DOI QR코드

DOI QR Code

INJECTIVE DIMENSIONS OF LOCAL COHOMOLOGY MODULES

  • Received : 2016.07.09
  • Accepted : 2016.12.15
  • Published : 2017.07.31

Abstract

Assume that R is a commutative Noetherian ring with non-zero identity, a is an ideal of R, X is an R-module, and t is a non-negative integer. In this paper, we present upper bounds for the injective dimension of X in terms of the injective dimensions of its local cohomology modules and an upper bound for the injective dimension of $H^t_{\alpha}(X)$ in terms of the injective dimensions of the modules $H^i_{\alpha}(X)$, $i{\neq}t$, and that of X. As a consequence, we observe that R is Gorenstein whenever $H^t_{\alpha}(R)$ is of finite injective dimension for all i.

Keywords

References

  1. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge, Cambridge University Press, 1998.
  2. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge, Cambridge University Press, 1998.
  3. K. Divaani-Aazar, R. Sazeedeh, and M. Tousi, On vanishing of generalized local cohomology modules, Algebra Colloq. 12 (2005), no. 2, 213-218. https://doi.org/10.1142/S1005386705000209
  4. R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403-450. https://doi.org/10.2307/1970720
  5. J. Herzog, Komplexe, auflosungen und dualitat in der lokalen algebra, Habilitationsschrift, Universitat Regensburg, 1970.
  6. A. R. Naghipour, Some results on cofinite modules, Int. Electron. J. Algebra 11 (2012), 82-95.
  7. J. J. Rotman, An Introduction to Homological Algebra, New York, Springer-Verlag, 2009.
  8. A. Vahidi, Betti numbers and flat dimensions of local cohomology modules, Canad. Math. Bull. 58 (2015), no. 3, 664-672. https://doi.org/10.4153/CMB-2015-042-7
  9. M. R. Zargar and H. Zakeri, On injective and Gorenstein injective dimensions of local cohomology modules, Algebra Colloq. 22 (2015), no. 1, 935-946. https://doi.org/10.1142/S1005386715000784