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Abstract
This paper develops a maximum profile likelihood estimator of unknown parameters of the exponentiated

Gumbel distribution based on upper record values. We propose an approximate maximum profile likelihood esti-
mator for a scale parameter. In addition, we derive Bayes estimators of unknown parameters of the exponentiated
Gumbel distribution using Lindley’s approximation under symmetric and asymmetric loss functions. We assess
the validity of the proposed method by using real data and compare these estimators based on estimated risk
through a Monte Carlo simulation.

Keywords: Approximate maximum likelihood estimator, Bayesian estimation, exponentiated Gum-
bel distribution, record values.

1. Introduction

The Gumbel distribution is useful to predict maximum flood and rainfall levels as well as for climate
modeling distribution. Nadarajah (2006) introduces the exponentiated Gumbel distribution as a gener-
alization of the Gumbel distribution. The exponentiated Gumbel distribution is a Gumbel distribution
if λ = 1.

The probability density function (pdf) and cumulative distribution function (cdf) of the random
variable X having an exponentiated Gumbel distribution are given by
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, −∞ < x < ∞, α > 0, σ > 0, (1.2)

where λ is the shape parameter and σ is the scale parameter. Note that the pdf (1.1) can be expressed
as
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by using the power series expansion
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u j
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The squared error loss function (SELF) is a symmetric loss function that assigns equal losses to
overestimation and underestimation. Therefore, under the SELF, a Bayes estimator is defined by the
posterior expectation. However, such a restriction may not be practical because overestimation is
usually more serious than underestimation in the estimation of reliability and failure rate functions. In
this case, the use of a symmetrical loss function may not be appropriate. To address this limitation, we
consider an asymmetric loss function known as the LINEX loss function (LLF). The LLF, introduced
by Varian (1975), has received considerable attention because of Zellner (1986).

The LLF may be expressed as L(△) ∝ exp(c△) − c△ − 1, c , 0, where △ = θ̂ − θ. The sign and
magnitude of the shape parameter c represents the direction and degree of symmetry, respectively. If
c is positive, then overestimation is more serious than underestimation; however, the opposite is true
if c is negative. For c = 1, the LLF is quite asymmetric about zero, with overestimation being more
costly than underestimation. If c close to zero, then the LINEX loss is approximately the squared error
loss and thus almost symmetric. Zellner (1986) expresses a Bayes estimator of θ under the LLF as
θ̂L = −(1/c) log[Eπ(e−cθ)], provided that there exists a finite expectation. Using these loss functions,
Kim et al. (2011a) suggest a Bayes estimator for an exponentiated half-triangle distribution based
on Type I censoring. Kim et al. (2011b) derive Bayes estimators of shape parameters, reliability
functions, and failure rate functions for a family of exponentiated distributions based on Type II right
censoring. Chandler (1952) is the first to examine record values and documented a number of basic
properties of records. Record values arise in many real-life situations that involve weather, sports, and
economics. A record model is closely related to models of order statistics; in addition, both appear in
many statistical applications that are widely used in statistical modeling and inferences because they
can be viewed as order statistics from a sample whose size is determined by the value and order of
the occurrence of observations. In particular, Balakrishnan et al. (1992) established some recurrence
relationships for single and double moments of lower record values from the Gumbel distribution.
Jaheen (2003) derived Bayes estimators of unknown parameters of the Gompertz distribution based
on upper record values and obtained prediction bounds for future upper record values. Soliman et
al. (2006) obtained Bayes estimators based on record statistics for two unknown parameters of the
Weibull distribution. Ahmadi and Balakrishnan (2011) have recently discussed the prediction of future
order statistics based on the largest and smallest observations at the time of a new record.

Let X1, X2, X3, . . . be a sequence of independent and identically distributed (iid) random variables
with the cdf F(x) and the pdf f (x). Setting Yn = max(X1, X2, . . . , Xn), n ≥ 1, we say that X j is an upper
record and denoted by XU( j) if Y j > Y j−1, j > 1. The indices for which upper record values occur are
given by the record times {U(n), n ≥ 1}, where U(n) = max{ j| j > U(n − 1), X j > XU(n−1)}, n > 1,
with U(1) = 1. Subsequently, we denote a sequence of upper record values xU(1), xU(2), . . . , xU(n) by
x1, x2, . . . , xn for simplicity.

2. Maximum Likelihood Estimation

In this section, we discuss a maximum profile likelihood estimator of the scale parameter σ when data
are upper record values. We begin by deriving a maximum likelihood estimator (MLE) of unknown
parameters. Let x1, x2, . . . , xn be a sequence of upper record values from an exponentiated Gumbel
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distribution. Then a likelihood function based on upper record values, x1, x2, . . . , xn, is then given by

L(σ, α) = f (xn)
n−1∏
i=1

f (xi)
1 − F(xi)

. (2.1)

It follows, from (1.1), (1.2) and (2.1), that
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The natural logarithm of the likelihood function (2.2) is given by
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From (2.3), we have the likelihood equations for σ and λ as
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If the scale parameter σ is known, then the MLE of the shape parameter λ, denote by λ̂, can be
obtained as

λ̂(σ) =
n

T3(σ; xn)
. (2.6)

Using the MLE λ̂(σ) in (2.6), we can express the profile likelihood function of the scale parameter σ
as Lp(σ) = L(σ, λ̂(σ)). Thus, the profile likelihood equation for σ is given by

∂
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+

n∑
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= 0. (2.7)
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We can find the profile MLE σ̂ of σ by solving the above equation (2.7). Unfortunately, this
equation cannot be solved explicitly; therefore, we solve it by using a numerical method such as the
Newton-Raphson method. The MLE of the shape parameter λ is obtained by replacing σ with σ̂ in
the equation (2.6).

3. Approximate Maximum Likelihood Estimation

As discussed earlier, because equation (2.7) is very complicated, it does not admit an explicit solution
for σ. Therefore, we will derive the approximate MLE (AMLE) of σ by using the approximate profile
likelihood equation. A number of studies have considered the AMLE (see Kang et al., 2009; Kang
and Seo, 2011).

Let Zi = Xi/σ. Then it has a standard exponentiated Gumbel distribution with the pdf and the cdf

f (zi) = λ
[
1 − exp

(− exp (−zi)
)]λ−1 exp (zi) exp

(− exp (−zi)
)

(3.1)

and
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)]λ , −∞ < z < ∞, λ > 0, (3.2)

respectively. The profile likelihood equation (2.7) can be written as
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where Ui is a uniformly distributed random variate.
Using the Taylor series, we approximate the following functions:

G1(zn)
G3(zn)

≈ α1n + β1nzn, (3.4)

G2(zi) ≈ γ1i + η1izi, (3.5)
G1(zi) ≈ κ1i + δ1izi, (3.6)

where
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.
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Entering equations (3.4), (3.5), and (3.6) into the equation (3.3), we obtain the following approxi-
mate profile likelihood equation:

∂
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After solving the quadratic equation (3.7) for σ, we obtain the AMLE of σ as
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In addition, we obtain the AMLE of the shape parameter λ, denoted by λ̃1, by replacing σ with
σ̃1 in equation (2.6).

Similarly, we approximate the other functions as follows:

G1(zn)
G3(zn)

zn ≈ α2n + β2nzn, (3.9)
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By using equations (3.9), (3.10), and (3.11), we obtain the following approximate profile likelihood
equation:

∂

∂σ
Lp(σ) ≃ − 1

σ

n + n (α2n + β2nzn) +
n∑

i=1

(γ2i + η2izi) +
n∑

i=1

(κ2i + δ2izi)


= 0. (3.12)

By solving equation (3.12) for σ, we obtain another AMLE of σ:

σ̃2 = −
C

n + D
, (3.13)
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where

C = nxnβ2n +

n∑
i=1

xi (δ2i + η2i) ,

D = nα2n +

n∑
i=1

(κ2i + γ2i) .

As in the case of the AMLE λ̃1, we obtain another AMLE of λ, denoted by λ̃2, by replacing σ
with σ̃2 in equation (2.6). Unlike the MLE σ̂, it need not to use iterative methods because AMLEs σ̃1
and σ̃2 can be solved explicitly. Note that obtained AMLEs can be used as initial values for iteration
and the estimator σ̃2 is simpler than the estimator σ̃1 because σ̃2 is a linear combination of available
order statistics.

4. Bayes Estimation

In this section, we derive Bayes estimators of unknown parameters of the exponentiated Gumbel
distribution based on upper record values. Here the loss functions are the SELF (symmetric) and the
LLF (asymmetric).

4.1. Prior and posterior distributions

Suppose that λ conditional upon σ has a gamma(v, δ/σ) distribution with the pdf

π1(λ|σ) =
δv

Γ(v)σv λ
v−1 exp

(
−λδ
σ

)
, λ > 0, (δ > 0, v > 0), (4.1)

which is a natural conjugate prior. It follows from (2.2) and (4.1) that the conditional posterior of λ|σ
is given by

π∗1(λ|σ) =
Bn+v

2

Γ(n + v)
λn+v−1 exp (−λB2), λ > 0, (δ > 0, v > 0), (4.2)

where

B2(σ; xn) =
δ

σ
+ T3(σ; xn).

Note that π∗1(λ|σ) is a Gamma(n + v, B2). If v = δ = 0, then the Bayes estimator of λ under the SELF
is identical to the MLE λ̂ because the Bayes estimator under the SELF is the posterior mean. Further,
we suppose that the scale parameter σ has an inverted gamma prior,

π2(σ) =
ba

Γ(a)
1

σa+1 exp
(
− b
σ

)
, σ > 0, (a > 0, b > 0). (4.3)

Here we consider the joint prior distribution as the product of the conditional prior of λ for given σ
and the inverted gamma prior for σ. That is, the joint posterior distribution function of λ and σ can
be written as

π∗(σ, λ) = L(σ, λ)π(σ, λ)
/ ∫

σ

∫
λ

L(σ, λ)π(σ, λ)dσdλ

=
G

σn+a+v+1 λ
n+v−1B1(σ; xi) exp (−λB2(σ; xn) ) , (4.4)
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where

B1(σ; xi) = σ2 exp
(
− b
σ

) n∏
i=1

T1(σ; xi)
xi

and G is the normalizing constant given by

G−1 = Γ(n + v)
∫ ∞

0

B1(σ; xi)
σn+v+a+1

(
1

B2(σ; xn)

)n+v

dσ.

4.2. Lindley’s approximation

Let H(σ, λ) is any function of σ and λ,. Then Bayes estimators of H(σ, λ) under the SELF and the
LLF are

ĤS (σ, λ) =

∫
σ

∫
λ

H(σ, λ)L(σ, λ)π(σ, λ)dσdλ∫
σ

∫
λ

L(σ, λ)π(σ, λ)dσdλ
(4.5)

and

ĤL(σ, λ) = −1
c

log


∫
λ

∫
σ

e−cH(σ,λ)L(σ, λ)π(σ, λ)dσdλ∫
λ

∫
σ

L(σ, λ)π(σ, λ)dσdλ

 , (4.6)

respectively.
If H(σ, λ) = σ, then we obtain the Bayes estimators σ̂S and σ̂L, whereas if H(σ, λ) = λ, then

we get HS (σ, λ) = λ̂S and HL(σ, λ) = λ̂L, respectively. The ratios of integrals in (4.5) and (4.6) do
not to take a closed form; therefore, we consider Lindley’s approximation technique (Lindley, 1980)
that technique has been widely used (see, for example, Howlader and Hossain, 2002; Kundu and
Gupta, 2005; Soliman et al., 2006). Based on Lindley’s approximation, we have the following Bayes
estimators of σ and λ under the SELF:

σ̂S = σ̂ +
1
2
ψ1 + ψ2 (4.7)

and

λ̂S = λ̂ +
1
2
ψ3 + ψ4. (4.8)

In addition, the Bayes estimators of σ and λ under the LLF are

σ̂L = σ̂ −
1
c

log
[
1 +

c (cτ11 − ψ1 − 2ψ2)
2

]
(4.9)

and

λ̂L = λ̂ −
1
c

log
[
1 +

c (cτ22 − ψ3 − 2ψ4)
2

]
, (4.10)
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Table 1: The maximum monthly temperatures from 2011, in Seoul.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−3.6 6.2 10.7 13.5 24.4 26.6 28.7 28.9 27 17.3 19.9 5.8

Table 2: The MLEs and AMLEs of σ and λ for real data.
σ̂ σ̃1 σ̃2 λ̂ λ̃1 λ̃2

1.24074 1.33380 1.25165 0.34346 0.36922 0.34648

Table 3: The Bayes estimates of σ and λ for real data.
σ̂S σ̂L(c = −1) σ̂L(c = 1) λ̂S λ̂L(c = −1) λ̂L(c = 1)

1.23976 1.24050 1.23901 0.34243 0.34984 0.33504

where

ψ1 = τ
2
11L∗30 + τ21τ22L∗03 + 3τ11τ12L∗21,

ψ2 = p1τ11 + p2τ12,

ψ3 = τ
2
22L∗03 + τ12τ11L∗30 +

(
τ11τ22 + 2τ2

12

)
L∗21,

ψ4 = p1τ21 + p2τ22.

See the Appendix for the proof of the Bayes estimators.

5. Illustrative Example and Simulation Study

In this section, we present two examples to illustrate the previously discussed estimation methods.

5.1. Real data

The data given in Table 1 consist of maximum monthly temperatures from 2011, in Seoul.
From the above data, we observe 8 upper record values.

−3.6 6.2 10.7 13.5 24.4 26.6 28.7 28.9

Using the formulae presented in Section 2, Section 3, and Section 4, we obtain the ML and Bayes
estimates of the scale parameter σ and the shape parameter λ. These values are given in Table 2 and
Table 3. We see that all estimates have nearly the same values.

5.2. Simulation result

It is difficult to determine and compare MLEs and Bayes estimators using real data because we do
not know the true values. Therefore, we conduct a simulation study to assess the efficiency ML
and Bayes estimation methods in terms of the estimated risk. For this, we employ the following
procedure to determine the estimated risk for Bayes estimators: We first set E(σ) = 1, E(λ) = 1.5, and
V(σ) = V(λ) = 0.15 from the prior distributions (4.1) and (4.3). We then obtain the hyperparameters
a and b of the inverted gamma prior (4.3) by solving the prior information E(σ) and V(σ). Then, by
solving the prior information E(λ) and V(σ) after replacing σ with E(σ) in the gamma prior (4.1), we
obtain the hyperparameters v and δ of the gamma prior (4.1). Note that E(σ) = 1 and E(λ) = 1.5 are
the actual values for σ and λ, respectively. We generate upper record values from the exponentiated
Gumbel distribution with σ = E(σ) and λ = E(λ) to obtain the estimated risk for Bayes estimators.
We calculate the estimated risks for each estimator as the average of their squared deviations for
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Table 4: The estimated risks of the estimators of σ and λ.
n σ̂ σ̃1 σ̃2 λ̂ λ̃1 λ̃2
6 0.10672 0.15210 0.18163 0.17591 0.21913 0.24536
7 0.08096 0.12534 0.15966 0.11539 0.16052 0.19366
8 0.06586 0.10904 0.14336 0.07070 0.11392 0.14807
9 0.05561 0.09777 0.13080 0.03864 0.07674 0.10893

10 0.04841 0.08941 0.12082 0.01800 0.04751 0.07587

n σ̂S σ̂L(c = −1) σ̂L(c = 1) λ̂S λ̂L(c = −1) λ̂L(c = 1)
6 0.18192 0.18132 0.18256 0.12282 0.20375 0.04863
7 0.13995 0.13918 0.14076 0.06518 0.12127 0.02301
8 0.11614 0.11534 0.11696 0.03930 0.07640 0.01375
9 0.09988 0.09911 0.10067 0.02529 0.04876 0.00879

10 0.08830 0.08758 0.08904 0.01705 0.03111 0.00615

10,000 repetitions:

1
n

n∑
i=1

(
θt − θ̂

)2
.

Here θt and θ̂ are the actual value and the estimate of θ, respectively. Table 4 shows the estimated risks
of σ and λ. As expected, the estimated risk for all estimators decrease as the sample size n increases.
For the scale parameter σ, the MLE σ̂ is more efficient than the AMLEs σ̃1 and σ̃2. However, the
AMLE has a closed form. In addition, we see that the asymmetric Bayes estimator σ̂L is superior to the
symmetric Bayes estimator σ̂s for c = −1. However, the symmetric Bayes estimator σ̂S is superior to
the asymmetric Bayes estimator σ̂L for c = 1. For the shape parameter λ, when the MLE is compared
with the AMLE, we have the same result. In addition, the asymmetric Bayes estimator λ̂L(c = 1)
has the lowest estimated risk among Bayes estimators. That is, MLEs outperform their AMLEs and
Bayes counterparts for the scale parameter σ, but overall, Bayes estimators outperform their MLE
and AMLE counterparts for the shape parameter λ, particularly for asymmetric loss functions such as
LINEX, when c = 1.

6. Concluding Remarks

This paper develops a maximum profile likelihood estimator of scale and shape parameters. Because
the MLE cannot be solved explicitly, we propose the AMLE as an alternative estimator. We can obtain
AMLEs by solving the approximate profile likelihood equation. In addition, we obtain approximate
Bayes estimators of scale and shape parameters using Lindley’s approximation method. We compare
these estimators based on estimated risk. The results suggest that MLEs are superior to their AML
and Bayes counterparts for scale parameters but that Bayes estimators outperform their ML and AML
counterparts for shape parameters, particularly for asymmetric loss functions such as LINEX, when
c = 1. The results suggest that Bayes estimators are dependent on prior information and the shape
parameter c of the LINEX loss function; therefore, asymmetric Bayes estimators outperform other
estimators if there are suitable c values and prior information.

Appendix:

For the two-parameter (σ, λ), the Lindley’s approximation can be written as

Ĥ = H
(
σ̂, λ̂

)
+

1
2

[
A + L∗30B12 + L∗03B21 + L∗21C12 + L∗12C21

]
+ p1A12 + p2A21, (A.1)
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where

A =
2∑

i=1

2∑
j=1

wi jτi j, L∗i j =
∂i+ j log L(σ, λ)

∂σi∂λ j , i, j = 0, 1, 2, 3 with i + j = 3,

p1 =
∂p
∂σ

, p2 =
∂p
∂λ
, w1 =

∂H
∂σ

, w2 =
∂H
∂λ

, wi j =
∂2H
∂σ∂λ

, p = log π(σ, λ),

Ai j = wiτii + w jτ ji, Bi j =
(
wiτii + w jτi j

)
τii, Ci j = 3wiτiiτi j + w j

(
τiiτ j j + 2τ2

i j

)
.

Here, the elements τi j can be obtained as

τ11 =
V

S V − U2 , τ22 =
S

S V − U2 , τ12 = τ21 = −
U

S V − U2 .

where

S = − ∂2

∂σ2 log L(σ, λ) = − n
σ2 − λT4(σ; xn) −

n∑
i=1

T5(σ; xi) +
n∑

i=1

T4(σ; xi),

V = − ∂
2

∂λ2 log L(σ, λ) =
n
λ2 , U = − ∂2

∂σ∂λ
log L(σ, λ) = −T1(σ; xn),

T4(σ; xi) = T1(σ; xi)
[
T2(σ; xi) − T1(σ; xi) −

2
σ

]
,

T5(σ; xi) = T2(σ; xi)
(

xi

σ2 −
2
σ

)
−

x2
i

σ4 .

In addition, the values of L∗i j can be obtained as follows for i, j = 0, 1, 2, 3,

L∗30 = −
2n
σ3 + λT6(σ; xn) +

n∑
i=1

T7(σ; xi) −
n∑

i=1

T6(σ; xi),

L∗03 =
2n
λ3 , L∗21 = T4(σ; xn), L∗12 = 0,

where

T6(σ; xi) = T4(σ; xi)
[
T2(σ; xi) − T1(σ; xi) −

2
σ

]
+ T1(σ; xi)

[
T5(σ; xi) − T4(σ; xi) +

2
σ2

]
,

T7(σ; xi) = T5(σ; xi)
(

xi

σ2 −
2
σ

)
+ T2(σ; xi)

(
2
σ2 −

2xi

σ3

)
+

4x2
i

σ5 .

Now when H(σ, λ) = σ, then

w1 = 1, w2 = 0, wi j = 0, for i, j = 1, 2.

Therefore,

A = 0, A12 = τ11, A21 = τ12 B12 = τ
2
11,

B21 = τ21τ22, C12 = 3τ11τ12, C21 = τ22τ11 + 2τ2
21.
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Finally, using p = log π(σ, λ), we obtain

p1 =
λδ + b
σ2 − a + v + 1

σ
and p2 =

v − 1
λ
− δ

σ
.

Similarly, when H(σ, λ) = λ, then

w1 = 0, w2 = 1, wi j = 0, for i, j = 1, 2.

Therefore,

A = 0, A12 = τ21, A21 = τ22, B12 = τ12τ11,

B21 = τ
2
22, C12 = τ11τ22 + 2τ2

12, C21 = 3τ22τ21.
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