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PRECOVERS AND PREENVELOPES BY MODULES OF
FINITE FGT -INJECTIVE AND FGT -FLAT DIMENSIONS

Yueming Xiang

Abstract. Let R be a ring and n a fixed non-negative integer. T In

(resp. T Fn) denotes the class of all right R-modules of FGT -injective
dimensions at most n (resp. all left R-modules of FGT -flat dimensions at
most n). We prove that, if R is a right Π-coherent ring, then every right R-
module has a T In-cover and every left R-module has a T Fn-preenvelope.
A right R-module M is called n-TI-injective in case Ext1(N, M) = 0 for
any N ∈ T In. A left R-module F is said to be n-TI-flat if Tor1(N, F ) =
0 for any N ∈ T In. Some properties of n-TI-injective and n-TI-flat
modules and their relations with T In-(pre)covers and T Fn-preenvelopes
are also studied.

1. Notation

In this section, we recall some known notions and facts needed in the sequel.
Throughout this paper, R is an associative ring with identity and all modules

are unitary. RM(resp. MR) stands for the category of all left (resp. right) R-
modules. Let M and N be R-modules. Hom(M, N) (resp. Extn(M, N)) means
HomR(M, N) (resp. Extn

R(M, N)), and similarly M ⊗ N (resp. Torn(M, N))
denotes M ⊗R N (resp. TorR

n (M, N)). The character module M+ is defined by
M+ = HomZ(M,Q/Z). The dual module M∗ = Hom(M,R). The cardinality
of an R-module M is denoted by Card(M). We will use the usual notations
from [1], [7], [14].

Let C be the class of R-modules. For an R-module M , a homomorphism
g : C → M is called a C-cover (see [6]) of M if C ∈ C and the following
hold: (1) For any homomorphism g′ : C ′ → M with C ′ ∈ C, there exists a
homomorphism f : C ′ → C with g′ = gf . (2) If f is an endomorphism of
C with gf = g, then f must be an automorphism. If (1) holds but (2) may
not, g : C → M is called a C-precover. Dually we have the definition of a
C-(pre)envelope. C-covers and C-envelopes may not exist in general, but if they
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exist, they are unique up to isomorphism. If every right R-module has a C-
precover, then every right R-module M has a left C-resolution, that is, there is
a Hom(C,−) exact complex I = · · · → I1 → I0 → M → 0 with each Ii ∈ C. If
I0 → M , I1 → Ker(I0 → M), Ii+1 → Ker(Ii → In−1) for i ≥ 1, are C-covers, I
is called a minimal left C-resolution of M . A right R-module M is said to have
left C-dimension ≤ n, denoted left C-dim M ≤ n, if there is a left C-resolution
of the form 0 → In → In−1 → · · · → I1 → I0 → M → 0 of M . If there is no
such n, we set left C-dim M = ∞.

A right R-module T is called torsionless if the evaluation map σ : T → T ∗∗

is injection. A ring R is said to be right Π-coherent if every finitely gener-
ated torsionless right R-module is finitely presented (see [3]). It is well known
that right Noetherian rings ⇒ right Π-coherent rings ⇒ right coherent rings.
The right FGT -injective dimension of a right R-module M (see [4]), denoted
by FGT − id(M), is defined as the least non-negative integer n such that
Extn+1(T, M) = 0 for any finitely generated torsionless right R-module T .
The left FGT -flat dimension of a left R-module F , denoted by FGT − fd(F ),
is defined as the least non-negative integer n such that Torn+1(T, F ) = 0 for
any finitely generated torsionless right R-module T . A right R-module M is
called FGT -injective if Ext1(T, M) = 0 for any finitely generated torsionless
right R-module T . A left R-module F is called FGT -flat if Tor1(T, F ) = 0
for any finitely generated torsionless right R-module T . We write T In (resp.
T Fn) for the class of all right R-modules of FGT -injective dimensions at most
n (resp. all left R-modules of FGT -flat dimensions at most n).

The following lemmas due to [4, Corollary 5.5.6] and [4, Proposition 5.6.11],
respectively.

Lemma 1.1. Let R be a right Π-coherent ring and 0 → A → B → C → 0
an exact sequence of right R-modules with B FGT -injective. If A is FGT -
injective, so is C. If A is not FGT -injective and FGT − id(A) < ∞, then
FGT − id(A) = FGT − id(C) + 1.

Lemma 1.2. Let R be a ring. Then
(1) FGT − fd(M) = FGT − id(M+) for any left R-module M .
(2) If R is right Π-coherent, then FGT − id(N) = FGT − fd(N+) for any

right R-module N .

2. Introduction

Precovers and preenvelopes were introduced by Enochs in 1980’s [6]. Its turn
out to be extremely fruitful for general module theory as well as for represen-
tation theory. The idea behind these concepts is to exploit interesting features
of a special class of R-modules for the study of the whole module category. In
particular, the existence of precovers and preenvelopes is also studied by many
authors (see [2], [7], [9], [10], [12], [13], [16]). Let R be a right Π-coherent
ring. In Section 3 of this paper, we consider the existence of T In-precovers
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and T Fn-preenvelopes and obtain the relation between T In-precovers and
T Fn-preenvelopes. Moreover, we show when every right R-module has an epic
T In-cover and when every left R-module has a monic T Fn-preenvelope.

We introduce the concepts of n-TI-injective and n-TI-flat modules and ob-
tain some interesting properties in Section 4. It is shown that a right R-module
M is reduced n-TI-injective if and only if M is the kernel of a T In-cover. Fur-
thermore, M is n-TI-injective if and only if it is a direct sum of an injective
right R-module and a reduced n-TI-injective right R-module. If R is a com-
mutative ring, we show that a simple R-module S is n-TI-injective if and only
if it is n-TI-flat. We get a new characterization of QF -ring in terms of n-TI-
injective right R-modules. For a right Π-coherent ring R, if C is the cokernel
of a T Fn-preenvelope f : M → F of a left R-module M with F flat, then C
is n-TI-flat, and if L is a finitely presented n-TI-flat right R-module, then L
is the cokernel of a T Fn-preenvelope g : K → P with P flat. We call a ring R
weakly n-Gorenstein if it is left and right Π-coherent and if FGT − id(RR) ≤ n
and FGT − id(RR) ≤ n for integer n ≥ 0. It is shown that, if R is left and
right Π-coherent, then R is weakly 1-Gorenstein if and only if every closed
submodule of a finitely generated n-TI-flat (left or right) R-module is n-TI-
flat. Finally, we study weakly n-Gorenstein rings with finitely FGT -injective
dimensions.

3. T In-precovers and T Fn-preenvelopes

The aim of this section is to study the existence of T In-(pre)covers and
T Fn-preenvelopes. It is easy to verify that T In is closed under extensions,
direct products and direct summands, and T Fn is closed under extensions,
direct sums and direct summands. If R is right Π-coherent, then T In is closed
under direct sums and T Fn is closed under direct products. Moreover, we have
the following:

Lemma 3.1. Let R be a right Π-coherent ring. Then T In and T Fn are closed
under pure submodules and pure quotient modules.

Proof. Let 0 → A′ → A → A′′ → 0 be a pure exact sequence of right R-
modules with FGT − id(A) ≤ n. Then we have a split exact sequence 0 →
(A′′)+ → A+ → (A′)+ → 0. By Lemma 1.2(2), FGT − fd(A+) ≤ n. Thus
FGT − fd((A′)+) ≤ n and FGT − fd((A′′)+) ≤ n. By Lemma 1.2(2), FGT −
id(A′) ≤ n and FGT − id(A′′) ≤ n.

Now let 0 → A′ → A → A′′ → 0 be a pure exact sequence of left R-
modules and FGT − fd(A) ≤ n. Then we have a split exact sequence 0 →
(A′′)+ → A+ → (A′)+ → 0. By Lemma 1.2(1), FGT − id(A+) ≤ n. Thus
FGT−id((A′)+) ≤ n and FGT−id((A′′)+) ≤ n. Therefore, FGT−fd(A′) ≤ n
and FGT − fd(A′′) ≤ n by Lemma 1.2(1) again. ¤

The next lemma is a special case of [2, Theorem 5].



500 YUEMING XIANG

Lemma 3.2. Let R be a ring. Then for each cardinal λ, there is a cardinal
κ such that any R-module M and for any L ≤ M with Card(M) ≥ κ and
Card(M/L) ≤ λ, the submodule L contains a nonzero submodule that is pure
in M .

Proposition 3.3. Let R be a right Π-coherent ring. There is a cardinal number
κ such that any morphism ϕ : D → M with D ∈ T In has a factorization
D → C → M with C ∈ T In and Card(C) ≤ κ.

Proof. Let M be a right R-module with Card(M) = λ, and let κ be a cardinal
as in Lemma 3.2. Take a morphism ϕ : D → M with D ∈ T In, K = Ker(ϕ).
If Card(D) ≤ κ, then consider the factorization of D → M as D → D → M ,
where the first arrow is the identity.

If Card(D) > κ. There is K ′ maximal with the properties that K ′ ⊆ K ⊆ D
and that K ′ is a pure submodule of D. So ϕ has the factorization D → D/K ′ →
M in terms of [1, Theorem 3.6]. By Lemma 3.1, D/K ′ ∈ T In. We claim that
Card(D/K ′) ≤ κ. Otherwise, if Card(D/K ′) > κ, consider K/K ′ ⊆ D/K ′.
Since D/K is isomorphic to a submodule of M ,

Card(
D/K ′

K/K ′ ) = Card(D/K) ≤ Card(M) = λ.

In view of Lemma 3.2, there exists 0 6= K ′′/K ′ ⊆ K/K ′ ⊆ D/K ′ such that
K ′′/K ′ is a pure submodule of D/K ′. It is clear that K ′ $ K ′′ ⊆ K ⊆ D. By
[8, Proposition 7.2], K ′′ is a pure submodule of D, contradicting the maximality
of K ′. So let C = D/K ′, Card(C) ≤ κ, as desired. ¤

Theorem 3.4. Let R be a right Π-coherent ring. Then every right R-module
has a T In-precover.

Proof. It follows from Proposition 3.3 and [7, Proposition 5.2.2]. ¤

Remark 3.5. (1) We can prove that T In is closed under direct limits over a
right Π-coherent ring. In fact, by [4, Proposition 5.5.3], there is an isomor-
phism: lim−→Extn+1(A,Bi) ∼= Extn+1(A, lim−→Bi), where A is a finitely generated
torsionless right R-module and {Bi|i ∈ I} is an inductive system of right R-
modules. Then, in view of [7, Corollary 5.2.7] and Theorem 3.4, every right
R-module has a T In-cover.

(2) Let R be a right Π-coherent ring. By [10, Theorem 3.4], every right
R-module M has a left T I0-resolution I = · · · → In → · · · → I0 → M → 0.
Let K0 = M, K1 = Ker(I0 → M),Ki = Ker(Ii−1 → Ii−2) for i ≥ 2. We
call Ki(i ≥ 0) the nth T I0-syzygy of M . By [18, Lemma 2.2], In → Kn is a
T In-precover of Kn.

Theorem 3.6. If R is a right Π-coherent ring, then every left R-module has
a T Fn-preenvelope.
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Proof. Let M be a left R-module, and let Card(M) = ℵβ . Then by [7, Lemma
5.3.12], there is an infinite cardinal ℵα such that if FGT − fd(F ) ≤ n and S
is a submodule of F with Card(S) ≤ ℵβ , there exists a pure submodule G of
F such that S ⊂ G and Card(G) ≤ ℵα, where cardinal number ℵα dependent
on Card(S) and Card(R). Note that FGT − fd(G) ≤ n by Lemma 3.1. In
addition, T Fn is closed under direct products, so M has a T Fn-preenvelope
by [7, Corollary 6.2.2]. ¤

The following proposition elaborates the relationship between T In-precovers
and T Fn-preenvelopes.

Proposition 3.7. Let R be a right Π-coherent ring. If ϕ : M → F is a T Fn-
preenvelope of left R-module M , then ϕ+ : F+ → M+ is a T In-precover of
M+.

Proof. By Lemma 1.2(1), F+ ∈ T In since F ∈ T Fn. For any homomorphism
g : D → M+ with D ∈ T In, we have g+ : M++ → D+, hence g+σM : M →
D+, where σM : M → M++ is an evaluation map. By Lemma 1.2(2), D+ ∈
T Fn since R is right Π-coherent. Thus there exists a morphism f : F → D+

such that fϕ = g+σM . Whence σ+
Mg++ = ϕ+f+. Since g++σD = σM+g.

Let f+σD : D → F+, note σ+
MσM+ = 1M+ , then ϕ+f+σD = σ+

Mg++σD =
σ+

MσM+g = g. Therefore ϕ+ : F+ → M+ is a T In-precover. ¤
In general, T In-cover need not be an epimorphism and T Fn-preenvelope

need not be a monomorphism. In the following theorem, we will consider when
every right R-module has an epic T In-cover and when every left R-module has
a monic T Fn-preenvelope.

Theorem 3.8. Let R be right Π-coherent. Then the following are equivalent:
(1) FGT − id(RR) ≤ n.
(2) For any right R-module, there is an epic T In-cover.
(3) For any left R-module, there is a monic T Fn-preenvelope.
(4) Every injective (FP -injective) left R-module belongs to T Fn.
(5) Every flat right R-module belongs to T In.

Proof. (1) ⇒ (2). In view of Remark 3.5, every right R-module has a T In-
cover. By assumption, any projective right R-module belongs to T In. Thus
any T In-cover is epic.

(2) ⇒ (1) is clear since RR has an epic T In-cover.
(1) ⇒ (3). Let M be any left R-module. Then M has a T Fn-preenvelope

f : M → F by Theorem 3.6. Since (RR)+ is a cogenerator in the category of
left R-modules, there is an exact sequence 0 → M → ∏

(RR)+. By Lemma 1.2
(2), FGT − fd((RR)+) = FGT − id(RR) ≤ n since R is right Π-coherent, and
so FGT − fd(

∏
(RR)+) ≤ n. Thus f is monic, and hence (3) follows.

(3) ⇒ (4). Let N be an FP -injective left R-module. By assumption, there
is a pure exact sequence 0 → N → F → L → 0 with F ∈ T Fn. Then N
belongs to T Fn in terms of Lemma 3.1.
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(4) ⇒ (5). Let M be a flat right R-module. Then M+ is injective left
R-module. By (4), M+ ∈ T Fn. Thus M ∈ T In by Lemma 1.2(2).

(5) ⇒ (1) is trivial. ¤

Let n = 0 in Theorem 3.8. Then we have the following result as corollary
which have been prove in [10].

Corollary 3.9. Let R be right Π-coherent. Then the following are equivalent:
(1) RR is FGT -injective.
(2) For any right R-module, there is an epic FGT -injective cover.
(3) For any left R-module, there is a monic FGT -flat preenvelope.
(4) Every injective (FP -injective) left R-module is FGT -flat.
(5) Every flat right R-module is FGT -injective.

A homomorphism g : M → C with C ∈ C is said to be a C-envelope with
the unique mapping property (see [5]) if for any homomorphism g′ : M → C ′

with C ′ ∈ C, there is a unique homomorphism f : C → C ′ such that fg = g′.
Dually, we have the definition of C-cover with the unique mapping property.

We conclude this section with the following result which is of independent
interest.

Proposition 3.10. Let R be a ring. If every right R-module has a T In-cover
with unique mapping property, then T In is closed under direct limits.

Proof. Let {Ii, ϕ
i
j} be a direct system with each Ii ∈ T In. By assumption,

lim−→Ii has a T In-cover g : I → lim−→Ii with the unique mapping property. Sup-
pose that α : Ii → lim−→Ii satisfy αi = αjϕ

i
j whenever i ≤ j. Then there

exists fi : Ii → I such that αi = gfi for any i, so gfi = αjϕ
i
j = gfjϕ

i
j . Hence

fi = fjϕ
i
j by the unique mapping property of g. Thus there exists h : lim−→Ii → I

such that hαi = fi, hence (gh)αi = gfi = αi for any i. Then gh = 1lim−→Ii by
the definition of direct limits. So lim−→Ii is a direct summand of I, and hence
lim−→Ii ∈ T In. ¤

4. n-TI-injective and n-TI-flat modules

Definition 4.1. Let R be a ring, n a fixed non-negative integer. A right R-
module M is said to be n-TI-injective if Ext1(N, M) = 0 for any N ∈ T In. A
left R-module F is called n-TI-flat if Tor1(N, F ) = 0 for any N ∈ T In.

Remark 4.2. (1) By Wakamutsu’s Lemma [16, Lemma 2.1.1], any kernel of
T In-cover is n-TI-injective.

(2) It is clear that 0-TI-injective (resp. 0-TI-flat) R-modules are TI-injective
(resp. TI-flat) R-modules in sense of [17]. If m ≥ n, then m-TI-injective (resp.
m-TI-flat) R-modules are n-TI-injective (resp. n-TI-flat) R-modules.

(3) A left R-module F is n-TI-flat if and only if F+ is n-TI-injective by the
standard isomorphism Ext1(N,F+) ∼= Tor1(N,F )+ for any N ∈ T In.
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Proposition 4.3. The following are equivalent for a right R-module M :
(1) M is n-TI-injective.
(2) For every exact sequence 0 → M → A → B → 0 with A ∈ T In,

A → B is a T In-precover of B.
(3) M is the kernel of a T In-precover f : A → B with A injective.
(4) M is injective with respect to every exact sequence 0 → K → A →

C → 0, where C ∈ T In.

Proof. (1)⇒(2) and (1)⇒(4) are trivial.
(2)⇒(3) is obvious since there is an exact sequence 0 → M → E(M) →

E(M)/M → 0, where E(M) is the injective hull of M .
(3)⇒(1). Let M be a kernel of a T In-precover f : A → B with A in-

jective. Then there is an exact sequence 0 → M → A → A/M → 0. For
any right R-module N ∈ T In, the sequence Hom(N, A) π−→ Hom(N, A/M) →
Ext1(N,M) → 0 is exact. Note that A → A/M is also a T In-precover, so π is
epic. Thus Ext1(N, M) = 0, and hence M is n-TI-injective.

(4)⇒(1). For any right R-module C ∈ T In, there exists an exact sequence
0 → K → A → C → 0 with A projective, which induces an exact sequence
Hom(A,M) π−→ Hom(K,M) → Ext1(C, M) → 0. By assumption, π is epic. So
Ext1(C, M) = 0, and hence M is n-TI-injective. ¤

It is clear that every injective right R-module (resp. flat left R-module) is
n-TI-injective (resp. n-TI-flat) by Definition 4.1. The converse is not true in
general. However, if R is a right Π-coherent ring, we have:

Proposition 4.4. Let R be a right Π-coherent ring. Then the following state-
ments hold.

(1) A right R-module M is injective if and only if M is n-TI-injective and
FGT − id(M) ≤ n + 1.

(2) A left R-module F is flat if and only if F is n-TI-flat and FGT −
fd(F ) ≤ n + 1.

Proof. (1) (⇒) is clear.
(⇐). Let M be a n-TI-injective right R-module. Then there is an exact

sequence 0 → M → E → N → 0 with E injective. By Lemma 1.1, FGT −
id(N) ≤ n. Thus Ext1(N,M) = 0, and hence the exact sequence is split. Then
M is injective.

(2) (⇒) is clear.
(⇐). For any n-TI-flat left R-module F . By Remark 4.2(3), F+ is n-TI-

injective right R-module. By Lemma 1.2(1), FGT − id(F+) ≤ n+1. Then F+

is injective by (1). So F is flat. ¤
A right R-module M is called reduced (see [16]) if M has no nonzero injective

submodules.

Proposition 4.5. Let M be a right R-module over a right Π-coherent ring R.
Then the following are equivalent:
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(1) M is reduced n-TI-injective.
(2) M is the kernel of a T In-cover f : A → B with A injective.

Proof. (1)⇒(2). By Proposition 4.3, the nature map π : E(M) → E(M)/M is
a T In- precover of E(M)/M . But E(M)/M has a T In-cover by Remark 3.5.
E(M) has no nonzero direct summand K contained in M since M is reduced.
By [16, Corollary 1.2.8], π : E(M) → E(M)/M is a T In-cover of E(M)/M .

(2)⇒(1). Let M be the kernel of a T In-cover f : A → B with A injective. So
M is n-TI-injective by Proposition 4.3. Now let K be an injective submodule
of M . Suppose A = K ⊕L. p : A → L is projection and i : L → A is inclusion.
Note f(ip) = f since f(K) = 0. Thus ip is an isomorphism since f is cover.
So i is epic, A = L. Then K = 0, and hence M is reduced. ¤

Now we get a construction theorem of n-TI-injective R-module.

Theorem 4.6. Let M be a right R-module over a right Π-coherent ring R.
Then the following are equivalent:

(1) M is n-TI-injective.
(2) M is a direct sum of an injective right R-module and a reduced n-TI-

injective right R-module.

Proof. The proof is modeled on that of [11, Theorem 2.6].
(2)⇒(1) is trivial.
(1)⇒(2). We consider the exact sequence 0 → M → E(M) → E(M)/M →

0. By Proposition 4.3, E(M) → E(M)/M is a T In-precover of E(M)/M .
Since R is right Π-coherent, by Remark 3.5(1), E(M)/M admits a T In-cover
F → E(M)/M , and hence we get the following commutative diagram with
rows exact:

0 → K
f−→ F → E(M)/M → 0

φ ↓ γ ↓ ↓
0 → M → E(M) → E(M)/M → 0

σ ↓ β ↓ ↓
0 → K

f−→ F → E(M)/M → 0.

Note that βγ is an isomorphism, and hence E(M) ∼= Ker(β)⊕ im(γ). Thus F
and Ker(β) are also injective. Therefore, K is reduced n-TI-injective by Propo-
sition 4.5. On the other hand, by the Five Lemma, we have σφ is isomorphic.
Thus M ∼= Ker(σ) ⊕ im(φ), where im(φ) ∼= K. So we have the commutative
diagram:

0 0 0
↓ ↓ ↓

0 → Ker(σ) → Ker(β) → 0 → 0
↓ ↓ ↓

0 → M
α−→ E(M) → E(M)/M → 0

σ ↓ β ↓ ↓
0 → K

f−→ F → E(M)/M → 0
↓ ↓ ↓ .
0 0 0
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Hence Ker(σ) ∼= Ker(β) by [14, Exercise 6.16]. This completes the proof. ¤

Proposition 4.7. Let S be a simple R-module over a commutative ring R.
Then the following are equivalent:

(1) S is n-TI-injective.
(2) S is n-TI-flat.

Proof. Suppose that {Si}i∈I is an irredundant set of representatives of the
simple R-modules. Let E = E(⊕i∈ISi), the injective hull of ⊕i∈ISi. Then
E is an injective cogenerator. For any N ∈ T In, there exists an isomor-
phism Ext1(N, Hom(S, E)) ∼= Hom(Tor1(N, S), E). Note that Hom(S, E) ∼= S.
Thus S is n-TI-injective if and only if Ext1(N, Hom(S, E)) = 0 if and only
if Hom(Tor1(N, S), E) = 0 if and only if Tor1(N,S) = 0 if and only if S is
n-TI-flat. ¤

Proposition 4.8. Let R be a commutative Π-coherent ring and F be a flat
R-module. Then the following statements hold.

(1) M is n-TI-injective if and only if Hom(F,M) is n-TI-injective.
(2) N is n-TI-flat if and only if F ⊗N is n-TI-flat.

Proof. (1) (⇐) holds by letting F = R.
(⇒). For any FGT -injective R-module E and flat R-module F , we claim

that E ⊗ F is FGT -injective. In fact, any finitely generated torsionless R-
module T is finitely presented since R is Π-coherent, then there is an exact
sequence 0 → K → P → T → 0 with P and K finitely generated and P
free, so P and K are finitely presented. On the other hand, the sequence
Hom(P, E) ⊗ F → Hom(K, E) ⊗ F → 0 is exact since E is FGT -injective.
Furthermore, we have the following commutative diagram:

Hom(P, E)⊗ F → Hom(K,E)⊗ F → 0
α ↓ β ↓

Hom(P, E ⊗ F ) → Hom(K, E ⊗ F )

Since P and K are finitely presented, by [7, Theorem 3.2.14], α and β are
isomorphisms. Then Hom(P, E ⊗ F ) → Hom(K, E ⊗ F ) → 0 is exact. Thus
Ext1(T,E ⊗ F ) = 0, and hence E ⊗ F is FGT -injective.

Then, if I ∈ T In, by the result above and [4, Proposition 5.5.4], I⊗F ∈ T In.
Now we prove that Hom(F,M) is n-TI-injective. For any I ∈ T In, there

exists an exact sequence 0 → K1 → P1 → I → 0 with P1 projective. Then we
have an induced exact sequence

Hom(P1 ⊗ F,M) → Hom(K1 ⊗ F, M) → Ext1(I ⊗ F, M) = 0.

So the sequence

Hom(P1, Hom(F, M)) → Hom(K1,Hom(F, M)) → 0

is exact. Thus Ext1(I, Hom(F, M)) = 0. Therefore, Hom(F, M) is n-TI-
injective.
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(2) N is n-TI-flat if and only if N+ is n-TI-injective if and only if Hom(F,
N+) is n-TI-injective by (1) if and only if (F ⊗ N)+ is n-TI-injective by the
standard isomorphism (F ⊗N)+ ∼= Hom(F, N+) if and only if F ⊗N is n-TI-
flat. ¤

In the following proposition, we consider the relationship between n-TI-flat
modules and the cokernels of T Fn-preenvelopes.

Proposition 4.9. Let R be a right Π-coherent ring. Then the following state-
ments hold.

(1) If C is the cokernel of a T Fn-preenvelope f : M → F of a left R-module
M with F flat, then C is n-TI-flat.

(2) If L is a finitely presented n-TI-flat left R-module, then L is the cok-
ernel of a T Fn-preenvelope g : K → P with P flat.

Proof. (1). There is an exact sequence of left R-modules 0 → im(f) → F →
C → 0. Using functor N ⊗− with N ∈ T In, we have an exact sequence

0 → Tor1(N,C) → N ⊗ im(f) → N ⊗ F.

Note that im(f) → F is also a T Fn-preenvelope and N+ ∈ T Fn. Then the
sequence Hom(F,N+) → Hom(im(f), N+) → 0 is exact. So (N ⊗F )+ → (N ⊗
im(f))+ → 0 is exact. Thus we have exact sequence 0 → N ⊗ im(f) → N ⊗F ,
so Tor1(N, C) = 0. Then C is n-TI-flat.

(2). Let L be a finitely presented n-TI-flat left R-module. There is an exact
sequence 0 → K

i−→ P → L → 0 with P finitely generated projective and K
finitely generated. It is enough to show that i : K → P is a T Fn-preenvelope.
In fact, for any left R-module F ∈ T Fn, we have Tor1(F+, L) = 0, and so we
get the following commutative diagram with the first row exact:

0 → F+ ⊗K
1F+⊗i→ F+ ⊗ P

α ↓ β ↓
Hom(K, F )+ h→ Hom(P, F )+.

Note that α is an epimorphism and β is an isomorphism by [7, Theorem 3.2.11].
Thus h is a monomorphism, and hence Hom(P, F ) → Hom(K,F ) is epic, as
required. ¤

Lemma 4.10. Let R be a right Π-coherent ring. Then

FGT − id(RR) = sup{FGT − fd(RE)|E injective left R-module}.
Proof. Assume that FGT−id(RR) = n < ∞. Then Extn+1(T, R) = 0 for every
finitely generated torsionless right R-module T . Since R is right Π-coherent, T
is finitely presented. Then, for any injective left R-module E,

Torn+1(T, E) ∼= Torn+1(T, Hom(R,E)) ∼= Hom(Extn+1(T, R), E) = 0,
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and so, it follows that FGT−fd(E)≤n. Conversely, let sup{FGT−fd(RM) |M
injective left R-module}= n < ∞. Since R is right Π-coherent, FGT −
id(RR) = FGT − fd((RR)+) ≤ n by Lemma 1.2(2). ¤

Following [4], let l.FGT − IF.dim(R) = sup{l.FGT − fd(RE) | E injective
left R-module}. Similarly, we have the definition of r.FGT − IF.dim(R). By
Lemma 4.10, if R is a left and right Π-coherent ring, then FGT − id(RR) =
l.FGT − IF.dim(R) and FGT − id(RR) = r.FGT − IF.dim(R).

Proposition 4.11. Let R be a left and right Π-coherent ring, FGT−id(RR) ≤
n and FGT − id(RR) ≤ n for integer n ≥ 0. Then the following are equivalent
for any (left or right) R-module M :

(1) FGT − id(M) < ∞.
(2) FGT − id(M) ≤ n.
(3) FGT − fd(M) < ∞.
(4) FGT − fd(M) ≤ n.

Proof. We only prove the right case. The left case is similar.
(2)⇒(1) and (4)⇒(3) are trivial.
(3)⇒(2). Since FGT − fd(MR) < ∞, in view of [4, Theorem 5.6.16(ii)],

FGT − fd((MR)+) ≤ l.FGT − IF.dim(R) = FGT − id(RR) ≤ n. Thus
FGT − id(MR) = FGT − fd((MR)+) ≤ n by Lemma 1.2(2).

(1)⇒(4). Assume that FGT − id(MR) < ∞. By [4, Proposition 5.6.16(iii)],
FGT − fd(MR) ≤ r.FGT − IF.dim(R) = FGT − id(RR) ≤ n. ¤

Definition 4.12. A ring R is called weakly n-Gorenstein if it is left and right
Π-coherent and if FGT −id(RR) ≤ n and FGT −id(RR) ≤ n for integer n ≥ 0.

Remark 4.13. (1) Obviously, every n-Gorenstein ring [7] (that is, R is a left
and right Noetherian ring and id(RR) ≤ n and id(RR) ≤ n) is a weakly n-
Gorenstein ring. But the converse is not true in general. For example, let F be
a field and V be an infinite dimensions vector space over F . Then R = EndF V
is a weakly 0-Gorenstein ring but it is not a 0-Gorenstein ring because it is not
Noetherian.

(2) Recall that R is a QF -ring [1](i.e., 0-Gorenstein ring) if R is left and right
noetherian and RR and RR are injective. Here we have a new characterization
of QF -ring.

Theorem 4.14. R is a QF -ring if and only if every (left or right) R-module
is n-TI-injective.

Proof. If R is a QF -ring, then R is weakly 0-Gorenstein ring by Remark 4.13
(1). For any R-module N ∈ T In, in view of Proposition 4.11, N is FGT -
injective. By [15, Remark 5], R is also a D-ring, so N is injective in terms of
[4, Proposition 5.5.1], and hence N is projective by [1, Theorem 31.9]. Thus
every R-module is n-TI-injective. Conversely, note that, for any injective right
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R-module M , FGT − id(M) ≤ n. By assumption, any R-module N is n-TI-
injective, so Ext1(M,N) = 0, hence M is projective. Therefore, R is a QF -ring
by [1, Theorem 31.9] again. ¤

Let K be a submodule of left (or right) R-module M . K is called a closed
submodule (see [15]) if M/K is torsionless.

Proposition 4.15. Let R be a left and right Π-coherent ring. Then the fol-
lowing are equivalent.

(1) R is weakly 1-Gorenstein.
(2) Every closed submodule of a finitely generated n-TI-flat (left or right)

R-module is n-TI-flat.

Proof. (1)⇒(2). Let K be a closed submodule of a finitely generated n-TI-flat
left R-module M . For any right R-module N ∈ T In, there is an exact sequence

Tor2(N, M/K) → Tor1(N, K) → Tor1(N, M) = 0.

By Proposition 4.11, FGT −fd(NR) ≤ 1. Note that M/K is finitely generated
torsionless, so Tor2(N, M/K) = 0. Thus Tor1(N,K) = 0, and hence K is
n-TI-flat.

(2)⇒(1). For any finitely generated torsionless left R-module M , there is
an exact sequence 0 → K → F → M → 0, where K is a closed submodule of
a finitely generated free R-module F . So there is an induced exact sequence

0 = Tor2((RR)+, F ) → Tor2((RR)+,M) → Tor1((RR)+,K) → · · · .

By assumption, K is n-TI-flat. Then Tor1((RR)+, K)=0, and hence Tor2((RR)+,

M) = 0. So FGT − fd((RR)+) ≤ 1. By Lemma 1.2(2), FGT − id(RR) ≤ 1.
Similarly, we can prove that FGT − id(RR) ≤ 1. ¤

Set FGT − I.dim(R) = sup{FGT − id(M) | M ∈ MR} and call FGT −
I.dim(R) right FGT -injective dimension of R. In the end of this article, we
give a theorem which character the weakly n-Gorenstein rings with finite FGT -
injective dimensions. It needs the following lemmas.

Lemma 4.16. Let R be a right Π-coherent ring. Then every (n + 1)th T I0-
syzygy of minimal left T I0-resolution of any right R-module is n-TI-injective.

Proof. Let I = · · · → In → · · · → I0 → M → 0 be a minimal left T I0-
resolution of M . By Remark 3.5(2), In → Kn is a T In-precover, where Kn

is the nth T I0-syzygy of I. Note that In → Kn is also a T I0-cover, then
In → Kn is a T In-cover of Kn. By Remark 4.2(1), the (n + 1)th T I0-syzygy
Kn+1 of I is n-TI-injective. ¤

Lemma 4.17. Let R be a right Π-coherent ring with FGT − id(RR) ≤ n and
n ≥ 1. If M is an (n− 1)-TI-injective right R-module, then there is an exact
sequence 0 → K → E → M → 0 such that E is FGT -injective and K is
n-TI-injective.
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Proof. The proof is similar to that of [12, Lemma 3.3(1)]. ¤

Theorem 4.18. Let R be a weakly n-Gorenstein ring and integer n ≥ 1. Then
the following are equivalent:

(1) FGT − I.dim(R) < ∞.
(2) FGT − I.dim(R) ≤ n.
(3) Every n-TI-injective right R-module is FGT -injective.
(4) Every n-TI-injective right R-module has a monic FGT -injective cover.
(5) Every ((n−1)-TI-injective) right R-module has a monic T In−1-cover.

Proof. (1)⇒(2) follows from Proposition 4.11.
(2)⇒(3). For any n-TI-injective right R-module M and any finitely gener-

ated torsionless right R-module N , note that FGT − id(N) ≤ n by (2), then
Ext1(N,M) = 0. Thus M is FGT -injective.

(3)⇒(4) is clear.
(4)⇒(1). Let M be a right R-module. For any minimal left T I0-resolution

I = · · · → In → · · · → I0 → M → 0, the (n + 1)th T I0-syzygy Kn+1

of I is n-TI-injective by Lemma 4.16. Thus Kn+1 has a monic T I0-cover
f : I → Kn+1 by (4). But Kn+1 is a quotient of an FGT -injective right
R-module by Lemma 4.17, so f is an isomorphism, and hence Kn+1 is FGT -
injective. Then left T I0-dim M ≤ n + 1. By [17, Lemma 3.2 and Corollary
3.7], FGT − I.dim(R) ≤ n + 3 < ∞.

(2)⇒(5). For any right R-module N ∈ T In−1 and an exact sequence 0 →
K → N → M → 0, note that K ∈ T In by (2), then M ∈ T In−1 by [4,
Proposition 5.5.5(iii)]. But it is easy to verify that T In−1 is closed under direct
sums. By [9, Proposition 4], every right R-module has a monic T In−1-cover.

(5)⇒(2). Let M be any right R-module. By Theorem 3.8, M has an epic
T In-cover f : I → M . Then there is a short exact sequence 0 → K → I →
M → 0, where K = Ker(f). Then K is n-TI-injective by Remark 4.2(1). Note
that K is also (n− 1)-TI-injective, so K has a monic T In−1-cover g : I ′ → K
by (5). But K is a quotient of an FGT -injective right R-module by Lemma
4.17, then g is an isomorphism, and hence K ∈ T In−1. Thus M ∈ T In by [4,
Proposition 5.5.5], as desired. ¤
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