• Title/Summary/Keyword: injective dimensions

Search Result 13, Processing Time 0.022 seconds

INJECTIVE DIMENSIONS OF LOCAL COHOMOLOGY MODULES

  • Vahidi, Alireza
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1331-1336
    • /
    • 2017
  • Assume that R is a commutative Noetherian ring with non-zero identity, a is an ideal of R, X is an R-module, and t is a non-negative integer. In this paper, we present upper bounds for the injective dimension of X in terms of the injective dimensions of its local cohomology modules and an upper bound for the injective dimension of $H^t_{\alpha}(X)$ in terms of the injective dimensions of the modules $H^i_{\alpha}(X)$, $i{\neq}t$, and that of X. As a consequence, we observe that R is Gorenstein whenever $H^t_{\alpha}(R)$ is of finite injective dimension for all i.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

  • Yang, Gang
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.31-47
    • /
    • 2012
  • The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for some non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein at modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein at and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Hom and tensor.

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

  • Xiang, Yueming
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.497-510
    • /
    • 2010
  • Let R be a ring and n a fixed non-negative integer. $\cal{TI}_n$ (resp. $\cal{TF}_n$) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right $\prod$-coherent ring, then every right R-module has a $\cal{TI}_n$-cover and every left R-module has a $\cal{TF}_n$-preenvelope. A right R-module M is called n-TI-injective in case $Ext^1$(N,M) = 0 for any $N\;{\in}\;\cal{TI}_n$. A left R-module F is said to be n-TI-flat if $Tor_1$(N, F) = 0 for any $N\;{\in}\;\cal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with $\cal{TI}_n$-(pre)covers and $\cal{TF}_n$-preenvelopes are also studied.

THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

  • Wei Qi;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1523-1537
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the u-S-projective dimension and u-S-injective dimension of an R-module, and then explore the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e., the supremum of u-S-projective dimensions of all R-modules. Finally, we investigate u-S-global dimensions of factor rings and polynomial rings.

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS

  • Xiang, Yueming
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.611-622
    • /
    • 2010
  • A ring R is called left max-coherent provided that every maximal left ideal is finitely presented. $\mathfrak{M}\mathfrak{I}$ (resp. $\mathfrak{M}\mathfrak{F}$) denotes the class of all max-injective left R-modules (resp. all max-flat right R-modules). We prove, in this article, that over a left max-coherent ring every right R-module has an $\mathfrak{M}\mathfrak{F}$-preenvelope, and every left R-module has an $\mathfrak{M}\mathfrak{I}$-cover. Furthermore, it is shown that a ring R is left max-injective if and only if any left R-module has an epic $\mathfrak{M}\mathfrak{I}$-cover if and only if any right R-module has a monic $\mathfrak{M}\mathfrak{F}$-preenvelope. We also give several equivalent characterizations of MI-injectivity and MI-flatness. Finally, $\mathfrak{M}\mathfrak{I}$-dimensions of modules and rings are studied in terms of max-injective modules with the left derived functors of Hom.

∏-COHERENT DIMENSIONS AND ∏-COHERENT RINGS

  • Mao, Lixin
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.719-731
    • /
    • 2007
  • R is called a right ${\Pi}-coherent$ ring in case every finitely generated torsion less right R-module is finitely presented. In this paper, we define a dimension for rings, called ${\Pi}-coherent$ dimension, which measures how far away a ring is from being ${\Pi}-coherent$. This dimension has nice properties when the ring in question is coherent. In addition, we study some properties of ${\Pi}-coherent$ rings in terms of preenvelopes and precovers.

ON GI-FLAT MODULES AND DIMENSIONS

  • Gao, Zenghui
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.203-218
    • /
    • 2013
  • Let R be a ring. A right R-module M is called GI-flat if $Tor^R_1(M,G)=0$ for every Gorenstein injective left R-module G. It is shown that GI-flat modules lie strictly between flat modules and copure flat modules. Suppose R is an $n$-FC ring, we prove that a finitely presented right R-module M is GI-flat if and only if M is a cokernel of a Gorenstein flat preenvelope K ${\rightarrow}$ F of a right R-module K with F flat. Then we study GI-flat dimensions of modules and rings. Various results in [6] are developed, some new characterizations of von Neumann regular rings are given.

GORENSTEIN-INJECTORS, GORENSTEIN-FLATORS

  • Gu, Qinqin;Zhu, Xiaosheng;Zhou, Wenping
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.691-704
    • /
    • 2010
  • Over a ring R, let $P_R$ be a finitely generated projective right R-module. Then we define the G-injector (G-projector) if $P_R$ preservers Gorenstein injective modules (Gorenstein projective modules), the Gflator if $P_R$ preservers Gorenstein flat modules. G-injector (G-flator) and G-injector are characterized focus primarily on the cases where R is a Gorenstein ring, and under this condition we also study the relations between the injector (projector, flator) and the G-injector (G-projector, G-flator). Over any ring we also give the characteristics of G-injector (G-flator) by the Gorenstein injective (Gorenstein flat) dimensions of modules.