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RELATIONS OF DAGUM DISTRIBUTION BASED ON DUAL

GENERALIZED ORDER STATISTICS

DEVENDRA KUMAR

Abstract. The dual generalized order statistics is a unified model which
contains the well known decreasingly ordered random variables like order

statistics and lower record values. With this definition we give simple
expressions for single and product moments of dual generalized order sta-
tistics from Dagum distribution. The results for order statistics and lower

records are deduced from the relations derived and some computational
works are also carried out. Further, a characterizing result of this dis-
tribution on using the conditional moment of the dual generalized order
statistics is discussed. These recurrence relations enable computation of

the means, variances and covariances of all order statistics for all sample
sizes in a simple and efficient manner. By using these relations, we tabulate
the means, variances, skewness and kurtosis of order statistics and record
values of the Dagum distribution.
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1. Introduction

The Dagum distribution was introduced by Dagum (1977) it is also called
the inverse Burr XII distribution. The Burr XII distribution is widely known in
various fields of science, the Dagum distribution is not much popular, perhaps,
because of its difficult mathematical tractability. Dagum proposed his model
as income distribution, its properties have been appreciated in economics and
financial fields and its features have been extensively discussed in the studies of
income and wealth. For more details and its applications on this distribution
one may refer to Kleiber and Kotz (2003) and Kleiber (2008).
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A random variable X is said to have Dagum distribution if its probability
density function (pdf) is given by

f(x) = αβσx−(σ+1)(1 + αx−θ)−(β+1), x > 0, α, β, σ > 0 (1)

and the corresponding cumulative distribution function (cdf) is

F (x) = (1 + αx−σ)−β , x > 0, α, β, σ > 0. (2)

Therefore, in view of (1) and (2), we have

αβσF (x) = x(α+ xσ)f(x). (3)

Here α is the scale parameter, while β and σ are shape parameters. For β = 1,
the above distribution corresponds to the log-logistic distribution. The Dagum
distribution has positive asymmetry, and it is unimodal for βσ > 1 and zero-
modal for βσ ≤ 1. The relation (3) will be used to derive some simple relations
for the single and product moments of DGOS from the Dagum distribution.
These recurrence relations will enable one to obtain all the single and product
moments in a simple recursive manner.

The concept of generalized order statistics GOS was introduced by Kamps
(1995) as a general framework for models of ordered random variables. More-
over, many other models of ordered random variables, such as, order statistics,
k-th upper record values, upper record values, progressively Type II censoring
order statistics, Pfeifer records and sequential order statistics are seen to be par-
ticular cases of GOS. These models can be effectively applied, e.g., in reliability
theory. However, random variables that are decreasingly ordered cannot be inte-
grated into this framework. Consequently, this model is inappropriate to study,
e.g. reversed ordered order statistic and lower record values models. Burkschat
et al. (2003) introduced the concept of dual generalized order statistics (DGOS).
The DGOS models enable us to study decreasingly ordered random variables
like reversed order statistics, lower k record values and lower Pfeirfer records,
through a common approach below:

Suppose Xd(1, n,m, k), . . . , Xd(n, n,m, k), (k ≥ 1, m is a real number), are n
DGOS from an absolutely continuous cumulative distribution function cdf F (x)
with probability density function pdf f(x), if their joint pdf is of the form

k

n−1∏
j=1

γj

(n−1∏
i=1

[F (xi)]
mf(xi)

)
[F (xn)]

k−1f(xn), (4)

for F−1(1) > x1 ≥ x2 ≥ . . . ≥ xn > F−1(0).
where γj = k + (n − j)(m + 1) > 0 for all j, 1 ≤ j ≤ n, k is a positive integer
and m ≥ −1.
If m = 0 and k = 1, then this model reduces to the (n− r+1)-th order statistic,
from the sample X1, X2, . . . , Xn and (4) will be the joint pdf of n order statistics.
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If k = 1 and m = −1, then (4) will be the joint pdf of the first n record values
of the identically and independently distributed (iid) random variables with cdf
F (x) and corresponding pdf f(x).
In view of (4), the marginal pdf of the rth DGOS, is given by

fXd(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F (x)]γr−1f(x)gr−1

m (F (x)). (5)

The joint pdf of r-th and s-th DGOS, is

fXd(r,n,m,k),Xd(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F (x)]mf(x)gr−1

m (F (x))

·[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y), x > y, (6)

where

Cr−1 =
r∏
i=1

γi

hm(x) =

{
− 1

m+1x
m+1, m ̸=−1

−lnx, m=−1

and

gm(x) = hm(x)− hm(1), x ∈ [0, 1).

Order statistics and functions of these statistics play an important role in a wide
range of theoretical and practical problems such as characterization of probabil-
ity distributions and goodness-of-fit tests, entropy estimation, analysis of cen-
sored samples, reliability analysis, quality control and strength of materials; see
Arnold et al. (1992) and David and Nagaraja (2003) and the references therein
for more details. The practicability of moments of order statistics can be seen
in many areas such as quality control testing, reliability, etc. For instance, when
the reliability of an item or product is high, the duration of the failed items will
be high which in turn will make the product too expensive, both in terms of
time and money. This fact prevents a practitioner from knowing enough about
the product in a relatively short time. Therefore, a practitioner needs to predict
the failure of future items based on the times of a few early failures. These
predictions are often based on moments of order statistics.

The theory of DGOS and their distributional properties has been extensively
studied in statistics. See Pawlas and Szynal (2001), Ahsanullah (2004, 2005),
Mbah and Ahsanullah (2007). Khan and Kumar (2010), AL-Hussaini et al.
(2005), Kumar (2015a, 2015b), for reviews on various developments in the area
of gos.

The only paper we were able to find on DGOS of the Dagum distribution
is Domma et al. (2011). This paper gives some estimation based on maximum
likelihood in Dagum distribution with censored samples. Kumar (2016) obtained
the explicit expression and recurrence relation for kth record values from Dagum
distribution. They did not consider moments of DGOS.
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This paper is organized as follows: we describe some technical lemmas in
section 2. In Section 3, explicit expressions and some recurrence for single and
product moments of DGOS from Dagum distribution are presented. Then we
show that results for order statistics and record values are deduced as special
cases. In section, we prove a characterization result on Dagum distribution based
on conditional moment of DGOS. The explicit expression in the case of order
statistics and record values for n = 1(1)5 (see Tables 1, 2, 3, 4, 5, 6, 7 and 8) are
shown computationally in section 5. Some final comments in section 6 conclude
the papaer.

2. Technical lemmas

Here, we present and prove four technical lemmas.

Lemma 2.1. For Dagum distribution as given in (2) and any non-negative and
finite integers a and b

Jj(a, 0) = βαj/σ
∞∑
p=0

(j/σ)(p)

p![β(a+ 1) + p+ (j/σ)]
, σ > j, j = 0, 1, . . . , (7)

where

(α)(i) =
{
α(α+1)...(α+i−1), i>0
1, i=0 .

and

Jj(a, b) =

∫ ∞

0

xj [F (x)]af(x)gbm(F (x))dx. (8)

Proof. From (8), we have

Jj(a, 0) =

∫ ∞

0

xj [F (x)]af(x)dx

= βαj/σ
∫ 1

0

(1− z)−j/σzβ(a+1)+(j/σ)−1dz

= βαj/σ
∞∑
p=0

(j/β)(p)

p!

∫ 1

0

zβ(a+1)+(j/σ)+p−1dz,

where z = [F̄ (x)]1/β . The proof is complete. �

Lemma 2.2. For Dagum distribution as given in (2) and any non-negative and
finite integers a and b

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0) (9)

=
βαj/σ

(m+ 1)b

∞∑
p=0

b∑
u=0

(−1)u
(

b
u

)
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·
(j/σ)(p)

p![β{a+ (m+ 1)u+ 1}+ p+ (j/σ)]
, m ̸= −1 (10)

= b!βb+1αj/α
∞∑
p=0

(j/σ)(p)

p![β(a+ 1) + p(j/σ)]b+1
, m = −1. (11)

where Jj(a, b) is as given in (8).

Proof. On expanding gbm(F (x)) =
[

1
m+1 (1− (F (x))m+1)

]b
binomially in (8), we

get when m ̸= −1

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)∫ ∞

0

xj [F (x)]a+u(m+1)f(x)dx

=
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0).

Making use of Lemma 2.1, we establish the result given in (10)
and when m = −1 that

Jj(a, b) =
0
0 as

∑b
u=0(−1)u

(
b
u

)
= 0.

Since (10) is of the form 0
0 at m = −1, therefore, we have

Jj(a, b) = A

b∑
u=0

(−1)u
(

b
u

)
[β{a+ u(m+ 1) + 1}+ p+ (j/σ)]−1

(m+ 1)b
, (12)

where

A = βαj/σ
∞∑
p=0

(j/β)(p)

p!
.

Differentiating numerator and denominator of (12) b times with respect to m,
we get

Jj(a, b) = Aβb
b∑

u=0

(−1)u+b
(

b
u

)
ub

[β{a+ u(m+ 1) + 1}+ p+ (j/σ)]b+1
.

On applying the L’ Hospital rule, we have

limm→−1Jj(a, b) = Aβb
b∑

u=0

(−1)u+b
(

b
u

)
ub

[β(a+ 1) + p+ (j/σ)]b+1
. (13)

But for all integers n ≥ 0 and for all real numbers x, we have Ruiz (1996)

n∑
i=0

(−1)i
(
n
i

)
(x− i)n = n!. (14)
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Therefore,

b∑
u=0

(−1)u+b
(

b
u

)
ub = b!. (15)

Now on substituting (15) in (13), we have the result given in (11). �
Lemma 2.3. For Dagum distribution as given in (2) and any non-negative
integers a, b, c with m ̸= −1

Ji,j(a, 0, c) = β2α(i+j)/σ
∞∑
p=0

∞∑
q=0

(j/σ)(p)(j/σ)(q)

p! q![β(c+ 1) + p+ (j/σ)]

· 1

[β(a+ c+ 2) + p+ q + {(i+ j)/σ}+ p+ q]
, (16)

where

Ji,j(a, b, c) (17)

=
∫∞
0

∫∞
x
xiyj [F (x)]af(x)[hm(F (y))− hm(F (x))]b[F (y)]cf(y)dydx. (18)

Proof. From (17), we have

Ji,j(a, 0, c) =

∫ ∞

0

xi[F (x)]af(x)G(x)dx, (19)

where

G(x) =

∫ ∞

x

yj [F̄ (y)]cf(y)dy. (20)

By setting z = [F̄ (y)]1/β in (19), we find that

G(x) = βαj/σ
∞∑
p=0

(j/σ)p[F (x)]
c+1+{p+(j/σ)}/β

p![β(c+ 1) + p+ (j/σ)]
.

On substituting the above expression of G(x) in (18), we get

Ji,j(a, 0, c) = βαj/σ
∞∑
p=0

(j/σ)p
p![β(c+ 1) + p+ (j/σ)]

·
∫ ∞

0

xi[F̄ (x)]a+c+1+{p+(j/σ)}/βf(x)dx. (21)

Again by setting t = [F (x)]1/β in (20) and simplifying the resulting expression,
we derive the relation given in (16). �
Lemma 2.4. For the distribution as given in (2) and any non-negative integers
a, b, c and m ̸= 1

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(
b
v

)
· Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)) (22)
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=
β2σ(i+j)/σ

(m+ 1)b

∞∑
p=0

∞∑
q=0

b∑
v=0

(−1)v
(
b
v

)
· (j/σ)p

p! q![β{c+ (m+ 1)v + 1}+ p+ (j/σ)]

·
(i/σ)(q)

[β{a+ c+ (m+ 1)b+ 2}+ p+ q + {(i+ j)/σ}]
(23)

=
∞∑
p=0

∞∑
q=0

b! βb+2σ(i+j)/σ(j/σ)(p)

p!q![β(c+ 1) + (j/σ) + p]b+1

·
(i/σ)(q)

[β(a+ c+ 2) + p+ q + {(i+ j)/σ}]
, m = −1 (24)

where Ji,j(a, b, c) is as given in (17).

Proof. When m ̸= −1, we have

[hm(F (y))− hm(F (x))]b =
1

(m+ 1)b
[(F (x))m+1 − (F (y))m+1]b

=
1

(m+ 1)b

b∑
v=0

(−1)v
(
b
v

)
[F (y)]v(m+1)[F (x)](b−v)(m+1).

Now substituting for [hm(F (y))− hm(F (x))]b in (17), we get

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(
b
v

)
Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)).

Making use of the Lemma 2.3, we derive the relation given in (22).
When m = −1, we have

Ji,j(a, b, c) =
0
0 as

∑b
v=0(−1)v

(
b
v

)
= 0.

On applying L’ Hospital rule, (23) can be proved on the lines of (11). �

3. Momemts of dual generalized order statistics

In this section, we derive explicit expressions and recurrence relations for
single and product moments of DGOS from the Dagum distribution.

3.1. Relations for single moments. The single moments of DGOS are very
important to calculate the mean and variance of order statistics and record
values. In the following, we derive the single moments of DGOS from the Dagum
distribution.

Theorem 3.1. For Dagum distribution as given in (2) and 1 ≤ r ≤ n, k =
1, 2, . . . and m ̸= −1

E[Xj
d(r, n,m, k)] =

Cr−1

(r − 1)!
Jj(γr − 1, r − 1)
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=
βαj/σCr−1

(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)u
(
r − 1
u

)

·
(j/σ)(p)

p![βγr−u + p+ (j/σ)]
, β > j, j = 0, 1, 2, . . . , (25)

where Jj(γr − 1, r − 1) is as defined in (8).

Proof. From (5) and (8), we have

E[Xj
d(r, n,m, k)] =

Cr−1

(r − 1)!
Jj(γr − 1, r − 1). (26)

Making use of Lemma 2.1, we establish the result given in (17).
�

Remark 3.1. Putting m = 0, k = 1 in (17), the explicit formula for the single
moments of order statistics of the Dagum distribution can be obtained as

E[Xj
n−r+1:n] = Cr:n

∞∑
p=0

r−1∑
u=0

(−1)u
(
r − 1
u

)
βαj/σ (j/σ)(p)

p![β(n− r + u+ 1) + p+ (j/σ)]
.

That is

E[Xj
r:n] = Cr:n

∞∑
p=0

n−r∑
u=0

(−1)u
(
n− r
u

)
βαj/σ (j/σ)(p)

p![β(r + u) + p+ (j/σ)]
,

where

Cr:n =
n!

(r − 1)!(n− r)!
.

Remark 3.2. Putting m = −1 in (17), we deduce the explicit expression for
the single moments of lower record values for Dagum distribution in view of (16)
and (11) in the form

E[Xj
d(r, n,−1, k)] = E[(Z(k)

r )j ] = (βk)rαj/σ
∞∑
p=0

(j/σ)(p)

p![βk + p+ (j/σ)]r

and hence for lower records

E[(Z(1)
r )j ] = E[Xj

U(r)] = βrαj/σ
∞∑
p=0

(j/σ)(p)

p![β + p+ (j/σ)]r
,

as obtained Kumar (2016).

Recurrence relations for single moments of DGOS from (2) can be obtained
in the following theorem.
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Theorem 3.2. For the distribution given in (2) and 2 ≤ r ≤ n, n ≥ 2 and
k = 1, 2, . . . ,

1

α
E[Xj+σ

d (r, n,m, k)] =
βσγr
j

E[Xj
d(r − 1, n,m, k)]

−
(
1 +

βσγr
j

)
E[Xj

d(r, n,m, k)]. (27)

Proof. From (4), we have

E[Xj
d(r, n,m, k)] =

Cr−1

(r − 1)!

∫ ∞

0

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx. (28)

Integrating by parts treating [F (x)]γr−1f(x) for integration and rest of the in-
tegrand for differentiation, we get

E[Xj
d(r, n,m, k)] = E[Xj

d(r − 1, n,m, k)]

− jCr−1

γr(r − 1)!

∫ ∞

0

xj−1[F (x)]γrgr−1
m (F (x))dx,

the constant of integration vanishes since the integral considered in (19) is a
definite integral. On using (3), we obtain

E[Xj
d(r, n,m, k)] = E[Xj

d(r − 1, n,m, k)]− jCr−1

αβσγr(r − 1)!

·

[∫ ∞

0

xj+σ[F (x)]γr−1f(x)gr−1
m (F (x))dx

− α

∫ ∞

0

xj [F (x)]γr−1f(x)gr−1
m (F (x))dx

]
,

and hence the result. �
Remark 3.3. Putting m = 0, k = 1 in (18), we obtain a recurrence relation for
single moments of order statistics of the Dagum distribution in the form

1

α
E
(
Xj+σ
n−r+1:n

)
=

βσ(n− r + 1)

j
E
(
Xj
n−r−2:n

)
−

(
1 +

βσ(n− r + 1)

j

)
E
(
Xj
n−r+1:n

)
.

That is

1

α
E
(
Xj+σ
r:n

)
=

βσ(r − 1)

j
E
(
Xj
r−1:n

)
−
(
1 +

βσ(r−)

j

)
E
(
Xj
r:n

)
.

Remark 3.4. Setting m = −1 and k ≥ 1, in Theorem 3.2, we get a recurrence
relation for single moments of kth lower record values from Dagum distribution
in the form

1

α
E
(
Xj+σ
L(n:k)

)
=
βσk

j
E
(
Xj
L(n−1:k)

)
−
(
1 +

βσk

j

)
E
(
Xj
L(n:k)

)
,
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as obtained Kumar (2016).

3.2. Relations for product moments. The product moments of DGOS are
very important to calculate the covariance of order statistics and record values.
In the following, we derive the product moments of DGOS from the Dagum
distribution.

Theorem 3.3. For Dagum distribution as given in (2) and 1 ≤ r < s ≤ n,
k = 1, 2, . . . and m ̸= −1

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] =

Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

·
r−1∑
u=0

(−1)u
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1) (29)

=
β2σ(i+j)/σCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

·
(
r − 1
u

)(
s− r − 1

v

)
(j/σ)(p)

p! q![βγs−v + (j/σ) + p]

·
(i/σ)(q)

[βγr−u + {(i+ j)/σ}+ p+ q]
, σ > max(i, j), i, j = 0, 1, 2, . . . . (30)

Proof. From (6), we have

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] =

Cs−1

(r − 1)!(s− r − 1)!

∫ ∞

0

∫ x

0

xiyj [F (x)]mf(x)

·gr−1
m (F (x))[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dydx. (31)

On expanding gr−1
m (F (x)) binomially in (30), we get

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] =

Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

·
r−1∑
u=0

(−1)u
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1).

Making use of the Lemma 2.4, we derive the relation in (29). �

Remark 3.5. Puttingm = 0, k = 1 in (29), the explicit formula for the product
moments of order statistics of the Dagum distribution can be obtained as

E(Xi
n−r+1:nX

j
n−s+1:n) =

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v
(
r − 1
u

)(
s− r − 1

v

)

·
β2α(i+j)/σ Cr,s:n (j/σ)(p) (i/σ)(q)

p!q![β(n− s+ 1 + v) + p+ (j/σ)][β(n− r + 1 + u) + p+ q + {(i+ j)/σ}]
.
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that is

E(Xi
r:nX

j
s:n) =

∞∑
p=0

∞∑
q=0

n−s∑
u=0

s−r−1∑
v=0

(−1)u+v
(
n− s
u

)(
s− r − 1

v

)

·
β2α(i+j)/σ Cr,s:n (j/σ)(p) (i/σ)(q)

p!q![β(r + v) + p+ (j/σ)][β(s+ u) + p+ q + {(i+ j)/σ}]
,

where

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)!
.

Remark 3.6. Putting m = −1 in (29), we deduce the explicit expression for
the product moments of lower record values for the Dagum distribution in view
of (28) and (23) in the form

E[(X
(k)
L(r))

i(X
(k)
L(s))

j)] =
∞∑
p=0

∞∑
q=0

(βk)sα(i+j)/σ(j/σ)(p)(i/σ)(q)

p!q![βk + p+ (j/σ)]s−r[βk + p+ q + {(i+ j)/σ}]r

and hence for lower records

E[Xi
L(r)X

j
L(s))] =

∞∑
p=0

∞∑
q=0

βsα(i+j)/σ(j/σ)(p)(i/σ)(q)

p!q![β + p+ (j/σ)]s−r[β + p+ q + {(i+ j)/σ}]r
.

as obtained Kumar (2016).

Corollary 3.4. For the distribution given in (2), we have

E[Xi
d(r, n,m, k) =

βαi/σCr−1

(r − 1)!(m+ 1)r−1

∞∑
q=0

r−1∑
u=0

(−1)u

.

(
r − 1
u

)
(i/σ)q

q![βγr−u + q + (i/σ)]
. (32)

Proof. At j = 0 in (29), we have

E[Xi
d(r, n,m, k) =

βαi/σCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

·
(
r − 1
u

)(
s− r − 1

v

)
(i/σ)q

q!γs−v[βγr−u + q + (i/σ)]
.

Simplifying the resulting expression, we get result given in (31). �

Making use of (2), we can derive recurrence relations for product moments of
DGOS.

Theorem 3.5. For the distribution given in (1.2) and n ∈ N , m ∈ ℜ, 1 ≤ r <
s ≤ n− 1

1

α
E[Xi

d(r, n,m, k)X
j
d(s, n,m, k)] =

βσγs
j

E[Xi
d(r, n,m, k)X

j
d(s− 1, n,m, k)]
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−
(
1 +

βσγs
j

)
E[Xi

d(r, n,m, k)X
j
d(s, n,m, k)]. (33)

Proof. From (6), we have

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] =

Cs−1

(r − 1)!(s− r − 1)!

·
∫ ∞

0

xi[F (x)]mf(x)gr−1
m (F (x))I(x)dx, (34)

where

I(x) =

∫ x

0

yj [F (y)]γs−1[hm(F (y))− hm(F (x))]s−r−1f(y)dy.

Solving the integral in I(x) by parts and substituting the resulting expression in
(33), we get

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] = E[Xi

d(r, n,m, k)X
j
d(s− 1, n,m, k)]

− jCs−1

γs(r − 1)!(s− r − 1)!

∫ ∞

0

∫ x

0

xiyj−1[F (x)]mf(x)gr−1
m (F (x))

·[hm(F (y))− hm(F (x))]s−r−1[F (y)]γsdydx

the constant of integration vanishes since the integral in I(x) is a definite integral.
On using the relation (3), we obtain

E[Xi
d(r, n,m, k)X

j
d(s, n,m, k)] = E[Xi

d(r, n,m, k)X
j
d(s− 1, n,m, k)]

− jCs−1

αβσγs(r − 1)!(s− r − 1)!

{∫ ∞

0

∫ x

0

xiyj+σ[F (x)]mf(x)gr−1
m (F (x))

·[hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1f(y)dydx

+α

∫ ∞

0

∫ x

0

xiyj [F (x)]mf(x)gr−1
m (F (x))[hm(F (y))− hm(F (x))]s−r−1

·[F (y)]γs−1f(y)dydx

}
,

and hence the result. �

Remark 3.7. Putting m = 0, k = 1 in (32), we obtain recurrence relations for
product moments of order statistics of the Dagum distribution in the form

1

α
E
(
Xi
n−r+1:nX

j+σ
n−s+1:n

)
=
βσ(n− r + 1)

j
E
(
Xi
n−r+1:nX

j
n−s+2:n

)
−
(
1 +

βσ(n− s+ 1)

j

)
E
(
Xi
n−r+1:nX

j
n−s+1:n

)
.
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Remark 3.8. Setting m = −1 and k ≥ , in Theorem 3.5, we obtain the recur-
rence relations for product moments of lower record values from Dagum distri-
bution in the form

1

α
E
(
X

(i)
L(r):kX

(j+σ)
L(s):k

)
=

βσk

j
E
(
X

(i)
L(r):kX

(j)
L(s−1):k

)
−

(
1 +

βσk

j

)
E
(
X

(i)
L(r):kX

(j)
L(s):k

)
,

as obtained by Kumar (2016).

4. Characterization

In this section, we shall characterize Dagum distribution based on conditional
moment of the DGOS.

Let Xd(r, n,m, k), r = 1, 2, . . . , n be DGOS, then from a continuous popula-
tion with cdf F (x) and pdf f(x), then the conditional pdf of Xd(s, n,m, k) given
Xd(r, n,m, k) = x, 1 ≤ r < s ≤ n, in view of (5) and (6), is

fXd(s,n,m,k)|Xd(r,n,m,k)(y|x) =
Cs−1

(s− r − 1)!Cr−1

· [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1

[F (x)]γr+1
f(y). (35)

Theorem 4.1. Let X be a non-negative random variable having an absolutely
continuous distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all
x > 0, then

E[Xd(s, n,m, k)|Xd(r, n,m, k) = x] = α1/σ
∞∑
p=0

(1/σ)(p)(1 + αx−σ)p

p!

·
s−r∏
j=1

(
γr+j

γr+j + p/β

)
, (36)

if and only if

F (x) = (1 + αx−σ)−β , x > 0, α, β, σ > 0.

Proof. From (34), we have

E[Xd(s, n,m, k)|Xd(r, n,m, k) = x] =
Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

·
∫ x

0

y

[
1−

(
F (y)

F (x)

)m+1
]s−r−1(

F (y)

F (x)

)γs−1
f(y)

F (x)
dy. (37)

By setting u = F (y)
F (x) =

(
1+αx−σ

1+αy−σ

)β
from (2) in (36), we obtain

E[Xd(s, n,m, k)|Xd(r, n,m, k) = x] =
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1
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·
∫ 1

0

(
1− (1 + αx−σ) u−1/β

α

)−1/σ

uγs−1(1− um+1)s−r−1du

=
α1/σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1
I1, (38)

where

I1 =

∫ 1

0

(
1− (1 + αx−σ) u−1/β

)−1/σ

uγs−1(1− um+1)s−r−1du

=

∞∑
p=0

(1/σ)(p)

p!
(1 + αx−σ)p

∫ 1

0

uγs−(p/β)−1(1− um+1)s−r−1du. (39)

Again by setting t = um+1 in (38), we get

I1 =
∞∑
p=0

(1/σ)(p)

p!
(1 + αx−σ)p

∫ 1

0

t
βk+p

β(m+1)
+n+s−1(1− t)s−r−1dt

=
∞∑
p=0

(1/σ)(p)

p!(m+ 1)
(1 + αx−σ)p

Γ
(

βk+p
β(m+1) + n− s

)
Γ(s− r)

Γ
(

βk+p
β(m+1) + n− r

)
=

∞∑
p=0

(1/σ)(p)

p!
(1 + αx−σ)p

(m+ 1)s−r−1Γ(s− r)∏s−r
j=1(γr+j + (p/β))

.

Substituting the value of I1 in (33) and simplifying the resulting expression, we
derive the relation in (35).

To prove sufficient part, we have from (33) and (34)

Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∫ x

0

y[(F (x))m+1 − (F (y))m+1]s−r−1

·[F (y)]γs−1f(y)dy = [F (x)]γr+1Hr(x), (40)

where

Hr(x) = α1/σ
∞∑
p=0

(1/σ)(p)(1 + αx−σ)p

p!

s−r∏
j=1

(
γr+j

γr+j + p/β

)
.

Differentiating (39) both sides with respect to x, we get

Cs−1[F (x)]
mf(x)

(s− r − 2)!Cr−1(m+ 1)s−r−2

∫ x

0

y[(F (x))m+1 − (F (y))m+1]s−r−2

·[F (y)]γs−1f(y)dy = H ′
r(x)[F (x)]

γr+1 + γr+1Hr(x)[F (x)]
γr+1−1f(x)

or

γr+1Hr+1(x)[F (x)]
γr+2+mf(x)

= H ′
r(x)[F (x)]

γr+1 + γr+1Hr(x)[F (x)]
γr+1−1f(x).



Relations of Dagum distribution based on... 491

Therefore,

f(x)

F (x)
=

H ′
r(x)

γr+1[Hr+1(x)−Hr(x)]
=

αβσ

(α+ xσ) x

which proves that

F (x) = (1 + αx−σ)−β , x > 0, α, β, σ > 0.

�

5. Numerical Results

The recurrence relations obtained in the preceding sections allow us to eval-
uate the means, variances and covariances of all order statistics for all sample
sizes in a simple recursive manner. Means, variances, covariances and skewness
and kurtosis of all order statistics and record values can be used for various infer-
ential purposes; for example, they are useful in determining best linear unbiased
estimators of location/scale parameters and best linear unbiased predictors of
failure times. More details on BLUEs and BLUPs based on order statistics can
be seen in Balakrishnan and Cohen (1991) and Arnold et al. (1992).

Tables for variance, skewness, kurtosis based on order statistics and mean,
variance, skewness, kurtosis based record values are not presented here but are
available from the authors on request. All computations here were performed
using Mathematica. Mathematica like other algebraic manipulation packages
allows for arbitrary precision, so the accuracy of the given values is not an issue.

6. Conclusions

We have derived explicit expressions for single moments and product mo-
ments DGOS from the Dagum distribution. Also, we have given tabulations of
the mean, variance, skewness and kurtosis based on order statistics and record
values. Tabulations for the covariances of order statistics and record values are
not presented here but are available from the authors on request. All computa-
tions here we performed using Mathematica. Mathematica like other algebraic
manipulation packages allows for arbitrary precision, so the accuracy of the given
values is not an issue.

A future work may be to derive estimation procedures for the Dagum distri-
bution based on record values, order statistics and generalized order statistics.
Another future work may be to characterize the Dagum distribution based on
record values, order statistics and generalized order statistics.
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Table 1. Mean based on order statistics

σ = 3

α = 1 α = 2

n r β = 1 β = 2 β = 1 β = 2

1 1 1.19098 1.57591 1.50054 1.98552

2 1 0.80605 1.13422 1.01556 1.42903
2 1.57591 2.01760 1.98552 2.54202

3 1 0.67178 0.98195 0.84639 1.23718
2 1.07459 1.43876 1.35390 1.81273

3 1.82657 2.30702 2.30134 2.90667
4 1 0.59714 0.89890 0.75234 1.13254

2 0.89570 1.23110 1.12851 1.55109
3 1.25348 1.64643 1.57929 2.07437

4 2.01760 2.52722 2.54202 3.18410
5 1 0.54737 0.84413 0.68965 1.06354

2 0.79618 1.11797 1.00312 1.40856
3 1.04498 1.40080 1.31659 1.76490

4 1.39248 1.81018 1.75442 2.28068
5 2.17388 2.70648 2.73892 3.40995

σ = 4

1 1 1.10292 1.37284 1.31160 1.63259
2 1 0.83300 1.08453 0.99061 1.28974

2 1.37284 1.66114 1.63259 1.97544
3 1 0.72891 0.97662 0.86683 1.16141

2 1.04118 1.30036 1.23818 1.54639

3 1.53866 1.84153 1.82979 2.18996
4 1 0.66817 0.91533 0.79459 1.08852

2 0.91114 1.16051 1.08353 1.38008
3 1.17123 1.44021 1.39284 1.71270

4 1.66114 1.97530 1.97544 2.34905
5 1 0.62641 0.87390 0.74493 1.03924

2 0.83521 1.08106 0.99324 1.28560
3 1.02503 1.27968 1.21897 1.52180

4 1.26870 1.54722 1.50875 1.83997
5 1.75925 2.08232 2.09211 2.47631

σ = 5

1 1 1.06449 1.27384 1.22278 1.46325
2 1 0.85514 1.06032 0.9823 1.21798

2 1.27384 1.48736 1.46325 1.70852
3 1 0.76965 0.97653 0.88410 1.12174

2 1.02613 1.22789 1.17872 1.41047
3 1.39769 1.61709 1.60552 1.85755

4 1 0.71834 0.92782 0.82516 1.06578
2 0.92358 1.12267 1.06091 1.28961
3 1.12868 1.33310 1.29652 1.53133

4 1.48736 1.71176 1.70852 1.96629
5 1 0.68242 0.89441 0.78390 1.02741

2 0.86201 1.06144 0.99019 1.21927
3 1.01594 1.21453 1.16700 1.39513

4 1.20385 1.41215 1.38286 1.62213
5 1.55823 1.78666 1.78994 2.05233
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