DOI QR코드

DOI QR Code

An Analysis of Record Statistics based on an Exponentiated Gumbel Model

  • Kang, Suk Bok (Department of Statistics, Yeungnam University) ;
  • Seo, Jung In (Department of Statistics, Yeungnam University) ;
  • Kim, Yongku (Department of Statistics, Kyungpook National University)
  • Received : 2013.07.11
  • Accepted : 2013.09.12
  • Published : 2013.09.30

Abstract

This paper develops a maximum profile likelihood estimator of unknown parameters of the exponentiated Gumbel distribution based on upper record values. We propose an approximate maximum profile likelihood estimator for a scale parameter. In addition, we derive Bayes estimators of unknown parameters of the exponentiated Gumbel distribution using Lindley's approximation under symmetric and asymmetric loss functions. We assess the validity of the proposed method by using real data and compare these estimators based on estimated risk through a Monte Carlo simulation.

Keywords

References

  1. Ahmadi, J. and Balakrishnan, N. (2011). Distribution-free prediction intervals for order statistics based on record coverage, Journal of the Korean Statistical Society, 40, 181-192. https://doi.org/10.1016/j.jkss.2010.09.003
  2. Balakrishnan, N., Ahsanullah, M. and Chan, P. S. (1992). Relations for single and product moments of record values from Gumbel distribution, Statistical and Probability Letters, 15, 223-227. https://doi.org/10.1016/0167-7152(92)90193-9
  3. Chandler, K. N. (1952). The distribution and frequency of record values, Journal of the Royal Statistical Society, Series B, 14, 220-228.
  4. Howlader, H. A. and Hossain, A. M. (2002). Bayesian Survival estimation of Pareto distribution of the second kind based on failure-censored data, Computational Statistics and Data Analysis, 38, 301-314. https://doi.org/10.1016/S0167-9473(01)00039-1
  5. Jaheen, Z. F. (2003). A Bayesian analysis of record statistics from the Gompertz model, Applied Mathematics and Computation, 145, 307-320. https://doi.org/10.1016/S0096-3003(02)00489-7
  6. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055
  7. Kang, S. B. and Seo, J. I. (2011). Estimation in an exponentiated half logistic distribution under progressively type-II censoring, Communications of the Korean Statistical Society, 18, 657-666. https://doi.org/10.5351/CKSS.2011.18.5.657
  8. Kim, Y. K., Kang, S. B. and Seo, J. I. (2011a). Bayesian estimations on the exponentiated half triangle distribution under type-I hybrid censoring, Journal of the Korean Data & Information Science Society, 22, 565-574.
  9. Kim, Y. K., Kang, S. B. and Seo, J. I. (2011b). Bayesian estimations on the exponentiated distribution family with type-II right censoring, Communications of the Korean Statistical Society, 18, 603-613. https://doi.org/10.5351/CKSS.2011.18.5.603
  10. Kundu, D. and Gupta, R. D. (2005). Estimation of P[Y > X] for generalied exponentioal distribution, Metrika, 61, 291-308. https://doi.org/10.1007/s001840400345
  11. Lindley, D. V. (1980). Approximated Bayes method, Trabajos de Estadistica, 31, 223-237.
  12. Nadarajah, S. (2006). The exponentiated Gumbel distribution with climate application, Environmetrics, 17, 13-23. https://doi.org/10.1002/env.739
  13. Soliman, A. A., Abd Ellah, A. H. and Sultan, K. S. (2006). Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches, Computational Statistics & Data Analysis, 51, 2065-2077. https://doi.org/10.1016/j.csda.2005.12.020
  14. Varian, H. R. (1975). A Bayesian approach to real estate assessment. In: S. E. Feinberg and A. Zellner, Eds., Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage, North Holland, Amsterdam, 195-208.
  15. Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function, Journal of American Statistical Association, 81, 446-451. https://doi.org/10.1080/01621459.1986.10478289

Cited by

  1. Two parameter exponentiated Gumbel distribution: properties and estimation with flood data example vol.20, pp.2, 2017, https://doi.org/10.1080/09720510.2016.1228261
  2. A three-parameter kappa distribution with hydrologic application: a generalized gumbel distribution vol.28, pp.8, 2014, https://doi.org/10.1007/s00477-014-0865-8