real Data 0.654 0.613 0.315 0.297 0.269 0.265

Table 5: Estimates of α, β, γ, and R(t = 0.5) for simulated data
BL (BSL)

MLE BS c = 0.5 c = 1.0 c = 1.5
(d = 3.0) (d = 3.0) (d = 3.0)

α 0.60122 0.51592 0.49625 0.47863 0.46277
(0.51558) (0.51094) (0.50130)

β 1.00000 1.00000 0.99500 0.99002 0.98507
(0.99983) (0.99860) (0.99592)

γ 2.39933 2.58071 2.57109 2.56156 2.55229
(2.58043) (2.57808) (2.57293)

R(t) 0.95807 0.91231 0.91050 0.90858 0.90657
(0.91224) (0.91778) (0.91074)

also see that the asymmetric Bayes estimates under SLF draw closer to the actual values as c increases;
however, the MLEs are the closest to the actual values for β and R(t). These values are given in Table
5.

In general, it is difficult to judge which one is better estimator through a set of sample. A simu-
lation study is conducted to see the efficiency of the Bayes and ML estimation methods in terms of
estimated risks. The estimated risks for each estimator are calculated as the average of their squared
deviations for 10,000 repetitions according to method discussed in Chapter 4. Samples of lower
record values with size n = 10, are generated from the exponentiated inverse Weibull distribution
with α = 0.05, β = 0.6, and γ = 1.2. For β = 0.6 and γ = 1.2, we consider the prior over the interval
(0.1, 1.0) and (0.7, 1.6) by the discrete priors with β and γ taking the 10 values, each with probability
0.1. To obtain the Bayes estimates, we first calculate two values of the reliability function R(t2 = xL(2))
and R(t9 = xL(9)) and then can obtain the hyperparameters a jk and b jk using the expected value of the
R(t) in (3.47). The posterior probabilities are easily calculated from a jk and b jk at each value of β j and
γk. Through these steps, we obtain the Bayes estimates. By 10,000 repeating this procedure, the esti-
mated risks for α, β, γ, and R(t) are obtained. For α = 0.05, β = 2, and γ = 1.5, the same simulation
method is carry out. The results are presented in Table 6. From the table, we can see that the Bayes
estimators are generally better than their corresponding MLEs. For α and R(t), the Bayes estimators
relative to asymmetric loss function are more efficient than the Bayes estimators under symmetric loss
function such as SELF. In addition, the estimated risks of them decrease as c increases for fixed d.
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Table 6: The estimated risks of α, β, γ, and R(t) when record values of size is 10
Actual values: (α, β, γ, R(t = 0.5)) = (0.05, 0.6, 1.2, 0.19107)

BL (BSL)
MLE BS c = 1.0 c = 3.0 c = 5.0

(d = 0.05) (d = 0.05) (d = 0.05)

α 0.51779 0.21478 0.15282 0.09004 0.05991
(0.15798) (0.09111) (0.06033)

β 0.02719 0.00250 0.00826 0.027400 0.05048
(0.00760) (0.02698) (0.05017)

γ 0.20427 0.07541 0.08267 0.09711 0.11086
(0.08197) (0.09684) (0.11069)

R(t) 0.41108 0.27623 0.26283 0.23540 0.20828
(0.26403) (0.23583) (0.20852)

Actual values: (α, β, γ, R(t = 0.5)) = (0.05, 2, 1.5, 0.04877)
BL (BSL)

MLE BS c = 1.0 c = 3.0 c = 5.0
(d = 0.05) (d = 0.05) (d = 0.05)

α 0.69794 0.14711 0.12347 0.09815 0.08557
(0.12553) (0.09884) (0.08609)

β 0.02173 0.00250 0.01226 0.02196 0.03307
(0.01170) (0.02150) (0.03268)

γ 0.31917 0.07057 0.07915 0.09196 0.11086
(0.07832) (0.09157) (0.09993)

R(t) 0.25340 0.08046 0.07190 0.06673 0.06204
(0.07226) (0.06694) (0.062176)

For β and γ, the symmetric Bayes estimators are more efficient than the asymmetric Bayes estimators.
Not only that but, their estimated risks rather increase as c increases for fixed d.

5. Concluding Remarks

In this paper, we develop Bayes estimators in the context of record statistics values from the expo-
nentiated inverse Weibull distribution. Given non-informative prior distribution for β, it is not clear
whether posterior distribution is proper or not. Therefore, we consider joint conjugate prior distri-
bution used by Soland (1969). Using this prior, we can guarantee the existence of Bayes estimators
as well as avoiding computational complexities of a joint prior. We derive the Bayes estimators for
unknown parameters and reliability function R(t) using Soland’s method. Their corresponding MLEs
are also obtained. The MLEs are compared with Bayes estimators based on the symmetric and two
types asymmetric loss functions in terms of estimated risks. Our results show that the Bayes estima-
tors superior to the MLEs under the informative (conjugate) prior. Specially, the asymmetric Bayes
estimators are generally better than the symmetric Bayes estimators provided using a suitable value
of c and d.
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