Commun. Korean Math. Soc. **25** (2010), No. 4, pp. 497–510 DOI 10.4134/CKMS.2010.25.4.497

PRECOVERS AND PREENVELOPES BY MODULES OF FINITE *FGT*-INJECTIVE AND *FGT*-FLAT DIMENSIONS

YUEMING XIANG

ABSTRACT. Let R be a ring and n a fixed non-negative integer. \mathcal{TI}_n (resp. \mathcal{TF}_n) denotes the class of all right R-modules of FGT-injective dimensions at most n (resp. all left R-modules of FGT-flat dimensions at most n). We prove that, if R is a right Π -coherent ring, then every right Rmodule has a \mathcal{TI}_n -cover and every left R-module has a \mathcal{TF}_n -preenvelope. A right R-module M is called n-TI-injective in case $\operatorname{Ext}^1(N, M) = 0$ for any $N \in \mathcal{TI}_n$. A left R-module F is said to be n-TI-flat if $\operatorname{Tor}_1(N, F) =$ 0 for any $N \in \mathcal{TI}_n$. Some properties of n-TI-injective and n-TI-flat modules and their relations with \mathcal{TI}_n -(pre)covers and \mathcal{TF}_n -preenvelopes are also studied.

1. Notation

In this section, we recall some known notions and facts needed in the sequel.

Throughout this paper, R is an associative ring with identity and all modules are unitary. $_{R}\mathcal{M}(\text{resp. }\mathcal{M}_{R})$ stands for the category of all left (resp. right) Rmodules. Let M and N be R-modules. Hom(M, N) (resp. $\text{Ext}^{n}(M, N)$) means Hom $_{R}(M, N)$ (resp. $\text{Ext}^{n}_{R}(M, N)$), and similarly $M \otimes N$ (resp. $\text{Tor}_{n}(M, N)$) denotes $M \otimes_{R} N$ (resp. $\text{Tor}^{R}_{n}(M, N)$). The character module M^{+} is defined by $M^{+} = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$. The dual module $M^{*} = \text{Hom}(M, R)$. The cardinality of an R-module M is denoted by Card(M). We will use the usual notations from [1], [7], [14].

Let \mathcal{C} be the class of R-modules. For an R-module M, a homomorphism $g: C \to M$ is called a \mathcal{C} -cover (see [6]) of M if $C \in \mathcal{C}$ and the following hold: (1) For any homomorphism $g': C' \to M$ with $C' \in \mathcal{C}$, there exists a homomorphism $f: C' \to C$ with g' = gf. (2) If f is an endomorphism of C with gf = g, then f must be an automorphism. If (1) holds but (2) may not, $g: C \to M$ is called a \mathcal{C} -precover. Dually we have the definition of a \mathcal{C} -(pre)envelope. \mathcal{C} -covers and \mathcal{C} -envelopes may not exist in general, but if they

O2010 The Korean Mathematical Society

Received September 23, 2009; Revised February 1, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 16E10, 16E05, 16D80.

Key words and phrases. TI_n -(pre)cover, TF_n -preenvelope, *n*-TI-injective module, *n*-TI-flat module, weakly *n*-Gorenstein ring.

exist, they are unique up to isomorphism. If every right *R*-module has a *C*-precover, then every right *R*-module *M* has a *left C*-resolution, that is, there is a Hom($\mathcal{C}, -$) exact complex $\overline{I} = \cdots \to I_1 \to I_0 \to M \to 0$ with each $I_i \in \mathcal{C}$. If $I_0 \to M$, $I_1 \to \text{Ker}(I_0 \to M)$, $I_{i+1} \to \text{Ker}(I_i \to I_{n-1})$ for $i \ge 1$, are *C*-covers, \overline{I} is called a minimal left *C*-resolution of *M*. A right *R*-module *M* is said to have *left C*-dimension $\le n$, denoted left *C*-dim $M \le n$, if there is a left *C*-resolution of the form $0 \to I_n \to I_{n-1} \to \cdots \to I_1 \to I_0 \to M \to 0$ of *M*. If there is no such *n*, we set left *C*-dim $M = \infty$.

A right R-module T is called *torsionless* if the evaluation map $\sigma: T \to T^{**}$ is injection. A ring R is said to be *right* Π -*coherent* if every finitely generated torsionless right R-module is finitely presented (see [3]). It is well known that right Noetherian rings \Rightarrow right Π -coherent rings \Rightarrow right coherent rings. The *right FGT-injective dimension* of a right R-module M (see [4]), denoted by FGT - id(M), is defined as the least non-negative integer n such that $\operatorname{Ext}^{n+1}(T,M) = 0$ for any finitely generated torsionless right R-module T. The *left FGT-flat dimension* of a left R-module F, denoted by FGT - fd(F), is defined as the least non-negative integer n such that $\operatorname{Tor}_{n+1}(T,F) = 0$ for any finitely generated torsionless right R-module T. A right R-module M is called FGT-*injective* if $\operatorname{Ext}^1(T,M) = 0$ for any finitely generated torsionless right R-module T. A left R-module F is called FGT-flat if $\operatorname{Tor}_1(T,F) = 0$ for any finitely generated torsionless right R-module T. We write \mathcal{TI}_n (resp. \mathcal{TF}_n) for the class of all right R-modules of FGT-injective dimensions at most n).

The following lemmas due to [4, Corollary 5.5.6] and [4, Proposition 5.6.11], respectively.

Lemma 1.1. Let R be a right Π -coherent ring and $0 \to A \to B \to C \to 0$ an exact sequence of right R-modules with B FGT-injective. If A is FGTinjective, so is C. If A is not FGT-injective and FGT - $id(A) < \infty$, then FGT - id(A) = FGT - id(C) + 1.

Lemma 1.2. Let R be a ring. Then

- (1) $FGT fd(M) = FGT id(M^+)$ for any left R-module M.
- (2) If R is right Π -coherent, then $FGT id(N) = FGT fd(N^+)$ for any right R-module N.

2. Introduction

Precovers and preenvelopes were introduced by Enochs in 1980's [6]. Its turn out to be extremely fruitful for general module theory as well as for representation theory. The idea behind these concepts is to exploit interesting features of a special class of R-modules for the study of the whole module category. In particular, the existence of precovers and preenvelopes is also studied by many authors (see [2], [7], [9], [10], [12], [13], [16]). Let R be a right Π -coherent ring. In Section 3 of this paper, we consider the existence of \mathcal{TI}_n -precovers and \mathcal{TF}_n -preenvelopes and obtain the relation between \mathcal{TI}_n -precovers and \mathcal{TF}_n -preenvelopes. Moreover, we show when every right *R*-module has an epic \mathcal{TI}_n -cover and when every left *R*-module has a monic \mathcal{TF}_n -preenvelope.

We introduce the concepts of n-TI-injective and n-TI-flat modules and obtain some interesting properties in Section 4. It is shown that a right R-module M is reduced n-TI-injective if and only if M is the kernel of a \mathcal{TI}_n -cover. Furthermore, M is *n*-*TI*-injective if and only if it is a direct sum of an injective right *R*-module and a reduced n-*TI*-injective right *R*-module. If *R* is a commutative ring, we show that a simple R-module S is n-TI-injective if and only if it is n-TI-flat. We get a new characterization of QF-ring in terms of n-TIinjective right R-modules. For a right Π -coherent ring R, if C is the cokernel of a \mathcal{TF}_n -preenvelope $f: M \to F$ of a left R-module M with F flat, then C is n-TI-flat, and if L is a finitely presented n-TI-flat right R-module, then L is the cokernel of a \mathcal{TF}_n -preenvelope $g: K \to P$ with P flat. We call a ring R weakly *n*-Gorenstein if it is left and right Π -coherent and if $FGT - id(_RR) \leq n$ and $FGT - id(R_R) \leq n$ for integer $n \geq 0$. It is shown that, if R is left and right Π -coherent, then R is weakly 1-Gorenstein if and only if every closed submodule of a finitely generated n-TI-flat (left or right) R-module is n-TIflat. Finally, we study weakly n-Gorenstein rings with finitely FGT-injective dimensions.

3. \mathcal{TI}_n -precovers and \mathcal{TF}_n -preenvelopes

The aim of this section is to study the existence of \mathcal{TI}_n -(pre)covers and \mathcal{TF}_n -preenvelopes. It is easy to verify that \mathcal{TI}_n is closed under extensions, direct products and direct summands, and \mathcal{TF}_n is closed under extensions, direct sums and direct summands. If R is right II-coherent, then \mathcal{TI}_n is closed under direct sums and \mathcal{TF}_n is closed under direct products. Moreover, we have the following:

Lemma 3.1. Let R be a right Π -coherent ring. Then \mathcal{TI}_n and \mathcal{TF}_n are closed under pure submodules and pure quotient modules.

Proof. Let $0 \to A' \to A \to A'' \to 0$ be a pure exact sequence of right *R*-modules with $FGT - id(A) \leq n$. Then we have a split exact sequence $0 \to (A'')^+ \to A^+ \to (A')^+ \to 0$. By Lemma 1.2(2), $FGT - fd(A^+) \leq n$. Thus $FGT - fd((A')^+) \leq n$ and $FGT - fd((A'')^+) \leq n$. By Lemma 1.2(2), $FGT - id(A') \leq n$ and $FGT - id(A'') \leq n$.

Now let $0 \to A' \to A \to A'' \to 0$ be a pure exact sequence of left *R*-modules and $FGT - fd(A) \leq n$. Then we have a split exact sequence $0 \to (A'')^+ \to A^+ \to (A')^+ \to 0$. By Lemma 1.2(1), $FGT - id(A^+) \leq n$. Thus $FGT - id((A')^+) \leq n$ and $FGT - id((A'')^+) \leq n$. Therefore, $FGT - fd(A') \leq n$ and $FGT - fd(A'') \leq n$ by Lemma 1.2(1) again.

The next lemma is a special case of [2, Theorem 5].

Lemma 3.2. Let R be a ring. Then for each cardinal λ , there is a cardinal κ such that any R-module M and for any $L \leq M$ with $\operatorname{Card}(M) \geq \kappa$ and $\operatorname{Card}(M/L) \leq \lambda$, the submodule L contains a nonzero submodule that is pure in M.

Proposition 3.3. Let R be a right Π -coherent ring. There is a cardinal number κ such that any morphism $\varphi : D \to M$ with $D \in \mathcal{TI}_n$ has a factorization $D \to C \to M$ with $C \in \mathcal{TI}_n$ and $Card(C) \leq \kappa$.

Proof. Let M be a right R-module with $\operatorname{Card}(M) = \lambda$, and let κ be a cardinal as in Lemma 3.2. Take a morphism $\varphi : D \to M$ with $D \in \mathcal{TI}_n$, $K = \operatorname{Ker}(\varphi)$. If $\operatorname{Card}(D) \leq \kappa$, then consider the factorization of $D \to M$ as $D \to D \to M$, where the first arrow is the identity.

If $\operatorname{Card}(D) > \kappa$. There is K' maximal with the properties that $K' \subseteq K \subseteq D$ and that K' is a pure submodule of D. So φ has the factorization $D \to D/K' \to M$ in terms of [1, Theorem 3.6]. By Lemma 3.1, $D/K' \in \mathcal{TI}_n$. We claim that $\operatorname{Card}(D/K') \leq \kappa$. Otherwise, if $\operatorname{Card}(D/K') > \kappa$, consider $K/K' \subseteq D/K'$. Since D/K is isomorphic to a submodule of M,

$$\operatorname{Card}(\frac{D/K'}{K/K'}) = \operatorname{Card}(D/K) \le \operatorname{Card}(M) = \lambda.$$

In view of Lemma 3.2, there exists $0 \neq K''/K' \subseteq K/K' \subseteq D/K'$ such that K''/K' is a pure submodule of D/K'. It is clear that $K' \subsetneq K'' \subseteq K \subseteq D$. By [8, Proposition 7.2], K'' is a pure submodule of D, contradicting the maximality of K'. So let C = D/K', $Card(C) \leq \kappa$, as desired.

Theorem 3.4. Let R be a right Π -coherent ring. Then every right R-module has a \mathcal{TI}_n -precover.

Proof. It follows from Proposition 3.3 and [7, Proposition 5.2.2].

Remark 3.5. (1) We can prove that \mathcal{TI}_n is closed under direct limits over a right Π -coherent ring. In fact, by [4, Proposition 5.5.3], there is an isomorphism: $\varinjlim \operatorname{Ext}^{n+1}(A, B_i) \cong \operatorname{Ext}^{n+1}(A, \liminf B_i)$, where A is a finitely generated torsionless right R-module and $\{B_i | i \in I\}$ is an inductive system of right R-modules. Then, in view of [7, Corollary 5.2.7] and Theorem 3.4, every right R-module has a \mathcal{TI}_n -cover.

(2) Let R be a right Π -coherent ring. By [10, Theorem 3.4], every right R-module M has a left \mathcal{TI}_0 -resolution $\overline{I} = \cdots \to I_n \to \cdots \to I_0 \to M \to 0$. Let $K_0 = M, K_1 = \operatorname{Ker}(I_0 \to M), K_i = \operatorname{Ker}(I_{i-1} \to I_{i-2})$ for $i \geq 2$. We call $K_i (i \geq 0)$ the *n*th \mathcal{TI}_0 -syzygy of M. By [18, Lemma 2.2], $I_n \to K_n$ is a \mathcal{TI}_n -precover of K_n .

Theorem 3.6. If R is a right Π -coherent ring, then every left R-module has a \mathcal{TF}_n -preenvelope.

Proof. Let M be a left R-module, and let $\operatorname{Card}(M) = \aleph_{\beta}$. Then by [7, Lemma 5.3.12], there is an infinite cardinal \aleph_{α} such that if $FGT - fd(F) \leq n$ and S is a submodule of F with $\operatorname{Card}(S) \leq \aleph_{\beta}$, there exists a pure submodule G of F such that $S \subset G$ and $\operatorname{Card}(G) \leq \aleph_{\alpha}$, where cardinal number \aleph_{α} dependent on $\operatorname{Card}(S)$ and $\operatorname{Card}(R)$. Note that $FGT - fd(G) \leq n$ by Lemma 3.1. In addition, \mathcal{TF}_n is closed under direct products, so M has a \mathcal{TF}_n -preenvelope by [7, Corollary 6.2.2].

The following proposition elaborates the relationship between \mathcal{TI}_n -precovers and \mathcal{TF}_n -preenvelopes.

Proposition 3.7. Let R be a right Π -coherent ring. If $\varphi : M \to F$ is a \mathcal{TF}_n -preenvelope of left R-module M, then $\varphi^+ : F^+ \to M^+$ is a \mathcal{TI}_n -precover of M^+ .

Proof. By Lemma 1.2(1), $F^+ \in \mathcal{TI}_n$ since $F \in \mathcal{TF}_n$. For any homomorphism $g: D \to M^+$ with $D \in \mathcal{TI}_n$, we have $g^+: M^{++} \to D^+$, hence $g^+\sigma_M: M \to D^+$, where $\sigma_M: M \to M^{++}$ is an evaluation map. By Lemma 1.2(2), $D^+ \in \mathcal{TF}_n$ since R is right Π -coherent. Thus there exists a morphism $f: F \to D^+$ such that $f\varphi = g^+\sigma_M$. Whence $\sigma_M^+g^{++} = \varphi^+f^+$. Since $g^{++}\sigma_D = \sigma_M+g$. Let $f^+\sigma_D: D \to F^+$, note $\sigma_M^+\sigma_{M^+} = 1_{M^+}$, then $\varphi^+f^+\sigma_D = \sigma_M^+g^{++}\sigma_D = \sigma_M$

In general, \mathcal{TI}_n -cover need not be an epimorphism and \mathcal{TF}_n -preenvelope need not be a monomorphism. In the following theorem, we will consider when every right *R*-module has an epic \mathcal{TI}_n -cover and when every left *R*-module has a monic \mathcal{TF}_n -preenvelope.

Theorem 3.8. Let R be right Π -coherent. Then the following are equivalent:

- (1) $FGT id(R_R) \leq n$.
- (2) For any right R-module, there is an epic TI_n -cover.
- (3) For any left R-module, there is a monic \mathcal{TF}_n -preenvelope.
- (4) Every injective (FP-injective) left R-module belongs to \mathcal{TF}_n .
- (5) Every flat right R-module belongs to \mathcal{TI}_n .

Proof. (1) \Rightarrow (2). In view of Remark 3.5, every right *R*-module has a \mathcal{TI}_n -cover. By assumption, any projective right *R*-module belongs to \mathcal{TI}_n . Thus any \mathcal{TI}_n -cover is epic.

 $(2) \Rightarrow (1)$ is clear since R_R has an epic \mathcal{TI}_n -cover.

 $(1) \Rightarrow (3)$. Let M be any left R-module. Then M has a \mathcal{TF}_n -preenvelope $f: M \to F$ by Theorem 3.6. Since $(R_R)^+$ is a cogenerator in the category of left R-modules, there is an exact sequence $0 \to M \to \prod (R_R)^+$. By Lemma 1.2 (2), $FGT - fd((R_R)^+) = FGT - id(R_R) \leq n$ since R is right Π -coherent, and so $FGT - fd(\prod (R_R)^+) \leq n$. Thus f is monic, and hence (3) follows.

 $(3) \Rightarrow (4)$. Let N be an FP-injective left R-module. By assumption, there is a pure exact sequence $0 \to N \to F \to L \to 0$ with $F \in \mathcal{TF}_n$. Then N belongs to \mathcal{TF}_n in terms of Lemma 3.1.

 $(4) \Rightarrow (5)$. Let M be a flat right R-module. Then M^+ is injective left R-module. By (4), $M^+ \in \mathcal{TF}_n$. Thus $M \in \mathcal{TI}_n$ by Lemma 1.2(2). (5) \Rightarrow (1) is trivial.

Let n = 0 in Theorem 3.8. Then we have the following result as corollary which have been prove in [10].

Corollary 3.9. Let R be right Π -coherent. Then the following are equivalent:

- (1) R_R is FGT-injective.
- (2) For any right R-module, there is an epic FGT-injective cover.
- (3) For any left R-module, there is a monic FGT-flat preenvelope.
- (4) Every injective (FP-injective) left R-module is FGT-flat.
- (5) Every flat right R-module is FGT-injective.

A homomorphism $g: M \to C$ with $C \in C$ is said to be a *C*-envelope with the unique mapping property (see [5]) if for any homomorphism $g': M \to C'$ with $C' \in C$, there is a unique homomorphism $f: C \to C'$ such that fg = g'. Dually, we have the definition of *C*-cover with the unique mapping property.

We conclude this section with the following result which is of independent interest.

Proposition 3.10. Let R be a ring. If every right R-module has a \mathcal{TI}_n -cover with unique mapping property, then \mathcal{TI}_n is closed under direct limits.

Proof. Let $\{I_i, \varphi_j^i\}$ be a direct system with each $I_i \in \mathcal{TI}_n$. By assumption, $\lim I_i$ has a \mathcal{TI}_n -cover $g: I \to \varinjlim I_i$ with the unique mapping property. Suppose that $\alpha : I_i \to \varinjlim I_i$ satisfy $\alpha_i = \alpha_j \varphi_j^i$ whenever $i \leq j$. Then there exists $f_i: I_i \to I$ such that $\alpha_i = gf_i$ for any i, so $gf_i = \alpha_j \varphi_j^i = gf_j \varphi_j^i$. Hence $f_i = f_j \varphi_j^i$ by the unique mapping property of g. Thus there exists $h: \varinjlim I_i \to I$ such that $h\alpha_i = f_i$, hence $(gh)\alpha_i = gf_i = \alpha_i$ for any i. Then $gh = 1_{\varinjlim I_i}$ by the definition of direct limits. So $\varinjlim I_i$ is a direct summand of I, and hence $\lim I_i \in \mathcal{TI}_n$.

4. *n*-*TI*-injective and *n*-*TI*-flat modules

Definition 4.1. Let R be a ring, n a fixed non-negative integer. A right R-module M is said to be n-TI-injective if $\text{Ext}^1(N, M) = 0$ for any $N \in \mathcal{TI}_n$. A left R-module F is called n-TI-flat if $\text{Tor}_1(N, F) = 0$ for any $N \in \mathcal{TI}_n$.

Remark 4.2. (1) By Wakamutsu's Lemma [16, Lemma 2.1.1], any kernel of \mathcal{TI}_n -cover is *n*-*TI*-injective.

(2) It is clear that 0-TI-injective (resp. 0-TI-flat) R-modules are TI-injective (resp. TI-flat) R-modules in sense of [17]. If $m \ge n$, then m-TI-injective (resp. m-TI-flat) R-modules are n-TI-injective (resp. n-TI-flat) R-modules.

(3) A left *R*-module *F* is *n*-*TI*-flat if and only if F^+ is *n*-*TI*-injective by the standard isomorphism $\operatorname{Ext}^1(N, F^+) \cong \operatorname{Tor}_1(N, F)^+$ for any $N \in \mathcal{TI}_n$.

Proposition 4.3. The following are equivalent for a right *R*-module *M*:

- (1) M is n-TI-injective.
- (2) For every exact sequence $0 \to M \to A \to B \to 0$ with $A \in \mathcal{TI}_n$, $A \to B$ is a \mathcal{TI}_n -precover of B.
- (3) M is the kernel of a TI_n -precover $f: A \to B$ with A injective.
- (4) *M* is injective with respect to every exact sequence $0 \to K \to A \to C \to 0$, where $C \in \mathcal{TI}_n$.

Proof. $(1) \Rightarrow (2)$ and $(1) \Rightarrow (4)$ are trivial.

 $(2) \Rightarrow (3)$ is obvious since there is an exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$, where E(M) is the injective hull of M.

 $(3) \Rightarrow (1)$. Let M be a kernel of a \mathcal{TI}_n -precover $f : A \to B$ with A injective. Then there is an exact sequence $0 \to M \to A \to A/M \to 0$. For any right R-module $N \in \mathcal{TI}_n$, the sequence $\operatorname{Hom}(N, A) \xrightarrow{\pi} \operatorname{Hom}(N, A/M) \to \operatorname{Ext}^1(N, M) \to 0$ is exact. Note that $A \to A/M$ is also a \mathcal{TI}_n -precover, so π is epic. Thus $\operatorname{Ext}^1(N, M) = 0$, and hence M is n-TI-injective.

 $(4) \Rightarrow (1).$ For any right *R*-module $C \in \mathcal{TI}_n$, there exists an exact sequence $0 \to K \to A \to C \to 0$ with *A* projective, which induces an exact sequence $\operatorname{Hom}(A, M) \xrightarrow{\pi} \operatorname{Hom}(K, M) \to \operatorname{Ext}^1(C, M) \to 0$. By assumption, π is epic. So $\operatorname{Ext}^1(C, M) = 0$, and hence *M* is *n*-*TI*-injective.

It is clear that every injective right R-module (resp. flat left R-module) is n-TI-injective (resp. n-TI-flat) by Definition 4.1. The converse is not true in general. However, if R is a right Π -coherent ring, we have:

Proposition 4.4. Let R be a right Π -coherent ring. Then the following statements hold.

- (1) A right R-module M is injective if and only if M is n-TI-injective and $FGT id(M) \le n + 1$.
- (2) A left R-module F is flat if and only if F is n-TI-flat and FGT $fd(F) \leq n+1$.

Proof. (1) (\Rightarrow) is clear.

 (\Leftarrow) . Let M be a n-TI-injective right R-module. Then there is an exact sequence $0 \to M \to E \to N \to 0$ with E injective. By Lemma 1.1, $FGT - id(N) \leq n$. Thus $\text{Ext}^1(N, M) = 0$, and hence the exact sequence is split. Then M is injective.

(2) (\Rightarrow) is clear.

(⇐). For any *n*-*TI*-flat left *R*-module *F*. By Remark 4.2(3), F^+ is *n*-*TI*-injective right *R*-module. By Lemma 1.2(1), $FGT - id(F^+) \le n+1$. Then F^+ is injective by (1). So *F* is flat.

A right R-module M is called *reduced* (see [16]) if M has no nonzero injective submodules.

Proposition 4.5. Let M be a right R-module over a right Π -coherent ring R. Then the following are equivalent:

- (1) M is reduced n-TI-injective.
- (2) M is the kernel of a TI_n -cover $f : A \to B$ with A injective.

Proof. (1) \Rightarrow (2). By Proposition 4.3, the nature map $\pi : E(M) \to E(M)/M$ is a \mathcal{TI}_n - precover of E(M)/M. But E(M)/M has a \mathcal{TI}_n -cover by Remark 3.5. E(M) has no nonzero direct summand K contained in M since M is reduced. By [16, Corollary 1.2.8], $\pi : E(M) \to E(M)/M$ is a \mathcal{TI}_n -cover of E(M)/M.

 $(2) \Rightarrow (1)$. Let M be the kernel of a \mathcal{TI}_n -cover $f : A \to B$ with A injective. So M is n-TI-injective by Proposition 4.3. Now let K be an injective submodule of M. Suppose $A = K \oplus L$. $p : A \to L$ is projection and $i : L \to A$ is inclusion. Note f(ip) = f since f(K) = 0. Thus ip is an isomorphism since f is cover. So i is epic, A = L. Then K = 0, and hence M is reduced. \Box

Now we get a construction theorem of n-TI-injective R-module.

Theorem 4.6. Let M be a right R-module over a right Π -coherent ring R. Then the following are equivalent:

- (1) M is n-TI-injective.
- (2) *M* is a direct sum of an injective right *R*-module and a reduced *n*-TI-injective right *R*-module.

Proof. The proof is modeled on that of [11, Theorem 2.6].

 $(2) \Rightarrow (1)$ is trivial.

 $(1)\Rightarrow(2)$. We consider the exact sequence $0 \to M \to E(M) \to E(M)/M \to 0$. By Proposition 4.3, $E(M) \to E(M)/M$ is a \mathcal{TI}_n -precover of E(M)/M. Since R is right II-coherent, by Remark 3.5(1), E(M)/M admits a \mathcal{TI}_n -cover $F \to E(M)/M$, and hence we get the following commutative diagram with rows exact:

Note that $\beta\gamma$ is an isomorphism, and hence $E(M) \cong \operatorname{Ker}(\beta) \oplus \operatorname{im}(\gamma)$. Thus F and $\operatorname{Ker}(\beta)$ are also injective. Therefore, K is reduced n-TI-injective by Proposition 4.5. On the other hand, by the Five Lemma, we have $\sigma\phi$ is isomorphic. Thus $M \cong \operatorname{Ker}(\sigma) \oplus \operatorname{im}(\phi)$, where $\operatorname{im}(\phi) \cong K$. So we have the commutative diagram:

Hence $\operatorname{Ker}(\sigma) \cong \operatorname{Ker}(\beta)$ by [14, Exercise 6.16]. This completes the proof. \Box

Proposition 4.7. Let S be a simple R-module over a commutative ring R. Then the following are equivalent:

(1) S is n-TI-injective.

(2) S is n-TI-flat.

Proof. Suppose that $\{S_i\}_{i\in I}$ is an irredundant set of representatives of the simple *R*-modules. Let $E = E(\bigoplus_{i\in I}S_i)$, the injective hull of $\bigoplus_{i\in I}S_i$. Then *E* is an injective cogenerator. For any $N \in \mathcal{TI}_n$, there exists an isomorphism $\operatorname{Ext}^1(N, \operatorname{Hom}(S, E)) \cong \operatorname{Hom}(\operatorname{Tor}_1(N, S), E)$. Note that $\operatorname{Hom}(S, E) \cong S$. Thus *S* is *n*-*TI*-injective if and only if $\operatorname{Ext}^1(N, \operatorname{Hom}(S, E)) = 0$ if and only if $\operatorname{Hom}(\operatorname{Tor}_1(N, S), E) = 0$ if and only if $\operatorname{Tor}_1(N, S) = 0$ if and only if *S* is *n*-*TI*-flat. \Box

Proposition 4.8. Let R be a commutative Π -coherent ring and F be a flat R-module. Then the following statements hold.

- (1) M is n-TI-injective if and only if Hom(F, M) is n-TI-injective.
- (2) N is n-TI-flat if and only if $F \otimes N$ is n-TI-flat.

Proof. (1) (\Leftarrow) holds by letting F = R.

 (\Rightarrow) . For any *FGT*-injective *R*-module *E* and flat *R*-module *F*, we claim that $E \otimes F$ is *FGT*-injective. In fact, any finitely generated torsionless *R*-module *T* is finitely presented since *R* is II-coherent, then there is an exact sequence $0 \to K \to P \to T \to 0$ with *P* and *K* finitely generated and *P* free, so *P* and *K* are finitely presented. On the other hand, the sequence $\operatorname{Hom}(P, E) \otimes F \to \operatorname{Hom}(K, E) \otimes F \to 0$ is exact since *E* is *FGT*-injective. Furthermore, we have the following commutative diagram:

$$\begin{array}{cccc} \operatorname{Hom}(P,E) \otimes F & \to & \operatorname{Hom}(K,E) \otimes F \to 0 \\ \alpha \downarrow & & \beta \downarrow \\ \operatorname{Hom}(P,E \otimes F) & \to & \operatorname{Hom}(K,E \otimes F) \end{array}$$

Since P and K are finitely presented, by [7, Theorem 3.2.14], α and β are isomorphisms. Then $\operatorname{Hom}(P, E \otimes F) \to \operatorname{Hom}(K, E \otimes F) \to 0$ is exact. Thus $\operatorname{Ext}^1(T, E \otimes F) = 0$, and hence $E \otimes F$ is FGT-injective.

Then, if $I \in \mathcal{TI}_n$, by the result above and [4, Proposition 5.5.4], $I \otimes F \in \mathcal{TI}_n$.

Now we prove that $\operatorname{Hom}(F, M)$ is n-TI-injective. For any $I \in \mathcal{TI}_n$, there exists an exact sequence $0 \to K_1 \to P_1 \to I \to 0$ with P_1 projective. Then we have an induced exact sequence

$$\operatorname{Hom}(P_1 \otimes F, M) \to \operatorname{Hom}(K_1 \otimes F, M) \to \operatorname{Ext}^1(I \otimes F, M) = 0.$$

So the sequence

 $\operatorname{Hom}(P_1, \operatorname{Hom}(F, M)) \to \operatorname{Hom}(K_1, \operatorname{Hom}(F, M)) \to 0$

is exact. Thus $\operatorname{Ext}^1(I, \operatorname{Hom}(F, M)) = 0$. Therefore, $\operatorname{Hom}(F, M)$ is *n*-*TI*-injective.

(2) N is n-TI-flat if and only if N^+ is n-TI-injective if and only if Hom (F, N^+) is n-TI-injective by (1) if and only if $(F \otimes N)^+$ is n-TI-injective by the standard isomorphism $(F \otimes N)^+ \cong \text{Hom}(F, N^+)$ if and only if $F \otimes N$ is n-TI-flat.

In the following proposition, we consider the relationship between *n*-*TI*-flat modules and the cokernels of \mathcal{TF}_n -preenvelopes.

Proposition 4.9. Let R be a right Π -coherent ring. Then the following statements hold.

- (1) If C is the cohernel of a \mathcal{TF}_n -preenvelope $f: M \to F$ of a left R-module M with F flat, then C is n-TI-flat.
- (2) If L is a finitely presented n-TI-flat left R-module, then L is the cokernel of a \mathcal{TF}_n -preenvelope $g: K \to P$ with P flat.

Proof. (1). There is an exact sequence of left *R*-modules $0 \to \operatorname{im}(f) \to F \to C \to 0$. Using functor $N \otimes -$ with $N \in \mathcal{TI}_n$, we have an exact sequence

$$0 \to \operatorname{Tor}_1(N, C) \to N \otimes \operatorname{im}(f) \to N \otimes F.$$

Note that $\operatorname{im}(f) \to F$ is also a \mathcal{TF}_n -preenvelope and $N^+ \in \mathcal{TF}_n$. Then the sequence $\operatorname{Hom}(F, N^+) \to \operatorname{Hom}(\operatorname{im}(f), N^+) \to 0$ is exact. So $(N \otimes F)^+ \to (N \otimes \operatorname{im}(f))^+ \to 0$ is exact. Thus we have exact sequence $0 \to N \otimes \operatorname{im}(f) \to N \otimes F$, so $\operatorname{Tor}_1(N, C) = 0$. Then C is n-TI-flat.

(2). Let L be a finitely presented n-TI-flat left R-module. There is an exact sequence $0 \to K \xrightarrow{i} P \to L \to 0$ with P finitely generated projective and K finitely generated. It is enough to show that $i: K \to P$ is a \mathcal{TF}_n -preenvelope. In fact, for any left R-module $F \in \mathcal{TF}_n$, we have $\operatorname{Tor}_1(F^+, L) = 0$, and so we get the following commutative diagram with the first row exact:

Note that α is an epimorphism and β is an isomorphism by [7, Theorem 3.2.11]. Thus h is a monomorphism, and hence $\operatorname{Hom}(P,F) \to \operatorname{Hom}(K,F)$ is epic, as required.

Lemma 4.10. Let R be a right Π -coherent ring. Then

$$FGT - id(R_R) = \sup\{FGT - fd(R_R) | E \text{ injective left } R\text{-module}\}$$

Proof. Assume that $FGT - id(R_R) = n < \infty$. Then $\operatorname{Ext}^{n+1}(T, R) = 0$ for every finitely generated torsionless right *R*-module *T*. Since *R* is right II-coherent, *T* is finitely presented. Then, for any injective left *R*-module *E*,

$$\operatorname{Tor}_{n+1}(T, E) \cong \operatorname{Tor}_{n+1}(T, \operatorname{Hom}(R, E)) \cong \operatorname{Hom}(\operatorname{Ext}^{n+1}(T, R), E) = 0,$$

and so, it follows that $FGT - fd(E) \le n$. Conversely, let $\sup\{FGT - fd(_RM) \mid M$ injective left *R*-module} = $n < \infty$. Since *R* is right Π -coherent, $FGT - id(R_R) = FGT - fd((R_R)^+) \le n$ by Lemma 1.2(2). \Box

Following [4], let $l.FGT - IF.\dim(R) = \sup\{l.FGT - fd(R) \mid E \text{ injective}$ left *R*-module}. Similarly, we have the definition of $r.FGT - IF.\dim(R)$. By Lemma 4.10, if *R* is a left and right II-coherent ring, then $FGT - id(R_R) = l.FGT - IF.\dim(R)$ and $FGT - id(R_R) = r.FGT - IF.\dim(R)$.

Proposition 4.11. Let R be a left and right Π -coherent ring, $FGT - id(_RR) \leq n$ and $FGT - id(_RR) \leq n$ for integer $n \geq 0$. Then the following are equivalent for any (left or right) R-module M:

- (1) $FGT id(M) < \infty$.
- (2) $FGT id(M) \le n$.
- (3) $FGT fd(M) < \infty$.
- (4) $FGT fd(M) \le n$.

Proof. We only prove the right case. The left case is similar.

 $(2) \Rightarrow (1)$ and $(4) \Rightarrow (3)$ are trivial.

 $(3) \Rightarrow (2)$. Since $FGT - fd(M_R) < \infty$, in view of [4, Theorem 5.6.16(ii)], $FGT - fd((M_R)^+) \leq l.FGT - IF.\dim(R) = FGT - id(R_R) \leq n$. Thus $FGT - id(M_R) = FGT - fd((M_R)^+) \leq n$ by Lemma 1.2(2).

 $(1) \Rightarrow (4)$. Assume that $FGT - id(M_R) < \infty$. By [4, Proposition 5.6.16(iii)], $FGT - fd(M_R) \le r.FGT - IF.\dim(R) = FGT - id(R) \le n$.

Definition 4.12. A ring R is called *weakly* n-Gorenstein if it is left and right II-coherent and if $FGT - id(_RR) \leq n$ and $FGT - id(_RR) \leq n$ for integer $n \geq 0$.

Remark 4.13. (1) Obviously, every *n*-Gorenstein ring [7] (that is, R is a left and right Noetherian ring and $id(R_R) \leq n$ and $id(RR) \leq n$) is a weakly *n*-Gorenstein ring. But the converse is not true in general. For example, let F be a field and V be an infinite dimensions vector space over F. Then $R = \operatorname{End}_F V$ is a weakly 0-Gorenstein ring but it is not a 0-Gorenstein ring because it is not Noetherian.

(2) Recall that R is a QF-ring [1](i.e., 0-Gorenstein ring) if R is left and right noetherian and R_R and $_RR$ are injective. Here we have a new characterization of QF-ring.

Theorem 4.14. R is a QF-ring if and only if every (left or right) R-module is n-TI-injective.

Proof. If R is a QF-ring, then R is weakly 0-Gorenstein ring by Remark 4.13 (1). For any R-module $N \in \mathcal{TI}_n$, in view of Proposition 4.11, N is FGT-injective. By [15, Remark 5], R is also a D-ring, so N is injective in terms of [4, Proposition 5.5.1], and hence N is projective by [1, Theorem 31.9]. Thus every R-module is n-TI-injective. Conversely, note that, for any injective right

R-module M, $FGT - id(M) \leq n$. By assumption, any *R*-module N is *n*-*TI*-injective, so $\text{Ext}^1(M, N) = 0$, hence M is projective. Therefore, R is a QF-ring by [1, Theorem 31.9] again.

Let K be a submodule of left (or right) R-module M. K is called a *closed* submodule (see [15]) if M/K is torsionless.

Proposition 4.15. Let R be a left and right Π -coherent ring. Then the following are equivalent.

- (1) R is weakly 1-Gorenstein.
- (2) Every closed submodule of a finitely generated n-TI-flat (left or right) R-module is n-TI-flat.

Proof. (1) \Rightarrow (2). Let K be a closed submodule of a finitely generated *n*-TI-flat left R-module M. For any right R-module $N \in \mathcal{TI}_n$, there is an exact sequence

$$\operatorname{Tor}_2(N, M/K) \to \operatorname{Tor}_1(N, K) \to \operatorname{Tor}_1(N, M) = 0.$$

By Proposition 4.11, $FGT - fd(N_R) \leq 1$. Note that M/K is finitely generated torsionless, so $\text{Tor}_2(N, M/K) = 0$. Thus $\text{Tor}_1(N, K) = 0$, and hence K is n-TI-flat.

 $(2) \Rightarrow (1)$. For any finitely generated torsionless left *R*-module *M*, there is an exact sequence $0 \to K \to F \to M \to 0$, where *K* is a closed submodule of a finitely generated free *R*-module *F*. So there is an induced exact sequence

$$0 = \operatorname{Tor}_2((_RR)^+, F) \to \operatorname{Tor}_2((_RR)^+, M) \to \operatorname{Tor}_1((_RR)^+, K) \to \cdots$$

By assumption, K is n-TI-flat. Then $\text{Tor}_1((_RR)^+, K)=0$, and hence $\text{Tor}_2((_RR)^+, M) = 0$. So $FGT - fd((_RR)^+) \leq 1$. By Lemma 1.2(2), $FGT - id(_RR) \leq 1$. Similarly, we can prove that $FGT - id(_RR) \leq 1$.

Set $FGT - I.\dim(R) = \sup\{FGT - id(M) \mid M \in \mathcal{M}_R\}$ and call $FGT - I.\dim(R)$ right FGT-injective dimension of R. In the end of this article, we give a theorem which character the weakly *n*-Gorenstein rings with finite FGT-injective dimensions. It needs the following lemmas.

Lemma 4.16. Let R be a right Π -coherent ring. Then every (n + 1)th \mathcal{TI}_0 -syzygy of minimal left \mathcal{TI}_0 -resolution of any right R-module is n-TI-injective.

Proof. Let $\overline{I} = \cdots \to I_n \to \cdots \to I_0 \to M \to 0$ be a minimal left \mathcal{TI}_0 resolution of M. By Remark 3.5(2), $I_n \to K_n$ is a \mathcal{TI}_n -precover, where K_n is the *n*th \mathcal{TI}_0 -syzygy of \overline{I} . Note that $I_n \to K_n$ is also a \mathcal{TI}_0 -cover, then $I_n \to K_n$ is a \mathcal{TI}_n -cover of K_n . By Remark 4.2(1), the (n+1)th \mathcal{TI}_0 -syzygy K_{n+1} of \overline{I} is *n*-TI-injective.

Lemma 4.17. Let R be a right Π -coherent ring with $FGT - id(R_R) \leq n$ and $n \geq 1$. If M is an (n-1)-TI-injective right R-module, then there is an exact sequence $0 \to K \to E \to M \to 0$ such that E is FGT-injective and K is n-TI-injective.

Proof. The proof is similar to that of [12, Lemma 3.3(1)].

Theorem 4.18. Let R be a weakly n-Gorenstein ring and integer $n \ge 1$. Then the following are equivalent:

- (1) $FGT I.\dim(R) < \infty$.
- (2) $FGT I.\dim(R) \le n.$
- (3) Every n-TI-injective right R-module is FGT-injective.
- (4) Every n-TI-injective right R-module has a monic FGT-injective cover.
- (5) Every ((n-1)-TI-injective) right R-module has a monic \mathcal{TI}_{n-1} -cover.

Proof. $(1) \Rightarrow (2)$ follows from Proposition 4.11.

 $(2) \Rightarrow (3)$. For any *n*-*TI*-injective right *R*-module *M* and any finitely generated torsionless right *R*-module *N*, note that $FGT - id(N) \leq n$ by (2), then $Ext^{1}(N, M) = 0$. Thus *M* is *FGT*-injective.

 $(3) \Rightarrow (4)$ is clear.

 $(4) \Rightarrow (1)$. Let M be a right R-module. For any minimal left \mathcal{TI}_0 -resolution $\overline{I} = \cdots \to I_n \to \cdots \to I_0 \to M \to 0$, the (n + 1)th \mathcal{TI}_0 -syzygy K_{n+1} of \overline{I} is n-TI-injective by Lemma 4.16. Thus K_{n+1} has a monic \mathcal{TI}_0 -cover $f: I \to K_{n+1}$ by (4). But K_{n+1} is a quotient of an FGT-injective right R-module by Lemma 4.17, so f is an isomorphism, and hence K_{n+1} is FGT-injective. Then left \mathcal{TI}_0 -dim $M \leq n+1$. By [17, Lemma 3.2 and Corollary 3.7], $FGT - I.\dim(R) \leq n+3 < \infty$.

 $(2) \Rightarrow (5)$. For any right *R*-module $N \in \mathcal{TI}_{n-1}$ and an exact sequence $0 \rightarrow K \rightarrow N \rightarrow M \rightarrow 0$, note that $K \in \mathcal{TI}_n$ by (2), then $M \in \mathcal{TI}_{n-1}$ by [4, Proposition 5.5.5(iii)]. But it is easy to verify that \mathcal{TI}_{n-1} is closed under direct sums. By [9, Proposition 4], every right *R*-module has a monic \mathcal{TI}_{n-1} -cover.

 $(5)\Rightarrow(2)$. Let M be any right R-module. By Theorem 3.8, M has an epic \mathcal{TI}_n -cover $f: I \to M$. Then there is a short exact sequence $0 \to K \to I \to M \to 0$, where $K = \operatorname{Ker}(f)$. Then K is n-TI-injective by Remark 4.2(1). Note that K is also (n-1)-TI-injective, so K has a monic \mathcal{TI}_{n-1} -cover $g: I' \to K$ by (5). But K is a quotient of an FGT-injective right R-module by Lemma 4.17, then g is an isomorphism, and hence $K \in \mathcal{TI}_{n-1}$. Thus $M \in \mathcal{TI}_n$ by [4, Proposition 5.5.5], as desired. \Box

References

- F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York-Heidelberg, 1974.
- [2] L. Bican, R. El Bashir, and E. E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33 (2001), no. 4, 385–390.
- [3] V. Camillo, Coherence for polynomial rings, J. Algebra 132 (1990), no. 1, 72–76.
- [4] F. C. Cheng and Z. Yi, *Homological Dimensions of Rings*, Guangxi Normal University Press, Guilin, 2000.
- [5] N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470.
- [6] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209.

509

- [7] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, Walter de Gruyter, Berlin, Now York, 2000.
- [8] D. J. Fieldhouse, Pure theories, Math. Ann. 184 (1969), 1–18.
- [9] J. R. García Rozas and B. Torrecillas, *Relative injective covers*, Comm. Algebra 22 (1994), no. 8, 2925–2940.
- [10] L. X. Mao, Π-coherent dimensions and Π-coherent rings, J. Korean Math. Soc. 44 (2007), no. 3, 719–731.
- [11] L. X. Mao and N. Q. Ding, F1-injective and F1-flat modules, J. Algebra 309 (2007), no. 1, 367–385.
- [12] _____, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208 (2007), no. 2, 635–646.
- [13] J. Rada and M. Saorin, Rings characterized by (pre)envelopes and (pre)covers of their modules, Comm. Algebra 26 (1998), no. 3, 899–912.
- [14] J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.
- [15] M. Y. Wang, Some studies on Π-coherent rings, Proc. Amer. Math. Soc. 119 (1993), no. 1, 71–76.
- [16] J. Z. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634. Springer-Verlag, Berlin, 1996.
- [17] Y. M. Xiang, *TI-injective and TI-flat modules*, J. Nat. Sci. Hunan Norm. Univ., preprint.
- [18] _____, FGT-injective dimensions of Π-coherent rings and almost excellent extension, Proc. Indian Acad. Sci. (Math. Sci.) **120** (2010), no. 2, 149–161.

College of Mathematics and Computer Science Hunan Normal University Changsha 410006, P. R. China *E-mail address*: xymls9990126.com