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ON RELATIONS FOR QUOTIENT MOMENTS OF THE

GENERALIZED PARETO DISTRIBUTION BASED ON

RECORD VALUES AND A CHARACTERIZATION

DEVENDRA KUMAR

Abstract. Generalized Pareto distributions play an important role in re-
liability, extreme value theory, and other branches of applied probability

and statistics. This family of distribution includes exponential distribution,
Pareto distribution, and Power distribution. In this paper we establish
some recurrences relations satisfied by the quotient moments of the upper
record values from the generalized Pareto distribution. Further a char-

acterization of this distribution based on recurrence relations of quotient
moments of record values is presented.
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1. Introduction

Record values are found in many situations of daily life as well as in many
statistical applications. Often we are interested in observing new records and
in recording them: for example, Olympic records or world records in sport.
Record values are used in reliability theory. Moreover, these statistics are closely
connected with the occurrences times of some corresponding non homogeneous
Poisson process used in shock models. The statistical study of record values
started with Chandler [8], he formulated the theory of record values as a model
for successive extremes in a sequence of independently and identically random
variables. Feller [25] gave some examples of record values with respect to gam-
bling problems. Resnick [19] discussed the asymptotic theory of records. Theory
of record values and its distributional properties have been extensively studied
in the literature, for example, see, Ahsanullah [9], Arnold et al. [1,2], Nevzorov
[23] and Kamps [21] for reviews on various developments in the area of records.
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We shall now consider the situations in which the record values (e.g. successive
largest insurance claims in non-life insurance, highest water-levels or highest
temperatures) themselves are viewed as ”outliers” and hence the second or third
largest values are of special interest. Insurance claims in some non life insurance
can be used as one of the examples. Observing successive k largest values in
a sequence, Dziubdziela and Kopocinski [24] proposed the following model of k
record values, where k is some positive integer.

Let {Xn, n ≥ 1} be a sequence of identically independently distributed (i.i.d)
random variables with probability density function (pdf) f(x) and distribution
function (df) F (x). The j−th order statistics of a sample (X1, X2, . . . , Xn) is

denoted by Xj:n. For a fix k ≥ 1 we define the sequence {U (k)
n , n ≥ 1} of k upper

record times of {Xn, n ≥ 1} as follows

U
(k)
1 = 1,

U
(k)
n+1 = min{j > U (k)

n : Xj : j + k + 1 > X
U

(k)
n :U

(k)
n +k−1

}.

The sequence {Y (k)
n , n ≥ 1} with Y

(k)
n = X

U
(k)
n :U

(k)
n +k−1

, n = 1, 2, . . . are called

the sequences of k upper record values of {Xn, n ≥ 1}.
For k = 1 and n = 1, 2, . . . we write U

(1)
1 = Un. Then {Un, n ≥ 1} is

the sequence of record times of {Xn, n ≥ 1}. The sequence {Y (k)
n , n ≥ 1},

where Y
(k)
n = X

U
(k)
n

is called the sequence of k upper record values of {Xn, n ≥
1}. For convenience, we shall also take Y

(k)
0 = 0. Note that k = 1 we have

Y
(1)
n = XUn , n ≥ 1, which are record value of {Xn, n ≥ 1}. Moreover Y

(k)
1 =

min{X1, X2, . . . , Xk = X1:k}.
Let {X(k)

n , n ≥ 1} be the sequence of k upper record values the joint pdf of

X
(k)
m and X

(k)
n , 1 ≤ m < n, n > 2 is given by

f
X

(k)
m ,X

(k)
n

(x, y) =
kn

(m− 1)!(n−m− 1)!
[− ln(F̄ (x))]m−1

× [− ln F̄ (y) + ln F̄ (x)]n−m−1[F̄ (y)]k−1 f(x)

F̄ (x)
f(y), x < y.

(1.1)

where F̄ (x) = 1− F (x).
Recurrence relations are interesting in their own right. They are useful in

reducing the number of operations necessary to obtain a general form for the
function under consideration. Furthermore, they are used in characterizing the
distributions, which in important area, permitting the identification of popula-
tion distribution from the properties of the sample. Recurrence relations and
identities have attained importance reduces the amount of direct computation
and hence reduces the time and labour. They express the higher order moments
in terms of lower order moments and hence make the evaluation of higher order
moments easy and provide some simple checks to test the accuracy of computa-
tion of moments of order statistics.
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Recurrence relations for single and product moments of k record values from
Weibull, Pareto, generalized Pareto, Burr, exponential and Gumble distribution
are derived by Pawalas and Szynal [16, 17, 18]. Sultan [7], Saran and Singh
[6], Kumar [3], Kumar and Khan [4] are established recurrence relations for mo-
ments of k record values from modified Weibull, linear exponential, exponenti-
ated log-logistic and generalized beta II distributions respectively. Balakrishnan
and Ahsanullah [13,14] have proved recurrence relations for single and product
moments of record values from generalized Pareto, Lomax and exponential dis-
tributions respectively. And similar results for this paper have been done by
Lee and Chang [10, 11, 12] and Chang [20] for exponential distribution, Pareto
distribution, power function distribution and Weibull distribution respectively.
Kamps [22] investigated the importance of recurrence relations of order statistics
in characterization.

In this paper, we established some explicit expressions and recurrence rela-
tions satisfied by the quotient moments of the upper record values from the
generalized Pareto distribution. A characterization of this distribution based on
recurrences relations of quotient moments of record values.

A random variable X is said to have generalized Pareto distribution if its pdf
is of the form

f(x) =
β(1 + α)

(αx+ β)2

( β

αx+ β

)1/α
, x > 0, α, β > 0 (1.2)

and the corresponding df is

F̄ (x) =
( β

αx+ β

)(1/α)+1

, x > 0, α, β > 0 (1.3)

Where α > −1, β > 0, then f is said to be member of generalized Pareto
distribution. It should be noted that for α > 0 and −1 < α < 0 this model
is, respectively, a Pareto distribution and a Power distribution. Moreover the
survival function (1.3) tends to the exponential survival function as α tends to
zero. This model is a flexible one due to its properties, i.e. it has a linear mean
residual life function its coefficient of variation of the residual life is constant
and its hazard rate is the reciprocal of linear function.

For more details and some applications of this distribution one may refer to
Johnson et al. [15].

2. Relations for the quotient moment

First of all, we may note that for the generalized Pareto distribution in (1.2)

F̄ (x) =
(αx+ β)

(1 + α)
f(x) (2.1)

The relation in (2.1) will be exploited in this paper to derive recurrence re-
lations for the quotient moments of record values from the generalized Pareto
distribution.
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We shall first establish the explicit expression for the quotient moments of k

record values E

( (
X

(k)

U(m)

)r(
X

(k)

U(m)

)s+1

)
.

Theorem 2.1. For generalized Pareto distribution as given in (1.3) and 1 ≤
m ≤ n− 2, k = 1, 2, . . . , s = 1, 2, . . .

E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+1

 = [(1 + α)k]n
(α
β

)s−r+1 ∞∑
p=0

r∑
q=0

(−1)q
(

r
q

)

× (s+ 1)p
p![(1 + α)k + α(p+ s+ 1)]n−m[(1 + α)k + α(p+ q + s− r + 1)]m

.

(2.2)

Proof. From (1.1), we have

E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+1

 =
kn

(m− 1)!(n−m− 1)!

×
∫ ∞

0

xr[− ln(F̄ (x))]m−1 f(x)

[F̄ (x)]
G(x)dx,

(2.3)

where

G(x) =

∫ ∞

x

y−(s+1)[− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (x)]k−1f(y)dy. (2.4)

By setting w = −ln(F̄ (y)) + ln(F̄ (x)) in (2.4), we obtain

G(x) =

(
α

β

)(s+1) ∫ ∞

0

[1 − (F̄ (x)e
−w

)
α/(1+α)

]
−(s+1) ×

(
F̄ (x)e

−w
)α(s+1)

(1+α)
+k

w
n−m−1

dw

=

(
α

β

)(s+1) ∞∑
p=0

(s + 1)(p)

p!
[F̄ (x)]

α(p+s+1)+(1+α)k
1+α ×

∫ ∞

0

w
n−m−1

e
−w[α(p+s+1)+(1+α)k]

1+α dw

=

(
α

β

)(s+1) ∞∑
p=0

(s + 1)(p)

p!

(1 + α)n−mΓ(n − m)[F̄ (x)]
α(p+s+1)+(1+α)k

1+α

[(1 + α)k + α(p + s + 1)]n−m
.

On substituting the above expression of G(x) in (2.3), we get

E


(
X

(k)
U(m)

)r

(
X

(k)
U(n)

)s+1

 =
kn(1 + α)n−m

(m− 1)!

(
α

β

)(s+1) ∞∑
p=0

(s+ 1)(p)

p![(1 + α)k + α(p+ s+ 1)]n−m

×
∫ ∞

0
xr[− ln(F̄ (x))]m−1[F̄ (x)]

α(p+s+1)+(1+α)k
1+α

−1
f(x)dx.

(2.5)

Again by setting z = −ln(F̄ (x)) in (2.5) and simplifying the resulting expression,
we establish the result given in (2.2). �
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Corollary 2.1. For m ≥ 1, r = 0, 1, 2, . . . and s = 1, 2, . . . ,

E


(
X

(k)
U(m)

)r
(
X

(k)
U(m+1)

)s+1

 = [(1 + α)k]m+1

(
α

β

)s−r+1 ∞∑
p=0

r∑
q=0

(−1)q
(
r
q

)

× (s+ 1)p
p![(1 + α)k + α(p+ s+ 1)][(1 + α)k + α(p+ q + s− r + 1)]m

.

(2.6)

Proof. Upon substituting n = m + 1 in (2.2) and simplifying, then we get the
result given in (2.6). �

Remark 2.1. Setting k = 1 in (2.2) we deduce the explicit expression for the
quotient moments of record values from the generalized Pareto distribution.

Theorem 2.2. For generalized Pareto distribution as given in (1.3) and 1 ≤
m ≤ n− 2, k = 1, 2, . . . , s = 0, 1, 2, . . .

E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(n)

)s
 = [(1 + α)k]n

(
α

β

)s−r+1 ∞∑
p=0

r+1∑
q=0

(−1)q
(
r + 1
q

)

× (s)p
p![(1 + α)k + α(p+ s)]n−m[(1 + α)k + α(p+ q + s− r − 1)]m

.

(2.7)

Proof. Proof can be established on line of Theorem 2.1. �

Corollary 2.2. For m ≥ 1, and r, s = 0, 1, 2, . . . ,

E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(m+1)

)s
 = [(1 + α)k]m+1

(
α

β

)s−r+1 ∞∑
p=0

r+1∑
q=0

(−1)q
(
r + 1
q

)

× (s)p
p![(1 + α)k + α(p+ s)][(1 + α)k + α(p+ q + s− r − 1)]m

.

(2.8)

Proof. Upon substituting n = m + 1 in (2.7) and simplifying, then we get the
result given in (2.8). �

Remark 2.2. Setting k = 1 in (2.7) we deduce the explicit expression for the
quotient moments of record values from the generalized Pareto distribution.

Making use of (2.1), we can derive recurrence relations for the quotient mo-
ments of k upper record values
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Theorem 2.3. For 1 ≤ m ≤ n− 2, r = 0, 1, 2, . . . and s = 1, 2, . . . ,

(
1 +

α(s+ 1)

(1 + α)k

)
E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+1


=E


(
X

(k)
U(m)

)r
(
X

(k)
U(n−1)

)s+1

− β(s+ 1)

(1 + α)k
E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+2


(2.9)

Proof. From equation (1.1) for 1 ≤ m ≤ n− 1, r = 0, 1, 2, . . . and s = 1, 2, . . . ,

E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+1

 =
kn

(m− 1)!(n−m− 1)!

×
∫ ∞

0

xr[− ln(F̄ (x))]m−1 f(x)

[F̄ (x)]
I(x)dx,

(2.10)

where

I(x) =

∫ ∞

x

y−(s+1)
[
− ln(F̄ (y)) + ln(F̄ (x))

]n−m−1 [
F̄ (x)

]k−1
f(y)dy.

Integrating I(x) by parts treating [F̄ (y)]k−1f(y) for integration and the rest
of the integrand for differentiation, and substituting the resulting expression in
(2.10), we get

E


(
X

(k)

U(m)

)r

(
X

(k)

U(n)

)s+1

− E


(
X

(k)

U(m)

)r

(
X

(k)

U(n−1)

)s+1

 = − (s+ 1)kn

k(m− 1)!(n−m− 1)!∫ ∞

0

∫ ∞

x

xr

ys+2
× [− ln(F̄ (x))]m−1[− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k

f(x)

F̄ (x)
dydx

the constant of integration vanishes since the integral in I(x) is a definite inte-
gral. On using the relation (2.1), we obtain

E


(
X

(k)

U(m)

)r

(
X

(k)

U(n)

)s+1

 − E


(
X

(k)

U(m)

)r

(
X

(k)

U(n−1)

)s+1

 = −
(s + 1)kn

k(1 + α)(m − 1)!(n − m − 1)!

×
{
α

∫ ∞

0

∫ ∞

x

xr

ys+1
[− ln(F̄ (x))]

m−1
f(x)[− ln(F̄ (y)) + ln(F̄ (x))]

n−m−1
[F̄ (y)]

k−1 f(y)

F̄ (x)
dydx

+ β

∫ ∞

0

∫ ∞

x

xr

ys+2
[− ln(F̄ (x))]

m−1
f(x) × [− ln(F̄ (y)) + ln(F̄ (x))]

n−m−1
[F̄ (y)]

k−1 f(y)

F̄ (x)
dydx

}

and hence the result given in (2.10). �
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Corollary 2.3. For m ≥ 1, r = 0, 1, 2, . . . and s = 1, 2, . . . ,

(
1 +

α(s+ 1)

(1 + α)k

)
E


(
X

(k)
U(m)

)r
(
X

(k)
U(m+1)

)s+1


=E

(
(X

(k)
U(m))

r−s−1
)
− β(s+ 1)

(1 + α)k
E


(
X

(k)
U(m)

)r
(
X

(k)
U(m+1)

)s+2

 .

(2.11)

Proof. Upon substituting n = m + 1 in (2.9) and simplifying, then we get the
result given in (2.11). �

Remark 2.3. Setting k = 1 in (2.9) we deduce the recurrence relation for the
quotient moments of upper record values from the generalized Pareto distribu-
tion.

Theorem 2.4. For 1 ≤ m ≤ n− 2 and r, s = 0, 1, 2, . . . ,

(
1 +

αs

(1 + α)k

)
E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(n)

)s


=E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(n−1)

)s
− βs

(1 + α)k
E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(n)

)s+1


(2.12)

Proof. Proof follows on the line of Theorem 2.2. �

Corollary 2.4. For m ≥ 1, and r, s = 0, 1, 2, . . . ,

(
1 +

αs

(1 + α)k

)
E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(m+1)

)s


=E

((
X

(k)
U(m)

)r−s+1
)
− βs

(1 + α)k
E


(
X

(k)
U(m)

)r+1

(
X

(k)
U(m+1)

)s+1


(2.13)

Proof. Upon substituting n = m+ 1 in (2.12) and simplifying, then we get the
result given in (2.13). �

Remark 2.4. Setting k = 1 in (2.12) we deduce the recurrence relation for the
quotient moments of upper record values from the generalized Pareto distribu-
tion.



334 Devendra Kumar

3. Characterization

Theorem 3.1. Let k ≥ 1 is a fix positive integer, r be a non- negative integer
and X be an absolutely continuous random variable with pdf f(y) and cdf F (y)
on the support (o,∞), then

(
1 +

α(s+ 1)

(1 + α)k

)
E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+1


=E


(
X

(k)
U(m)

)r
(
X

(k)
U(n−1)

)s+1

− β(s+ 1)

(1 + α)k
E


(
X

(k)
U(m)

)r
(
X

(k)
U(n)

)s+2


(3.1)

if and only if

F̄ (y) =

(
β

αy + β

)(1/α)+1

, y > 0, α, β > 0.

Proof. The necessary part follows immediately from equation (2.9). On the
other hand if the recurrence relation in equation (3.1) is satisfied, then on using
equation (1.1), we have

kn

(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+1
[− ln(F̄ (x))]m−1f(x)

× [− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k−1 f(y)

F̄ (x)
dydx

=
kn(n−m− 1)

k(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+1
[− ln(F̄ (x))]m−1f(x)

× [− ln(F̄ (y)) + ln(F̄ (x))]n−m−2[F̄ (y)]k−1 f(y)

F̄ (x)
dydx

− α(s+ 1)kn

k(1 + α)(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+1
[− ln(F̄ (x))]m−1f(x)

× [− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k−1 f(y)

F̄ (x)
dydx

− β(s+ 1)kn

k(1 + α)(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+2
[− ln(F̄ (x))]m−1f(x)

× [− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k−1 f(y)

F̄ (x)
dydx.

(3.2)

Integrating the first integral on the right hand side of equation (3.2) by parts
and simplifying the resulting expression, we find that
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(s+ 1)kn

k(m− 1)!(n−m− 1)!

∫ ∞

0

∫ ∞

x

xr

ys+2
[− ln(F̄ (x))]m−1

× [− ln(F̄ (y)) + ln(F̄ (x))]n−m−1[F̄ (y)]k−1 f(x)

F̄ (x)

×
{
F̄ (y)−

(
αy

1 + α
+

β

1 + α

)
f(y)

}
dydx = 0.

(3.3)

Now applying a generalization of the Müntz-Szász Theorem (Hwang and Lin,
[15]) to equation (3.3), we get

f(y)

F̄ (y)
=

1 + α

αy + β

which proves that

F̄ (y) =
( β

αy + β

)(1/α)+1

, y > 0, α, β > 0.

�

4. Conclusion

In this study some exact expressions and recurrence relations for the quotient
moments of record values from the generalized Pareto distribution have been
established. Further, recurrence relation of the quotient moments of record
values has been utilized to obtain a characterization of the generalized Pareto.
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