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PRECOVERS AND PREENVELOPES BY MODULES OF
FINITE FGT-INJECTIVE AND FGT-FLAT DIMENSIONS

YUEMING XIANG

ABSTRACT. Let R be a ring and n a fixed non-negative integer. 77,
(resp. TFy) denotes the class of all right R-modules of FGT-injective
dimensions at most n (resp. all left R-modules of FGT-flat dimensions at
most n). We prove that, if R is a right IT-coherent ring, then every right R-
module has a 7Z,-cover and every left R-module has a 7 F,-preenvelope.
A right R-module M is called n-TI-injective in case Ext!(N, M) = 0 for
any N € TZ,. A left R-module F is said to be n-T'I-flat if Tori (N, F) =
0 for any N € 7Z,. Some properties of n-T'I-injective and n-T'I-flat
modules and their relations with 7Z,,-(pre)covers and T F,-preenvelopes
are also studied.

1. Notation

In this section, we recall some known notions and facts needed in the sequel.

Throughout this paper, R is an associative ring with identity and all modules
are unitary. g M (resp. Mg) stands for the category of all left (resp. right) R-
modules. Let M and N be R-modules. Hom(M, N) (resp. Ext" (M, N)) means
Homp(M, N) (resp. Exti(M,N)), and similarly M ® N (resp. Tor,(M, N))
denotes M @z N (resp. TorZ(M, N)). The character module M+ is defined by
M™* = Homg(M,Q/Z). The dual module M* = Hom(M, R). The cardinality
of an R-module M is denoted by Card(M). We will use the usual notations
from [1], [7], [14].

Let C be the class of R-modules. For an R-module M, a homomorphism
g : C — M is called a C-cover (see [6]) of M if C € C and the following
hold: (1) For any homomorphism ¢’ : ¢! — M with C’ € C, there exists a
homomorphism f : ¢ — C with ¢ = gf. (2) If f is an endomorphism of
C with gf = g, then f must be an automorphism. If (1) holds but (2) may
not, g : C' — M is called a C-precover. Dually we have the definition of a
C-(pre)envelope. C-covers and C-envelopes may not exist in general, but if they
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exist, they are unique up to isomorphism. If every right R-module has a C-
precover, then every right R-module M has a left C-resolution, that is, there is
a Hom(C, —) exact complex [ = --- — I} — Iy — M — 0 with each I; € C. If
Iy — M, I — Ker(Iy — M), I;11 — Ker(I; — I,,_y) for i > 1, are C-covers, I
is called a minimal left C-resolution of M. A right R-module M is said to have
left C-dimension < n, denoted left C-dim M < n, if there is a left C-resolution
of the form 0 — I, - I,,_1 — --- —> Iy — Iy — M — 0 of M. If there is no
such n, we set left C-dim M = oo.

A right R-module T is called torsionless if the evaluation map o : T'— T™**
is injection. A ring R is said to be right II-coherent if every finitely gener-
ated torsionless right R-module is finitely presented (see [3]). It is well known
that right Noetherian rings = right II-coherent rings = right coherent rings.
The right FGT-injective dimension of a right R-module M (see [4]), denoted
by FGT — id(M), is defined as the least non-negative integer n such that
Ext" ™ (T, M) = 0 for any finitely generated torsionless right R-module 7.
The left FGT-flat dimension of a left R-module F, denoted by FGT — fd(F),
is defined as the least non-negative integer n such that Tor, (T, F) = 0 for
any finitely generated torsionless right R-module T. A right R-module M is
called FGT-injective if Extl(T, M) = 0 for any finitely generated torsionless
right R-module T. A left R-module F is called FGT-flat if Tor1(T,F) = 0
for any finitely generated torsionless right R-module T. We write 7Z,, (resp.
TF,) for the class of all right R-modules of FGT-injective dimensions at most
n (resp. all left R-modules of FGT-flat dimensions at most n).

The following lemmas due to [4, Corollary 5.5.6] and [4, Proposition 5.6.11],
respectively.

Lemma 1.1. Let R be a right 1I-coherent ring and 0 - A — B — C — 0
an ezxact sequence of right R-modules with B FGT-injective. If A is FGT-
injective, so is C. If A is not FGT-injective and FGT — id(A) < oo, then
FGT —id(A) = FGT —id(C) + 1.

Lemma 1.2. Let R be a ring. Then
(1) FGT — fd(M) = FGT —id(M™) for any left R-module M.
(2) If R is right I1-coherent, then FGT —id(N) = FGT — fd(N™) for any
right R-module N .

2. Introduction

Precovers and preenvelopes were introduced by Enochs in 1980’s [6]. Its turn
out to be extremely fruitful for general module theory as well as for represen-
tation theory. The idea behind these concepts is to exploit interesting features
of a special class of R-modules for the study of the whole module category. In
particular, the existence of precovers and preenvelopes is also studied by many
authors (see [2], [7], 9], [10], [12], [13], [16]). Let R be a right II-coherent
ring. In Section 3 of this paper, we consider the existence of 7Z,-precovers
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and 7 F,-preenvelopes and obtain the relation between 7 Z,-precovers and
T F n-preenvelopes. Moreover, we show when every right R-module has an epic
TZ,-cover and when every left R-module has a monic 7 F,,-preenvelope.

We introduce the concepts of n-TI-injective and n-TI-flat modules and ob-
tain some interesting properties in Section 4. It is shown that a right R-module
M is reduced n-T'I-injective if and only if M is the kernel of a 77 ,-cover. Fur-
thermore, M is n-TI-injective if and only if it is a direct sum of an injective
right R-module and a reduced n-T'I-injective right R-module. If R is a com-
mutative ring, we show that a simple R-module S is n-T'I-injective if and only
if it is n-TI-flat. We get a new characterization of QF-ring in terms of n-T1-
injective right R-modules. For a right II-coherent ring R, if C' is the cokernel
of a TF,-preenvelope f : M — F of a left R-module M with F flat, then C
is n-TI-flat, and if L is a finitely presented n-T'I-flat right R-module, then L
is the cokernel of a 7 F,,-preenvelope g : K — P with P flat. We call a ring R
weakly n-Gorenstein if it is left and right II-coherent and if FGT —id(grR) <n
and FGT — id(Rg) < n for integer n > 0. It is shown that, if R is left and
right IlI-coherent, then R is weakly 1-Gorenstein if and only if every closed
submodule of a finitely generated n-T'I-flat (left or right) R-module is n-T1I-
flat. Finally, we study weakly n-Gorenstein rings with finitely F'GT-injective
dimensions.

3. TZI,-precovers and 7 F,-preenvelopes

The aim of this section is to study the existence of 77Z,-(pre)covers and
T Fn-preenvelopes. It is easy to verify that 77Z,, is closed under extensions,
direct products and direct summands, and 7F, is closed under extensions,
direct sums and direct summands. If R is right II-coherent, then 77, is closed
under direct sums and 7 F,, is closed under direct products. Moreover, we have
the following:

Lemma 3.1. Let R be a right I1-coherent ring. Then TZ, and T F,, are closed
under pure submodules and pure quotient modules.

Proof. Let 0 — A’ — A — A” — 0 be a pure exact sequence of right R-
modules with FGT — id(A) < n. Then we have a split exact sequence 0 —
(A"t — At — (A")* — 0. By Lemma 1.2(2), FGT — fd(A*) < n. Thus
FGT — fd((A")") <nand FGT — fd((A”)") < n. By Lemma 1.2(2), FGT —
id(A") <n and FGT —id(A") < n.

Now let 0 — A" — A — A” — 0 be a pure exact sequence of left R-
modules and FGT — fd(A) < n. Then we have a split exact sequence 0 —
(A"t — AT — (A)" — 0. By Lemma 1.2(1), FGT — id(A") < n. Thus
FGT—id((A")") <nand FGT—id((A"”)*) < n. Therefore, FGT—fd(A’) <n
and FGT — fd(A”) <n by Lemma 1.2(1) again. O

The next lemma is a special case of [2, Theorem 5].



500 YUEMING XIANG

Lemma 3.2. Let R be a ring. Then for each cardinal X\, there is a cardinal
K such that any R-module M and for any L < M with Card(M) > k and
Card(M/L) < X, the submodule L contains a nonzero submodule that is pure
i M.

Proposition 3.3. Let R be a right I1-coherent ring. There is a cardinal number
K such that any morphism ¢ : D — M with D € TT, has a factorization
D — C — M with C € TZ,, and Card(C) < k.

Proof. Let M be a right R-module with Card(M) = A, and let x be a cardinal
as in Lemma 3.2. Take a morphism ¢ : D — M with D € 7Z,,, K = Ker(y).
If Card(D) < k, then consider the factorization of D — M as D — D — M,
where the first arrow is the identity.

If Card(D) > k. There is K’ maximal with the properties that K’ C K C D
and that K’ is a pure submodule of D. So ¢ has the factorization D — D/K’' —
M in terms of [1, Theorem 3.6]. By Lemma 3.1, D/K’ € TZ,,. We claim that
Card(D/K') < k. Otherwise, if Card(D/K’) > &, consider K/K' C D/K’.
Since D/K is isomorphic to a submodule of M,

D/K'
Card(KjK/) = Card(D/K) < Card(M) = .
In view of Lemma 3.2, there exists 0 # K"”/K' C K/K' C D/K' such that
K" /K’ is a pure submodule of D/K’. Tt is clear that K’ G K” C K € D. By
[8, Proposition 7.2], K" is a pure submodule of D, contradicting the maximality
of K'. So let C = D/K’, Card(C) < k, as desired. O

Theorem 3.4. Let R be a right I1-coherent ring. Then every right R-module
has a TT, -precover.

Proof. Tt follows from Proposition 3.3 and [7, Proposition 5.2.2]. O

Remark 3.5. (1) We can prove that 7Z,, is closed under direct limits over a
right TI-coherent ring. In fact, by [4, Proposition 5.5.3], there is an isomor-
phism: h_H)lEth+1(A,Bi) = Ext”H(A,l'l)nBi), where A is a finitely generated
torsionless right R-module and {B;|i € I} is an inductive system of right R-
modules. Then, in view of [7, Corollary 5.2.7] and Theorem 3.4, every right
R-module has a 77,,-cover.

(2) Let R be a right II-coherent ring. By [10, Theorem 3.4], every right
R-module M has a left TZg-resolution [ = --- — I, — --- — Iy — M — 0.
Let KQ = M,Kl = Ker(]o — M),Kl = Ker([i,l — Ii72) for 4 Z 2. We
call K;(i > 0) the nth TZy-syzygy of M. By [18, Lemma 2.2], I,, — K, is a
T71,-precover of K,,.

Theorem 3.6. If R is a right II-coherent ring, then every left R-module has
a T F,-preenvelope.



PRECOVERS AND PREENVELOPES BY MODULES 501

Proof. Let M be a left R-module, and let Card(M) = Rg. Then by [7, Lemma
5.3.12], there is an infinite cardinal X, such that if FGT — fd(F') < n and S
is a submodule of F' with Card(S) < Ng, there exists a pure submodule G of
F such that S C G and Card(G) < R,, where cardinal number X, dependent
on Card(S) and Card(R). Note that FGT — fd(G) < n by Lemma 3.1. In
addition, 7 F,, is closed under direct products, so M has a 7 F, -preenvelope
by [7, Corollary 6.2.2]. O

The following proposition elaborates the relationship between 7 Z,,-precovers
and 7 F,-preenvelopes.

Proposition 3.7. Let R be a right II-coherent ring. If o : M — F is a TF,,-
preenvelope of left R-module M, then ¢t : F* — M7 is a TZ, -precover of
MT.

Proof. By Lemma 1.2(1), F* € TZ,, since F € TF,,. For any homomorphism
g:D — Mt with D € TZ,, we have gt : M™t — DT, hence gtoy : M —
DT, where op; : M — M™7 is an evaluation map. By Lemma 1.2(2), DT €
TF, since R is right TI-coherent. Thus there exists a morphism f : F — DT
such that fo = gtoy. Whence of,g7F = ¢t f+. Since gtTop = op+g.
Let ffop : D — F*, note a3,00+ = la+, then ot frop = of,g7 op =
oyon+g = g. Therefore o : F* — M* is a TZ,,-precover. t

In general, 77Z,-cover need not be an epimorphism and 7 F,,-preenvelope
need not be a monomorphism. In the following theorem, we will consider when
every right R-module has an epic 7Z,-cover and when every left R-module has
a monic 7 F,-preenvelope.

Theorem 3.8. Let R be right I1-coherent. Then the following are equivalent:
(1) FGT — id(Rg) < n.
(2) For any right R-module, there is an epic TZLy,-cover.

(3) For any left R-module, there is a monic T F,-preenvelope.

(4) Fwvery injective (F P-injective) left R-module belongs to T F,,.

(5) FEwvery flat right R-module belongs to TZ,,.

Proof. (1) = (2). In view of Remark 3.5, every right R-module has a 7Z,-
cover. By assumption, any projective right R-module belongs to 7Z,,. Thus
any 7 Z,-cover is epic.

(2) = (1) is clear since Rg has an epic 7Z,-cover.

(1) = (3). Let M be any left R-module. Then M has a 7 F,-preenvelope
f: M — F by Theorem 3.6. Since (Rg)" is a cogenerator in the category of
left R-modules, there is an exact sequence 0 — M — [[(Rg)". By Lemma 1.2
(2), FGT — fd((Rr)") = FGT — id(Rg) < n since R is right II-coherent, and
so FGT — fd([I[(Rgr)") < mn. Thus f is monic, and hence (3) follows.

(3) = (4). Let N be an F P-injective left R-module. By assumption, there
is a pure exact sequence 0 - N — F — [ — 0 with F € TF,. Then N
belongs to 7 F,, in terms of Lemma 3.1.
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(4) = (5). Let M be a flat right R-module. Then M is injective left
R-module. By (4), M+ € TF,.. Thus M € TZ,, by Lemma 1.2(2).
(5) = (1) is trivial. O

Let n = 0 in Theorem 3.8. Then we have the following result as corollary
which have been prove in [10].

Corollary 3.9. Let R be right II-coherent. Then the following are equivalent:
(1) Rg is FGT-injective.
(2) For any right R-module, there is an epic FGT-injective cover.
(3) For any left R-module, there is a monic FGT-flat preenvelope.
(4) FEwvery injective (F P-injective) left R-module is FGT-flat.
(5) Ewery flat right R-module is FGT-injective.

A homomorphism g : M — C with C' € C is said to be a C-envelope with
the unique mapping property (see [5]) if for any homomorphism ¢’ : M — C’
with C’ € C, there is a unique homomorphism f : C' — C’ such that fg = ¢'.
Dually, we have the definition of C-cover with the unique mapping property.

We conclude this section with the following result which is of independent
interest.

Proposition 3.10. Let R be a ring. If every right R-module has a TZL,-cover
with unique mapping property, then TT, is closed under direct limits.

Proof. Let {Ii,<p§} be a direct system with each I; € 77,. By assumption,
lim/; has a TZL,-cover g: 1 — lim/; with the unique mapping property. Sup-
pose that a : [; — h_n}lIl- satisfy a; = ajcpz» whenever ¢ < j. Then there
exists f; : I; — I such that a; = gf; for any i, so gfi = a;¢} = gf;¢}. Hence
fi = fj¢j by the unique mapping property of g. Thus there exists  : lim/; — I
such that ha; = f;, hence (gh)a; = gf; = «; for any i. Then gh = 1y, by
the definition of direct limits. So lim/; is a direct summand of I, and hence

4. n-TI-injective and n-TI-flat modules

Definition 4.1. Let R be a ring, n a fixed non-negative integer. A right R-
module M is said to be n-TI-injective if Ext* (N, M)=0forany Ne TZ,. A
left R-module F is called n-T'I-flat if Tory (N, F) =0 for any N € TZ,,.

Remark 4.2. (1) By Wakamutsu’s Lemma [16, Lemma 2.1.1], any kernel of
T7T,-cover is n-T'I-injective.

(2) Tt is clear that 0-T' I-injective (resp. 0-T'I-flat) R-modules are T'I-injective
(resp. TI-flat) R-modules in sense of [17]. If m > n, then m-T I-injective (resp.
m-TI-flat) R-modules are n-TI-injective (resp. n-TI-flat) R-modules.

(3) A left R-module F is n-T'I-flat if and only if F'* is n-T I-injective by the
standard isomorphism Ext'(N, F*) = Tor; (N, F)* for any N € TZ,.
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Proposition 4.3. The following are equivalent for a right R-module M:
(1) M is n-T1-injective.
(2) For every exact sequence 0 — M — A — B — 0 with A € TZ,,
A — B is a TZ,-precover of B.
(3) M is the kernel of a TZ,-precover f: A — B with A injective.
(4) M is injective with respect to every exact sequence 0 — K — A —
C — 0, where C € TT,,.

Proof. (1)=(2) and (1)=(4) are trivial.

(2)=(3) is obvious since there is an exact sequence 0 — M — E(M) —
E(M)/M — 0, where E(M) is the injective hull of M.

(3)=(1). Let M be a kernel of a TZ,-precover f : A — B with A in-
jective. Then there is an exact sequence 0 — M — A — A/M — 0. For
any right R-module N € 7Z,, the sequence Hom(N, A) = Hom(N, A/M) —
Ext'(N, M) — 0 is exact. Note that A — A/M is also a TZ,-precover, so 7 is
epic. Thus Ext!(N, M) = 0, and hence M is n-TI-injective.

(4)=(1). For any right R-module C' € TZ,, there exists an exact sequence
0 - K —- A— C — 0 with A projective, which induces an exact sequence
Hom(A, M) & Hom(K, M) — Ext'(C, M) — 0. By assumption, 7 is epic. So
Ext'(C, M) = 0, and hence M is n-TI-injective. O

It is clear that every injective right R-module (resp. flat left R-module) is
n-TI-injective (resp. n-TI-flat) by Definition 4.1. The converse is not true in
general. However, if R is a right II-coherent ring, we have:

Proposition 4.4. Let R be a right I1-coherent ring. Then the following state-
ments hold.
(1) A right R-module M is injective if and only if M is n-TI-injective and
FGT —id(M) <n+1.
(2) A left R-module F is flat if and only if F is n-TI-flat and FGT —
fd(F) <n-+1.

Proof. (1) (=) is clear.

(«<). Let M be a n-TI-injective right R-module. Then there is an exact
sequence 0 - M — E — N — 0 with E injective. By Lemma 1.1, FGT —
id(N) < n. Thus Ext!(N, M) = 0, and hence the exact sequence is split. Then
M is injective.

(2) (=) is clear.

(<). For any n-TI-flat left R-module F. By Remark 4.2(3), F'* is n-TI-
injective right R-module. By Lemma 1.2(1), FGT —id(F*) < n+1. Then F'*
is injective by (1). So F' is flat. O

A right R-module M is called reduced (see [16]) if M has no nonzero injective
submodules.

Proposition 4.5. Let M be a right R-module over a right II-coherent ring R.
Then the following are equivalent:
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(1) M is reduced n-TI-injective.
(2) M is the kernel of a TZ,-cover f: A — B with A injective.

Proof. (1)=(2). By Proposition 4.3, the nature map 7 : E(M) — E(M)/M is
a TZ,- precover of E(M)/M. But E(M)/M has a TZ,-cover by Remark 3.5.
E(M) has no nonzero direct summand K contained in M since M is reduced.
By [16, Corollary 1.2.8], 7 : E(M) — E(M)/M is a TZ,-cover of E(M)/M.
(2)=(1). Let M be the kernel of a 7Z,-cover f : A — B with A injective. So
M is n-T'I-injective by Proposition 4.3. Now let K be an injective submodule
of M. Suppose A= K@ L. p: A — L is projection and i : L. — A is inclusion.
Note f(ip) = f since f(K) = 0. Thus ip is an isomorphism since f is cover.
So i is epic, A = L. Then K = 0, and hence M is reduced. O

Now we get a construction theorem of n-T'I-injective R-module.

Theorem 4.6. Let M be a right R-module over a right I1-coherent ring R.
Then the following are equivalent:
(1) M is n-TI-injective.
(2) M is a direct sum of an injective right R-module and a reduced n-T'1-
injective right R-module.

Proof. The proof is modeled on that of [11, Theorem 2.6].

(2)=(1) is trivial.

(1)=(2). We consider the exact sequence 0 - M — E(M) — E(M)/M —
0. By Proposition 4.3, E(M) — E(M)/M is a TZ,-precover of E(M)/M.
Since R is right IT-coherent, by Remark 3.5(1), E(M)/M admits a 7Z,-cover
F — E(M)/M, and hence we get the following commutative diagram with
rows exact:

f

0 — K — F — E(M)/M — 0
¢l 7l !

0 - M — EM — EM/M —0
ol Bl !

o - Kk L F o EBUy/M —o.
Note that 8+ is an isomorphism, and hence E(M) = Ker(() @ im(v). Thus F
and Ker(3) are also injective. Therefore, K is reduced n-TI-injective by Propo-
sition 4.5. On the other hand, by the Five Lemma, we have o¢ is isomorphic.
Thus M = Ker(o) & im(¢), where im(¢) = K. So we have the commutative
diagram:

0 0
1 ! !

0 — Ker(o) — Ker(B) — 0 -0
1 ! 1

0 — M % EM) — EM)/M =0
ol Bl !

o - K L F - EBOMM —o0
! ! ! .
0 0 0
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Hence Ker(o) = Ker(8) by [14, Exercise 6.16]. This completes the proof. [

Proposition 4.7. Let S be a simple R-module over a commutative ring R.
Then the following are equivalent:

(1) S is n-TI-injective.

(2) S is n-TI-flat.

Proof. Suppose that {S;}icsr is an irredundant set of representatives of the
simple R-modules. Let E = E(®;c1S;), the injective hull of @®;c1S;. Then
E is an injective cogenerator. For any N € 7TZ,, there exists an isomor-
phism Ext!' (N, Hom(S, E)) = Hom(Tor; (N, S), E). Note that Hom(S, E) = S.
Thus S is n-TI-injective if and only if Ext'(N,Hom(S, E)) = 0 if and only
if Hom(Tory (N, S), E) = 0 if and only if Tor;(V,S) = 0 if and only if S is
n-TI-flat. O

Proposition 4.8. Let R be a commutative I1-coherent ring and F be a flat
R-module. Then the following statements hold.

(1) M is n-T1-injective if and only if Hom(F, M) is n-TI-injective.

(2) N is n-T1-flat if and only if F @ N is n-T1-flat.

Proof. (1) (<) holds by letting F' = R.

(=). For any FGT-injective R-module E and flat R-module F, we claim
that £ ® F is FGT-injective. In fact, any finitely generated torsionless R-
module T is finitely presented since R is II-coherent, then there is an exact
sequence 0 - K — P — T — 0 with P and K finitely generated and P
free, so P and K are finitely presented. On the other hand, the sequence
Hom(P,FE) ® F — Hom(K,FE) ® F — 0 is exact since F is FGT-injective.
Furthermore, we have the following commutative diagram:

Hom(P,E)® F — Hom(K,E)®@ F —0

ol Bl
Hom(P,E® F) — Hom(K,E ® F)

Since P and K are finitely presented, by [7, Theorem 3.2.14], « and [ are
isomorphisms. Then Hom(P,E ® F') — Hom(K,E ® F) — 0 is exact. Thus
Ext' (T, E® F) = 0, and hence E @ F is FGT-injective.
Then, if I € TZ,,, by the result above and [4, Proposition 5.5.4], IQF € TZ,,.
Now we prove that Hom(F, M) is n-T'I-injective. For any I € TZ,, there
exists an exact sequence 0 — Ky — P, — I — 0 with P, projective. Then we
have an induced exact sequence

Hom(P; ® F, M) — Hom(K, ® F, M) — Ext'(I ® F, M) = 0.
So the sequence
Hom (P, Hom(F, M)) — Hom(K;,Hom(F, M)) — 0

is exact. Thus Ext'(I,Hom(F,M)) = 0. Therefore, Hom(F, M) is n-TI-
injective.
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(2) N is n-TI-flat if and only if Nt is n-TI-injective if and only if Hom(F),
NT) is n-TI-injective by (1) if and only if (FF ® N)* is n-TI-injective by the
standard isomorphism (F @ N)* = Hom(F, NT) if and only if FF ® N is n-T'1-
flat. O

In the following proposition, we consider the relationship between n-TI-flat
modules and the cokernels of 7 F,,-preenvelopes.

Proposition 4.9. Let R be a right II-coherent ring. Then the following state-
ments hold.

(1) If C is the cokernel of a T F,-preenvelope f : M — F of a left R-module
M with F flat, then C is n-TI-flat.

(2) If L is a finitely presented n-TI-flat left R-module, then L is the cok-
ernel of a TF,-preenvelope g : K — P with P flat.

Proof. (1). There is an exact sequence of left R-modules 0 — im(f) — F —
C — 0. Using functor N ® — with N € 77,,, we have an exact sequence

0 — Tor;(N,C) > N®im(f) - N® F.

Note that im(f) — F' is also a 7F,-preenvelope and N* € 7F,. Then the
sequence Hom(F, NT) — Hom(im(f), N*) — 0 is exact. So (N®F)* — (N®
im(f))™ — 0 is exact. Thus we have exact sequence 0 — N @ im(f) - N® F,
so Tor;(N,C) = 0. Then C is n-T'I-flat.

(2). Let L be a finitely presented n-T'I-flat left R-module. There is an exact
sequence 0 — K - P — L — 0 with P finitely generated projective and K
finitely generated. It is enough to show that i : K — P is a 7 F,-preenvelope.
In fact, for any left R-module F' € TF,, we have Tor;(F*, L) =0, and so we
get the following commutative diagram with the first row exact:

1,4 ®i
0 - F'eK = FreP

al gl
Hom(K,F)* %  Hom(P,F)*.

Note that « is an epimorphism and £ is an isomorphism by [7, Theorem 3.2.11].
Thus h is a monomorphism, and hence Hom(P, F) — Hom(K, F') is epic, as
required. O

Lemma 4.10. Let R be a right I1-coherent ring. Then
FGT — id(Rg) = sup{FGT — fd(grE)|E injective left R-module}.

Proof. Assume that FGT —id(Rg) = n < co. Then Ext" (T, R) = 0 for every
finitely generated torsionless right R-module T'. Since R is right II-coherent, T’
is finitely presented. Then, for any injective left R-module E,

Tor, 1 (T, E) = Tor, 1 (T, Hom(R, E)) = Hom(Ext"" (T, R), E) = 0,
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and so, it follows that FGT— fd(E)<n. Conversely, let sup{ FGT—fd(rM) | M
injective left R-module}= n < oco. Since R is right II-coherent, FGT —
id(Rr) = FGT — fd((Rr)") < n by Lemma 1.2(2). O

Following [4], let [.FGT — IF.dim(R) = sup{l{.FGT — fd(rFE) | E injective
left R-module}. Similarly, we have the definition of . FGT — I F.dim(R). By
Lemma 4.10, if R is a left and right II-coherent ring, then FGT — id(Rg) =
I.FGT — IF.dim(R) and FGT — id(gR) = r.FGT — IF.dim(R).

Proposition 4.11. Let R be a left and right I1-coherent ring, FGT —id(rR) <
n and FGT —id(Rg) < n for integer n > 0. Then the following are equivalent
for any (left or right) R-module M:

(1) FGT —id(M) < co.

(2) FGT —id(M) < n.

(3) FGT — fd(M) < .

(4) FGT — fd(M) < n.

Proof. We only prove the right case. The left case is similar.

(2)=(1) and (4)=-(3) are trivial.

(3)=(2). Since FGT — fd(Mp) < oo, in view of [4, Theorem 5.6.16(ii)],
FGT — fd((Mg)") < L.FGT — IF.dim(R) = FGT — id(Rp) < n. Thus
FGT —id(Mg) = FGT — fd((Mg)") < n by Lemma 1.2(2).

(1)=(4). Assume that FGT — id(Mg) < co. By [4, Proposition 5.6.16(iii)],
FGT — fd(Mg) < r.FGT — IF.dim(R) = FGT — id(zR) < n. O

Definition 4.12. A ring R is called weakly n-Gorenstein if it is left and right
IT-coherent and if FGT —id(gR) < n and FGT —id(Rr) < n for integer n > 0.

Remark 4.13. (1) Obviously, every n-Gorenstein ring [7] (that is, R is a left
and right Noetherian ring and id(Rg) < n and id(grR) < n) is a weakly n-
Gorenstein ring. But the converse is not true in general. For example, let F' be
a field and V' be an infinite dimensions vector space over F'. Then R = EndpV
is a weakly 0-Gorenstein ring but it is not a 0-Gorenstein ring because it is not
Noetherian.

(2) Recall that R is a QF -ring [1](i.e., 0-Gorenstein ring) if R is left and right
noetherian and Rr and rR are injective. Here we have a new characterization
of QF-ring.

Theorem 4.14. R is a QF-ring if and only if every (left or right) R-module
is n-T'I-injective.

Proof. If R is a QF-ring, then R is weakly 0-Gorenstein ring by Remark 4.13
(1). For any R-module N € 7Z,, in view of Proposition 4.11, N is FGT-
injective. By [15, Remark 5], R is also a D-ring, so N is injective in terms of
[4, Proposition 5.5.1], and hence N is projective by [1, Theorem 31.9]. Thus
every R-module is n-T'I-injective. Conversely, note that, for any injective right
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R-module M, FGT — id(M) < n. By assumption, any R-module N is n-T1I-
injective, so Extl(M7 N) =0, hence M is projective. Therefore, R is a QF-ring
by [1, Theorem 31.9] again. O

Let K be a submodule of left (or right) R-module M. K is called a closed
submodule (see [15]) if M /K is torsionless.

Proposition 4.15. Let R be a left and right II-coherent ring. Then the fol-
lowing are equivalent.
(1) R is weakly 1-Gorenstein.
(2) Ewvery closed submodule of a finitely generated n-TI-flat (left or right)
R-module is n-TI-flat.

Proof. (1)=(2). Let K be a closed submodule of a finitely generated n-TI-flat
left R-module M. For any right R-module N € 77, there is an exact sequence

Tory(N, M/K) — Tory (N, K) — Tor (N, M) = 0.

By Proposition 4.11, FGT — fd(Ng) < 1. Note that M/K is finitely generated
torsionless, so Torg(N, M/K) = 0. Thus Tor;(N,K) = 0, and hence K is
n-TI-flat.

(2)=(1). For any finitely generated torsionless left R-module M, there is
an exact sequence 0 - K — F — M — 0, where K is a closed submodule of
a finitely generated free R-module F'. So there is an induced exact sequence

0 = Tory((rR)T, F) — Tora((rR)", M) — Tory ((rR)T,K) — -+ .

By assumption, K is n-T'I-flat. Then Tor;((zR)™", K)=0, and hence Tors((rR)",
M) =0. So FGT — fd((rR)") < 1. By Lemma 1.2(2), FGT —id(rR) < 1.
Similarly, we can prove that FGT — id(Rg) < 1. O

Set FGT — I.dim(R) = sup{FGT — id(M) | M € Mg} and call FGT —
I.dim(R) right FGT-injective dimension of R. In the end of this article, we
give a theorem which character the weakly n-Gorenstein rings with finite FGT-
injective dimensions. It needs the following lemmas.

Lemma 4.16. Let R be a right II-coherent ring. Then every (n+ 1)th 7Zy-
syzygy of minimal left T Lo-resolution of any right R-module is n-TI-injective.

Proof. Let I = --- - I, — --- — Iy — M — 0 be a minimal left 7Z,-
resolution of M. By Remark 3.5(2), I, — K, is a 7Z,-precover, where K,
is the nth TZg-syzygy of I. Note that I, — K, is also a TZy-cover, then
I, — K, is a TZ,-cover of K,. By Remark 4.2(1), the (n + 1)th 7Zy-syzygy
K, 41 of I is n-TI-injective. ([
Lemma 4.17. Let R be a right II-coherent ring with FGT — id(Rg) <n and
n>1. If M is an (n — 1)-T1-injective right R-module, then there is an exact

sequence 0 — K — E — M — 0 such that E is FGT-injective and K is
n-T1-injective.
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Proof. The proof is similar to that of [12, Lemma 3.3(1)]. O

Theorem 4.18. Let R be a weakly n-Gorenstein ring and integer n > 1. Then
the following are equivalent:
(1) FGT — I.dim(R) < 0.
(2) FGT — I.dim(R) < n.
(3) Fuvery n-TI-injective right R-module is FGT-injective.
(4) Ewvery n-TI-injective right R-module has a monic FGT -injective cover.
(5) Every ((n—1)-TI-injective) right R-module has a monic TZL, _1-cover.

Proof. (1)=(2) follows from Proposition 4.11.

(2)=(3). For any n-TI-injective right R-module M and any finitely gener-
ated torsionless right R-module N, note that FGT — id(N) < n by (2), then
Ext'(N, M) = 0. Thus M is FGT-injective.

(3)=(4) is clear.

(4)=(1). Let M be a right R-module. For any minimal left 7Zy-resolution
I =1, — - — Iy - M — 0, the (n + 1)th TZo-syzygy K,i1
of T is n-TI-injective by Lemma 4.16. Thus K, ,; has a monic 7Zg-cover
f:I — K,1 by (4). But K,11 is a quotient of an FGT-injective right
R-module by Lemma 4.17, so f is an isomorphism, and hence K, 11 is FGT-
injective. Then left 7Zp-dim M < n+ 1. By [17, Lemma 3.2 and Corollary
3.7, FGT — I.dim(R) < n + 3 < oo.

(2)=(5). For any right R-module N € 7Z,,_; and an exact sequence 0 —
K — N — M — 0, note that K € 77, by (2), then M € TZ,_, by [4,
Proposition 5.5.5(iii)]. But it is easy to verify that 7Z,,_; is closed under direct
sums. By [9, Proposition 4], every right R-module has a monic 7Z,,_;-cover.

(5)=(2). Let M be any right R-module. By Theorem 3.8, M has an epic
TZp-cover f: I — M. Then there is a short exact sequence 0 — K — [ —
M — 0, where K = Ker(f). Then K is n-TI-injective by Remark 4.2(1). Note
that K is also (n — 1)-TI-injective, so K has a monic 7Z,_1-cover g : I' — K
by (5). But K is a quotient of an FGT-injective right R-module by Lemma
4.17, then g is an isomorphism, and hence K € 7Z,,_;. Thus M € TZ,, by [4,
Proposition 5.5.5], as desired. g
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