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CHARACTERIZATION OF CONTINUOUS DISTRIBUTIONS
THROUGH RECORD STATISTICS

Abdul Hamid Khan, Mohd. Faizan, and Ziaul Haque

Abstract. A family of continuous probability distribution has been char-
acterized through the difference of two conditional expectations, condi-
tioned on a non-adjacent record statistic. Also, a result based on the
unconditional expectation and a conditional expectation is used to char-
acterize a family of distributions. Further, some of its deductions are also
discussed.

1. Introduction

Let (Xn, n ≥ 1) be a sequence of independent, identically distributed contin-
uous random variables with the distribution function (df) F (x) and the prob-
ability density function (pdf) f(x). Let Xu(s) be the s-th upper record value.
Then the conditional pdf of Xu(s) given Xu(r) = x, 1 ≤ r < s is (Ahsanullah,
1995)

(1.1) f(Xu(s)|Xu(r) = x) =
1

Γ(s− r)
[− ln F (y) + ln F (x)]s−r−1 f(y)

F (x)
,

where F (x) = 1− F (x).
Lee ([3]) has shown that E[Xu(n+1)−Xu(n)|Xu(m) = y] = c and E[Xu(n+2)−

Xu(n)|Xu(m) = y] = 2c, c > 0, n ≥ m + 1 if and only if the distribution
is exponential. Further, Lee et al. ([4]) have extended it and showed that
E[Xu(n+3) − Xu(n)|Xu(m) = y] = 3c and E[Xu(n+4) − Xu(n)|Xu(m) = y] =
4c, c > 0, n ≥ m + 1 if and only if the distribution is exponential. We, in
the present paper have extended their results in a rather very simple way and
established that E[h(Xu(s)) − h(Xu(r))|Xu(m) = x] = (s − r)c if and only if

F (x) = e−
h(x)

c , c > 0, where h(x) is a monotonic and differentiable function of
x and r ≥ m. Further it has also been shown that

E[h(Xu(s))− h(Xu(r))] + h(x) = E[h(Xu(s))|Xu(r) = x]
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if and only if the df is

(1.2) F (x) = e−
h(x)

c , c > 0.

2. Characterization theorems

Theorem 2.1. Let X be an absolutely continuous random variable with the
df F (x) and the pdf f(x) on the support (α, β), where α and β may be finite
or infinite. Then for m ≤ r < s

(2.1) E[h(Xu(s))− h(Xu(r))|Xu(m) = x] = (s− r)c

if and only if

(2.2) F (x) = e−
h(x)

c , c > 0,

where h(x) is a monotonic and differentiable function of x such that h(x) → 0
as x → α and h(x)F (x) → 0 as x → β.

Proof. We have,

(2.3)

E[h(Xu(s))− h(Xu(r))|Xu(m) = x]

=
1

Γ(s−m)

∫ β

x

h(y)[− ln F (y) + ln F (x)]s−m−1 f(y)
F (x)

dy

− 1
Γ(r −m)

∫ β

x

h(y)[− ln F (y) + lnF (x)]r−m−1 f(y)
F (x)

dy.

Now, it is easy to see that (2.2) implies (2.1) (Athar et al., [2]).
For sufficiency part, let c∗ = (s− r)c, then

(2.4)

1
Γ(s−m)

∫ β

x

h(y)[− ln F (y) + lnF (x)]s−m−1f(y)dy

− 1
Γ(r −m)

∫ β

x

h(y)[− ln F (y) + ln F (x)]r−m−1f(y)dy = c∗F (x).

Differentiating (r −m) times both the sides of (2.4) with respect to x, we get

(2.5)
1

Γ(s− r)

∫ β

x

h(y)[− ln F (y) + ln F (x)]s−r−1 f(y)
F (x)

dy = h(x) + c∗.

Integrating LHS of (2.5) by parts and simplifying, we have

(2.6)

1
Γ(s− r − 1)[F (x)]

∫ β

x

h(y)[− ln F (y) + ln F (x)]s−r−2f(y)dy

+
1

Γ(s− r)[F (x)]

∫ β

x

h′(y)[− ln F (y) + ln F (x)]s−r−1F (y)dy = h(x) + c∗.

This in view of (2.5), reduces to

(2.7) 1
Γ(s− r)

∫ β

x

h′(y)[− ln F (y) + ln F (x)]s−r−1F (y)dy = c F (x).
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Differentiating (2.7) (s− r) times with respect to x, we obtain

h′(x)F (x) = cf(x)

and hence the result. ¤
Remark 3.1. At s = r +1, s = r +2 and h(x) = x, we get the result as obtained
by Lee ([3]).

Remark 3.2. At s = r + 3, s = r + 4 and h(x) = x, this reduces to the result as
obtained by Lee et al. ([4]).

Remark 3.3. At r = m,E[h(Xu(s))|Xu(r) = x] = h(x) + (s− r)c as obtained by
Athar et al. ([2]).

Theorem 2.2. Under the conditions as given in Theorem 2.1 and for 1 ≤ r < s

(2.8) E[h(Xu(s))− h(Xu(r))] + h(x) = E[h(Xu(s))|Xu(r) = x]

if and only if

(2.9) F (x) = e−
h(x)

c , c > 0.

Proof. It is easy to see that (2.9) implies (2.8) and hence the necessary part.
For sufficiency part we have,

(2.10)

E[h(Xu(s))− h(Xu(r))] + h(x)

=
1

Γ(s− r)

∫ β

x

h(y)[− ln F (y) + ln F (x)]s−r−1 f(y)
F (x)

dy.

Integrating R.H.S. of (2.10) by parts we have

(2.11)

E[h(Xu(s))− h(Xu(r))] + h(x)

=
1

Γ(s− r − 1)[F (x)]

∫ β

x

h(y)[− ln F (y) + ln F (x)]s−r−2f(y)dy

+
1

Γ(s− r)[F (x)]

∫ β

x

h′(y)[− ln F (y) + lnF (x)]s−r−1F (y)dy.

In view of (2.10) and (2.11), we have

(2.12)
E[h(Xu(s))− h(Xu(s−1))]F (x)

=
1

Γ(s− r)

∫ β

x

h′(y)[− ln F (y) + ln F (x)]s−r−1F (y)dy.

Since E[h(Xu(s))− h(Xu(s−1))] = c is independent of x, (2.12) can be written
as

(2.13) 1
Γ(s− r)

∫ β

x

h′(y)[− ln F (y) + ln F (x)]s−r−1F (y)dy = cF (x).

Differentiate (2.13) (s− r) times with respect to x, to get

F (x) =
cf(x)
h′(x)
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and hence the theorem. ¤

Table 1: Examples based on the dfF (x) = 1− e−
h(x)

c

Distribution F (x) c h(x)

Exponential 1− e−θx 1
θ

x

0 < x < ∞
Weibull 1− e−θxp 1

θ
xp

0 < x < ∞
Pareto 1− ` x

α

´−θ 1
θ

log
`

x
α

´
α < x < ∞

Lomax 1− ˆ1 +
`

x
α

´˜−p 1
p

log
ˆ
1 +

`
x
α

´˜

0 < x < ∞
Gompertz 1− exp[−λ

µ
(eµx − 1)] µ

λ
eµx − 1

0 < x < ∞
Beta of the I kind 1− (1− x)θ − 1

θ
log (1− x)

0 < x < 1

Beta of the II kind 1− (1 + x)−1 1 log (1 + x)
0 < x < ∞

Extreme value I 1− exp[−ex] 1 ex

−∞ < x < ∞
Log logistic 1− (1 + θxp)−1 1 log (1 + θxp)

0 < x < ∞
Burr Type IX 1−

»
1 +

c((1+ex)k−1)
2

–−1

1 log

»
1 +

c((1+ex)k−1)
2

–

−∞ < x < ∞
Burr Type XII 1− (1 + θxp)−m 1

m
log (1 + θxp)

0 < x < ∞
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