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Abstract

The inverse Weibull distribution (IWD) is the complementary Weibull distribution
and plays an important role in many application areas. In Bayesian analysis, Soland’s
method can be considered to avoid computational complexities. One limitation of this
approach is that parameters of interest are restricted to a finite number of values. This
paper introduce nonparametric Bayesian estimator in the context of record statistics
values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland’s
conjugate piror, stick-breaking prior is considered and the corresponding Bayesian esti-
mators under the squared error loss function (quadratic loss) and LINEX loss function
are obtained and compared with other estimators. The results may be of interest espe-
cially when only record values are stored.

Keywords: Exponentiated inverse Weibull distribution, nonparametric Bayesian esti-
mation, record statistics, stick-breaking prior.

1. Introduction

The inverse Weibull distribution (IWD) is the complementary Weibull distribution and
plays an important role in many applications including the dynamic components of diesel
engines, the times to breakdown of an insulating fluid subject to the action of constant
tensioin and flood data (Nelson, 1982; Maswadah, 2003). Also, it has been used quite exten-
sively when the data indicate a monotone hazard function beacuse of the flexibility of the
pdf and its corresponding hazard function. Studies for the inverse Weibull distribution were
conducted by many authors. Calabria and Pulcini (1994) studied Bayes 2-sample prediction
for the inverse Weibull distribution. Mahmoud et al. (2003) considered the order statistics
arising from the inverse Weibull distribution and derived the exact expression for the single
moments of order statistics. They also obtained the variances and covariances based on the
moments of order statistics.
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The probability density function (pdf) and cumulative distribution function (cdf) of the
random variable X having the exponentiated inverse Weibull distribution (EIWD) are given
by

f(x;α, β, γ) =
αγ

βγ
exp

(
−α(βx)−γ

)
x−γ−1 (1.1)

and

F (x;α, β, γ) = exp
(
−α(βx)−γ

)
, x > 0, α, β, γ > 0. (1.2)

The kth moment of this distribution that was introduced by Ali et al. (2007) is

E
(
Xk
)

=
αk/γ

βk
Γ

(
1− k

γ

)
, γ > k. (1.3)

Therefore, the mean and the variance of the exponentiated inverse Weibull distribution can
be written as follows.

E (X) =
α1/γ

β
Γ

(
1− 1

γ

)
(1.4)

and

V ar (X) =
α2/γ

β2

[
Γ

(
1− 2

γ

)
−
{

Γ

(
1− 1

γ

)}2
]

for γ > 2. (1.5)

It is clear that both the mean (1.4) and the variance (1.5) increase as α increases, when
γ > 2. From (1.2), the reliability function of the exponentiated inverse Weibull distribution
is given by

R(t) = 1− F (t) = 1− exp
(
−α(βt)−γ

)
, t > 0. (1.6)

Note that the inverse Weibull distribution is a special case of (1.1) when α = 1.
Chandler (1952) introduced the study of record values and documented many of the ba-

sic properties of records. Record values arise in many real-life situations involving weather,
sports, economics and life tests. Record model is very related to the order statistics model,
both of which appear in many statistical applications and are widely used in statistical
modeling and inference beacuse it can be viewed as order statistics from a sample whose
size is determined by the values and the order of occurence of observations. In particular,
Balakrishnan et al. (1992) established some recurrence relations for the single and double
moments of lower record values from Gumble distribution. Soliman et al. (2006) obtained
Bayes estimators based on record statistics for two unknown parameters of the Weibull dis-
tribution. Recently, Sultan (2008) derived the Bayes estimators and obtained the estimators
of the reliability and hazard functions for the unkonwn parameters of the inverse Weibull
distribution based on lower record values.

Kim et al. (2012) proposed a Bayesian estimator in the context of record statistics values
from the exponentiated inverse Weibull distribution using Soland’s method (1969). This can
be done with the evaluation of hyperparameters. To avoid this, we consider more flexible prior
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distributions. In general, nonparametric model can accommodate much more flexible forms
and can easily deal with skewness, multimodality, etc. Here, for unknown parameters β and
γ, we consider a nonparametric mode that are based on general class of priors that is called
stick-breaking priors. Under three types loss functions, we derive the Bayes estimators in the
context of record statistics values from the exponentiated inverse Weibull distribution. We
also analyze application examples to illustrate the application of different derived estimators.
Finally, in the estimated risks, the Bayes estimators are compared with the MLEs through
Monte Carlo simulations.

2. Maximum likelihood estimation

In this section, we consider the MLEs of the unknown parameters and reliability func-
tion R(t) in an exponentiated inverse Weibull distribution based on lower record values.
Let X1, X2, X3, . . . be a sequence of independent and identically distributed (iid) random
variables with cdf F (x) and pdf f(x). Setting Yn = min(X1, X2, . . . , Xn), n ≥ 1, we say
that Xj is a lower record and denoted by XL(j) if Yj < Yj−1, j > 1. The indices at
which the lower record values occur are given by the record times {L(n), n ≥ 1}, where
L(n) = min{j|j > L(n − 1), Xj < XL(n−1)}, n > 1, with L(1) = 1. The corresponding
likelihood function of the first n lower record values, xL(1), . . . , xL(n) is

L = f(xL(n))

n−1∏
i=1

f(xL(i))

F (xL(i))
. (2.1)

Suppose we observe n lower record values xL(1), . . . , xL(n) from the exponentiated inverse
Weibull distribution with pdf (1.1). It follows, from (1.1), (1.2), and (2.1), that

L(α, β, γ) =

(
αγ

βγ

)n
exp

(
− α

(βxL(n))γ

) n∏
i=1

x−γ−1L(i) . (2.2)

As a property of lower record values, its kth moment can be obtained by

E
(
Xk
L(n)

)
=
αk/γ

βk
Γ(n− k/γ)

Γ(n)
, γ > k. (2.3)

Now, we derive the MLEs of the parameters of the exponentiated inverse Weibull distribu-
tion when record values are given as data. From (2.2), the natural logarithm of the likeliood
function is given by

logL(α, β, γ) = n logα− nγ log β + n log γ − α

(βxL(n))γ
− (γ + 1)

n∑
i=1

log xL(i). (2.4)

From the log-likelihood funcion (2.4), we obtain the likelihood equations for α, β, and γ as

∂ logL

∂α
=
n

α
−
(

1

βxL(n)

)γ
= 0, (2.5)

∂ logL

∂β
= −γn

β
− αγ

β

(
1

βxL(n)

)γ
= 0, (2.6)
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and

∂ logL

∂γ
=
n

γ
− n log β +

α log
(
βxL(n)

)(
βxL(n)

)γ −
n∑
i=1

log xL(i) = 0. (2.7)

By solving the above equations, we can find the following MLEs of the unknown parameters
α, β, and γ.

α̂ = n
(
β̂xL(n)

)γ̂
, (2.8)

β̂ =

(
α̂

n

)1/γ̂

x−1L(n) (2.9)

and

γ̂ =
n

n log β̂ +
∑n
i=1 log xL(i) − α̂(β̂xL(n))−γ̂ log(β̂xL(n))

. (2.10)

The MLE γ̂ in (2.10), in conjunction with the MLE β̂ in (2.9), reduces to

γ̂ =
n∑n

i=1 log xL(i) − n log xL(n)
. (2.11)

By the invariance property of the MLE, we can obtain the MLE of reliability function
R(t) to be

R̂(t) = 1− exp

(
− α̂

(β̂t)γ̂

)
. (2.12)

3. Bayesian estimation

In this section, we estimate α, β, γ, and R(t), by considering both symmetric loss func-
tion and asymmetric loss function, and discuss method for obtaining hyperparameters. The
LINEX loss function (LLF) is asymmetric loss functions while the squared error loss function
(SELF) is a symmetric loss function assigning equal losses to overestimation and underesti-
mation. The LLF was introduced by Varian (1975) and got a lot of popularity due to Zellner

(1986). It may be expressed as L(4) ∝ exp(c4)− c4− 1, c 6= 0, where 4 = θ̂− θ. The sign
and magnitude of the shape parameter c represents the direction and degree of symmetry,
respectively. When c is positive, the overestimation is more serious than underestimation
and the situation is reverse when c is negative.

3.1. Parametric Bayesian analysis

A natural conjugate prior for the parameter α is a gamma prior as follows.

π(α) =
ba

Γ(a)
αa−1e−αb, α > 0, a, b > 0. (3.1)
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Now, we need to specify a general joint prior for α, β and γ which may leads to computational
complexities. To avoid this problem, we consider Soland’s method. Soland (1969) considered
a family of joint prior distribution that places continuous distribution on the scale parameter
and discrete distributions on the shape parameter. Kim et al. (2012) expanded the method
employed by Soland (1969). Suppose that β and γ are restricted to a finite number of values
β1, β2, . . . , βJ and γ1, γ2, . . . , γK with prior probabilities η1, η2, . . . , ηJ and ζ1, ζ2, . . . , ζK ,
respectively. That is,

π(βj) = P [β = βj ] = ηj , j = 1, 2, . . . , J (3.2)

and

π(γk) = P [γ = γk] = ζk, k = 1, 2, . . . ,K. (3.3)

Now, assume that the conditional α upon β = βj and γ = γk, j = 1, 2, . . . , J and
k = 1, 2, . . . ,K has a gamma (ajk, bjk) prior with pdf

π(α|β = βj , γ = γk) =
b
ajk
jk

Γ(ajk)
αajk−1e−αbjk , α > 0, ajk, bjk > 0. (3.4)

Then, the conditional posterior of α|β = βj , γ = γk and the mrginal joint posterior of (β, γ)
can be obtained by

π(α|β = βj , γ = γk, x) =

(
bjk + (βjxL(n))

−γk
)n+ajk

Γ(n+ ajk)
αn+ajk−1e−α(bjk+(βjxL(n))

−γk ) (3.5)

and

πM (βj , γk|x) = G(β, γ)
ηjζkb

ajk
jk Γ(n+ ajk)γnk

∏n
i=1 x

−γk−1
L(i)

Γ(ajk)βγknj

(
bjk + (βjxL(n))−γk

)n+ajk , (3.6)

where G(β, γ) is the normalizing constant given by

G−1(β, γ) =

J∑
j=1

K∑
k=1

ηjζkb
ajk
jk Γ(n+ ajk)γnk

∏n
i=1 x

−γk−1
L(i)

Γ(ajk)βγknj

(
bjk + (βjxL(n))−γk

)n+ajk . (3.7)

Note that α|β = βj , γ = γk has a Gamma
(
n+ ajk, bjk + (βjxL(n))

−γk
)
.

Using (3.5) and (3.6), we can obtain the marginal posterior of α as

πM2
(α|x) =

J∑
j=1

K∑
k=1

π(α|β = βj , γk, x)πM (βj , γk|x). (3.8)

From (3.6) and (3.8), the Bayes estimators of α, β, γ, and R(t) based on the SELF are
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derived, respectively, as

α̂s =

∫ ∞
0

απM2
(α|x)dα =

J∑
j=1

K∑
k=1

πM (βj , γk|x)

∫ ∞
0

απ(α|β = βj , γ = γk, x)dα

=

J∑
j=1

K∑
k=1

πM (βj , γk|x)
n+ ajk

bjk + (βjxL(n))−γk
, (3.9)

β̂s =

J∑
j=1

K∑
k=1

βjπM (βj , γk|x), (3.10)

γ̂s =

J∑
j=1

K∑
k=1

γkπM (βj , γk|x), (3.11)

and

R̂s(t) =

∫ ∞
0

πM2
(α|x)R(t)dα =

∫ ∞
0

πM2
(α|x)

(
1− e−α(βjt)

−γk
)
dα

=

J∑
j=1

K∑
k=1

πM (βj , γk|x)

∫ ∞
0

π(α|β = βj , γ = γk, x)
(

1− e−α(βjt)
−γk
)
dα

= 1−
J∑
j=1

K∑
k=1

πM (βj , γk|x)

(
1 +

(βjt)
−γk

bjk + (βjxL(n))−γk

)−(n+ajk)
. (3.12)

Similarly, the Bayes estimators of α, β, γ, and R(t) based on the LLF are obtained by

α̂L = −1

c
log

∫ ∞
0

πM2
(α|x)e−cαdα

= −1

c
log

 J∑
j=1

K∑
k=1

πM (βj , γk|x)

(
1 +

c

bjk + (βjxL(n))−γk

)−(n+ajk) , (3.13)

β̂L = −1

c
log

 J∑
j=1

K∑
k=1

πM (βj , γk|x)e−cβj

 , (3.14)

γ̂L = −1

c
log

 J∑
j=1

K∑
k=1

πM (βj , γk|x)e−cγk

 , (3.15)
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and

R̂L(t) = −1

c
log

∫ ∞
0

πM2(α|x)e−cR(t)dα

= −1

c
log

e−c J∑
j=1

K∑
k=1

∞∑
m=0

πM (βj , γk|x)
cm

m!

(
1+

m(βjt)
−γk

bjk+(βjxL(n))−γk

)−(n+ajk)
= 1− 1

c
log

 J∑
j=1

K∑
k=1

∞∑
m=0

πM (βj , γk|x)
cm

m!

(
1+

m(βjt)
−γk

bjk+(βjxL(n))−γk

)−(n+ajk) . (3.16)

In order to apply the methods discussed in this section, we should first extract the values
of (βj , ηj), (γk, ζk) and the hyperparameters (ajk, bjk) in the conjugate prior (3.4). For each
choice of (ajk, bjk), it is difficult to find the prior of α conditioned on each value of βj and
γk. An alternative method for obtaining the values (ajk, bjk) can be based on the expected
value of the reliability function R(t) conditional on β = βj and γ = γk, which is given using
(3.4) by

E [R(t)|β = βj , γ = γk] =
b
ajk
jk

Γ(ajk)

∫ ∞
0

(
1− exp

(
−α(βjt)

−γk
))
αajk−1e−αbjkdα

= 1−
(

1 +
(βjt)

−γk

bjk

)−ajk
, t > 0. (3.17)

If we are able to specify two values (t1, R(t1)) and (t2, R(t2)) from prior beliefs about the
distribution, the values of ajk and bjk can be obtained numerically from (3.17). Otherwise,
a nonparametric procedure can be used to estimate the corresponding two different values
of R(t). We use mid-point estimator for R(t) as a nonparametric method. Note that the
Bayes estimators are in implicit form, so it can be solved by using numerical method such
as Newton-Raphson.

3.2. Nonparametric Bayesian analysis

To avoid difficulties casued by finding values (ajk, bjk), we consider more flexible prior
distributions. In general, nonparametric model can accommodate much more flexible forms
and can easily deal with skewness, multimodality, etc. Here, for unknown parameters β
and γ, we consider a nonparametric mode that are based on general class of priors that
is called stick-breaking priors. The stick-breaking priors are almost surely discrete random
probability measure P represented generally as

P(·) =

N∑
k=1

pkδZk(·), (3.18)

where δZk(·) denotes a discrete measure concentrated at Zk, and pk denote random weights

chosen to be independent of Zk and such that 0 ≤ pk ≤ 1 and
∑N
k=1 pk = 1 almost surely.

It is also assumed that Zk are iid random variable with a distribution H. Note that stick-
breaking priors can be constructed using a finite or an infinite number of terms, 1 ≤ N ≤ ∞.
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The random weights pk can be constructed as follows:

p1 = V1 and pk = Vk

k−1∏
j=1

(1− Vj), k ≥ 2, (3.19)

where Vk are independent Beta(ak,bk) random variables for ak, bk > 0.
In our setting, we suppose that

xi
ind∼ f(x|α, βi, γi), i = 1, . . . , n (3.20)

α ∼ π(α) (3.21)

βi
ind∼ P (3.22)

γi
ind∼ P (3.23)

where the prior can be characterized by a generalized Pólya urn mechanism. Then the
Gibbs sampler involves drawing samples from the posterior of hierarchical model formed
by marginalizing over the prior, which is known as prediction rule. Here we consider a
simple finite dimensional Dirichlet prior, a special case of stick-breaking random measure
ak = 1 − a and bk = b + ka, where 0 ≤ a < 1 and b > −a. For the base distribution H, a
gamma distribtuion is considered.

Pólya urn Gibbs sampler is a direct extension of the widely used Pólya urn sampler de-
veloped by Escobar (1994), MacEachern (1994), and Escobar and West (1995) for fitting
the Ferguson (1973) Dirichlet process. One limitation of Pólya urn Gibbs sampler is to in-
clude complicate numerical integration in the nonconjugate case.To deal with this particular
problem, we consider the blocked Gibbs algorithm which makes use of blocked updates for
parameters. The work in Ishwaran and Zarepour (2000) can be extended straightforwardly
to derive the required conditional distributions. In the blocked Gibbs sampling, let Ki be
a classification variables to identify the βk associated with each xi. That is, βk equals to
ZKi . Let {K∗1 , . . . ,K∗m} denote the set of current m unique values of {K1, . . . ,Kn}. The ran-
dom weight (p1, . . . , pN ) can then be updated by the conjugacy of the generalized Dirichlet
distribution to multinomial as follows: let

• simulate Zk
ind∼ H for each k ∈ {K1, . . . ,Kn} \ {K∗1 , . . . ,K∗m}

• simulate ZK∗
j

from the density proportional to H(dZK∗
j
)
∏
{i:Ki=K∗

j }
f(xi|α,ZK∗

j
, γi)

• simulate K from
∑N
k=1 pk,iδk(·) for i = 1, . . . , n, where pk,i ∝ pif(xi|α,Zk, γi) for

k = 1, . . . , N

• simulate pk for k = 1, . . . , N such that

p∗1 = V ∗1 and p∗k = V ∗k

k−1∏
j=1

(1− V ∗j ), k = 2, . . . , N − 1

and

V ∗k ∼ Beta

(
ak +Mk, bk +

N∑
l=k+1

Ml

)
, k = 1, . . . , N − 1.
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Note that Mk is the number of Ki values that equal to k and ZKi = βi (Ishwaran and
James, 2001).

Similarly, γ can be updated in each Gibbs iteration. Updating other parameters can pro-
ceed by a Metropolis-Hasting algorithm.

4. Application

We present two examples to illustrate the methods of inference discussed in the previous
sections.

4.1. Real data

Consider the real data given by Dumonceaux and Antle (1973) which represent the maxi-
mum flood level (in millions of cubic feet per second) of the Susquehenna River at Harrisburg,
Pennsylvenia over a 20 four–year period (1890–1969). This data given in Table 1 has been
utilized by some authors such as Maswadah (2003) and Sultan (2008). Maswadah (2003)
showed that this real data follow an inverse Weibull distribution giving a rough indication
of the goodness of fit for the model.

Table 4.1 The maximum flood level over a 20 four–year period (1890–1969)

0.654 0.613 0.315 0.449 0.297 0.402 0.379 0.423 0.379 0.324
0.269 0.740 0.418 0.412 0.494 0.416 0.338 0.392 0.484 0.265

During this period, 6 lower records of the maximum flood level are observed, they are

0.654, 0.613, 0.315, 0.297, 0.269, 0.265.

In this example, we use gamma prior for the parameter α and discrete priors for the
parameters β and γ. The values of βj , γk and the hyperparameters of the gamma prior (3.4)
are derived by the following steps. First, we estimate two values of the reliability function
using the mid-point estimator for R(ti = xL(i)) = (n− i+ 0.5)/n, i = 1, 2, . . . , n. Here, we
assume that the relaibility for t1 = 0.613 and t2 = 0.269 are, respectively, R(t1) = 0.25, and
R(t2) = 0.75. Next, we obtain the MLE γ̂ = 2.93565 from (2.11) based on the above 6 lower
record values when β = 1. Finally, we assume that γk = 2.6(0.1)3.2 and βj = 0.8(0.1)1.2.
So, the values of the hyperparameters ajk and bjk at each value of βj and γk are obtained
by solving the following equations using Newton-Raphson method.

1−
(

1 +
(βj 0.613)−γk

bjk

)−ajk
= 0.25 (4.1)

and

1−
(

1 +
(βj 0.269)−γk

bjk

)−ajk
= 0.75. (4.2)

The values of the hyperparameters and posterior probabilities obtained for each βj and γk
can be refered in Kim et al. (2012). A simple stick-breaking random measure with parameters
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a = 0 and b = α for nonparameteric Bayesian estimation. By using these values, the ML
estimates, and the Bayes estimates of α, β, γ, and R(t) are calculated. The results are given
in Table 2. We see that the MLEs are nearly equal to the Bayes estimates.

Table 4.2 Estimates of α, β, γ, and R(t = 0.5) for real data

MLE BS NPBS
BL NPBL

c = 0.5 c = 1.5 c = 2.5 c = 0.5 c = 1.5 c = 2.5
α 0.12162 0.13884 0.12783 0.13684 0.13310 0.12965 0.12624 0.12521 0.12295
β 1.00000 1.00000 1.00000 0.99500 0.98507 0.97533 0.98753 0.98173 0.97452
γ 2.93565 2.90122 2.91453 2.89134 2.87179 2.85291 2.90134 2.87339 2.86529

R(t) 0.60565 0.58662 0.58983 0.58106 0.56982 0.55847 0.58326 0.57142 0.56245
BS: parametric Bayesian estimator under SELF, BL: parametric Bayesian estimator under LLF, NPBS:

nonparametric Bayesian estimator under SELF, NPBL: nonparametric Bayesian estimator under LLF

To check the goodness of fit for the exponentiated inverse Weibull distribution with α̂, β̂,
and γ̂, we conduct a simple test. A simple plot of 6 lower records of maximum flood level
against the expected values of the first exponentiated inverse Weibull lower record values
indicates a very strong correlation (0.895). Besides, we have nearly the same results for the
Bayes estimates of α, β, and γ. Therefore, the assumption that these record values are from
the exponentiated inverse Weibull distribution seems quite reasonable. The data given in
Table 3 are the expected values of the first exponentiated inverse Weibull lower record values
with the MLEs α̂, β̂, and γ̂.

Table 4.3 Expected values and real data for the simple plot

i 1 2 3 4 5 6

E
(
XL(i)

)
0.66710 0.43986 0.36494 0.32350 0.29595 0.27579

Real Data 0.654 0.613 0.315 0.297 0.269 0.265

4.2. Simulation study

To assess the performance of the MLEs and the Bayes estimators, we simulate the es-
timated risks of all derived estimators through Monte Carlo simulation method when the
parameters β and γ are known. The following procedure is required to obtain the estimated
risks. After setting E(α) and V ar(α) from the prior density (3.1), we obtain the hyperpa-
rameters a and b of the gamma prior (3.1) by solving them. Note that E(α) is the actual
value for α. We generate the lower record values from the exponentiated inverse Weibull
distribution with α = E(α). By using these value, we can finally obtain the Bayes estima-
tors. The estimated risks for each estimator are calculated as the average of their squared
deviations for 10,000 repetitions. It is expressed as

1

n

n∑
i=1

(
θt − θ̂

)2
.

Here θt and θ̂ is the actual value and the estimate of θ, respectively.
In general, it is difficult to judge which is better the Bayes or ML estimators through a

set of sample. A simulation study is conducted to see the efficiency of the Bayes and ML
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estimation methods in terms of estimated risks. The estimated risks for each estimator are
calculated as the average of their squared deviations for 10,000 repetitions accroding to
method disscussed in the Section 3. Samples of lower record values with size n = 10, are
genetated from the exponentiated inverse Weibull distribution with α = 0.05, β = 0.6, and
γ = 1.2. For β = 0.6 and γ = 1.2, we consider the prior over the interval (0.1, 1.0) and
(0.7, 1.6) by the discrete priors with β and γ taking the 10 values, each with probability
0.1. To obtain the Bayes estimates, we first calculate two values of the reliability function
R(t2 = xL(2)) and R(t9 = xL(9)) and then can obtain the hyperparameters ajk and bjk using
the expected value of the R(t) in (3.16). The posterior probabilities are easily calculated from
ajk and bjk at each value of βj and γk. Through these steps, we obtain the Bayes estimates.
By 10,000 repeating this procedure, the estimated risks for α, β, γ, and R(t) are obtained.
For α = 0.05, β = 2, and γ = 1.5, the same simulation method is carry out. The results are
presented in Table 4. From the table, we can see that the Bayes estimators are generally
better than their corresponding MLEs. For α and R(t), the Bayes estimators relative to
asymmetric loss function are more efficient than the Bayes estimators under symmetric loss
function such as SELF. Also, the estimated risks of them decrease as c increases. For β and
γ, the symmetric Bayes estimators are more efficient than the asymmetric Bayes estimators.
Not only that but, their estimated risks rather increase as c increases.

Table 4.4 The estimated risks of α, β, γ, and R(t) when record values of size is 10

Actual values : (α, β, γ, R(t = 0.5))=(0.05, 0.6, 1.2, 0.19107)

MLE BS NPBS
BL NPBL

c = 0.5 c = 1.5 c = 2.5 c = 0.5 c = 1.5 c = 2.5
α 0.51779 0.21478 0.22478 0.15282 0.09004 0.05991 0.16513 0.10534 0.07465
β 0.02719 0.00250 0.00574 0.00826 0.027400 0.05048 0.01035 0.02964 0.06135
γ 0.20427 0.07541 0.09634 0.08267 0.09711 0.11086 0.09142 0.10733 0.12386

R(t) 0.41108 0.27623 0.31453 0.26283 0.23540 0.20828 0.29453 0.26853 0.23536
Actual values : (α, β, γ, R(t = 0.5))=(0.05, 2, 1.5, 0.04877)

MLE BS NPBS
BL NPBL

c = 0.5 c = 1.5 c = 2.5 c = 0.5 c = 1.5 c = 2.5
0.69794 0.14711 0.19383 0.12347 0.09815 0.08557 0.18783 0.14352 0.10353
0.02173 0.00250 0.00567 0.01226 0.02196 0.03307 0.02124 0.042353 0.06737
0.31917 0.07057 0.09812 0.07915 0.09196 0.11086 0.08912 0.10346 0.13286
0.25340 0.08046 0.10434 0.07190 0.06673 0.06204 0.09123 0.08783 0.07623

5. Concluding remarks

In this paper, we develop nonparametric Bayes estimators in the context of record statis-
tics values from the exponentiated inverse Weibull distribution. In general, the existence
of Bayes estimators is not always guaranteed under non-informative prior distrbution. To
avoid difficulties casued by finding values (ajk, bjk) in the Soland’s method, we consider
more flexible prior distributions. In general, nonparametric model can accommodate much
more flexible forms and can easily deal with skewness, multimodality, etc. Here, for unknown
parameters β and γ, we consider a nonparametric mode that are based on general class of
priors that is called stick-breaking priors. We derive the Bayes estimators for unknown pa-
rameters and reliability function R(t). Their corresponding MLEs are also obtained. The
MLEs are compared with Bayes estimators based on the symmetric and two types asym-
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metric loss functions in terms of estimated risks. Our result show that the Bayes estimators
superior to the MLEs. Especially, the asymmetric Bayes estimators are generally better than
the symmetric Bayes estimators provided using a suitable value of c and d.
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