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RESOLUTIONS AND DIMENSIONS OF RELATIVE

INJECTIVE MODULES AND RELATIVE FLAT MODULES

Yuedi Zeng and Jianlong Chen

Abstract. Let m and n be fixed positive integers and M a right R-
module. Recall that M is said to be (m,n)-injective if Ext1(P,M) = 0
for any (m,n)-presented right R-module P ; M is said to be (m,n)-flat
if Tor1(N, P ) = 0 for any (m,n)-presented left R-module P . In terms
of some derived functors, relative injective or relative flat resolutions and
dimensions are investigated. As applications, some new characterizations
of von Neumann regular rings and p.p. rings are given.

1. Introduction

Let C be a class of left R-modules and M a left R-module. Following ([7]),
we say that a homomorphism ϕ : M → C is a C -preenvelope of M if C ∈ C and
the abelian group homomorphism Hom(ϕ,C

′

) : Hom (C,C
′

) → Hom (M,C
′

) is

surjective for each C
′

∈ C . A C -preenvelope ϕ : M → C is called a C -envelope

if every endomorphism f : C → C such that fϕ = ϕ is an isomorphism. A
C -envelope ϕ : M → C is said to have the unique mapping property (see

[6]) if for any homomorphism f : M → C
′

with C
′

∈ C , there is a unique

homomorphism g : C → C
′

such that gϕ = f . Dually, we have the definitions
of C -precovers and C -covers. C -envelopes (C -covers) may not exist in general,
but if they exist, they are unique up to isomorphisms.

Let m and n be fixed positive integers.
A right R-module P is said to be (m,n)-presented ([17]) if there exists a right

R-module exact sequence 0 → K → Rm → P → 0, where K is n-generated.
A right R-module M is said to be (m,n)-injective ([4]) if Ext1(P,M) = 0

for any (m,n)-presented right R-module P .
A left R-module N is said to be (m,n)-flat ([17]) if Tor1(P,N) = 0 for any

(m,n)-presented right R-module P .
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A ring R is called right (m,n)-coherent ([17]) in case each n-generated sub-
module of the right R-module Rm is finitely presented.

Throughout this paper, R is an associative ring with identity and all modules
are unitary. We write RM (MR) to indicate the class of all left (right) R-
modules. For an R-module M , M+ = HomZ(M,Q/Z) denotes the character
module of M and E(M) is the injective envelope of M . As usual, we denote
by idM , pdM and fdM the injective dimension, the projective dimension and
the flat dimension of M , respectively. A(m,n)(A ) and F(m,n)(F ) stand for
(m,n)-injective (P-injective, i.e., (1,1)-injective) right R-modules and (m,n)-
flat (P-flat, i.e., (1,1)-flat) left R-modules, respectively.

Recently, (m,n)-injective modules and (m,n)-flat modules were introduced
and studied by many authors (see, for example, [4, 15, 17, 12, 13] etc.). Note
that every left R-module over a right (m,n)-coherent ring R admits an (m,n)-
flat cover and an (m,n)-flat preenvelope (see [12]). In Section 2, it is shown
that every rightR-module over a right (m,n)-coherent ring R admits an (m,n)-
injective cover and an (m,n)-injective preenvelope. It is proved that: for a
right (m,n)-coherent ring R, left F(m,n)-dimN ≤ k if and only if for every

right F(m,n)-resolution 0 → M → F 0 → F 1 → · · · of any (n,m)-presented

left R-module M , Hom(F k, N) → Hom(Lk, N) → 0 is exact, where Lk =
coker(F k−2 → F k−1). Then we get [13, Theorem 4.7 and Corollary 4.8], and
we only inspect cyclical left R-modules in this theorem.

If R is right (m,n)-coherent, then − ⊗ − on MR ×R M is right balanced
by A(m,n) × F(m,n) with right derived functors Tt(−,−); Hom(−,−) is left
balanced on RM×RM by F(m,n)×F(m,n) with left derived functors Ext(−,−);
Hom(−,−) is left balanced on MR×MR by A(m,n)×A(m,n) with left derived
functors Et(−,−). Note that over right generalized morphic rings R, each
R/Ra have a right R-resolution (see Lemma 3.2). Hence, in Section 3, over
right generalized morphic rings, the P-injective and P-flat dimensions can be
characterized by these derived functors (see Theorem 3.14).

Theorem. Let R be a right generalized morphic ring and t ≥ 2. Then the

following are equivalent.

(1) gl right A -dimMR ≤ t.
(2) gl left F -dimRM ≤ t.
(3) gl left A -dimMR ≤ t− 2.
(4) right F -dimR/Ra ≤ t− 2 for all a ∈ R.

(5) right A -dimR/aR ≤ t for all a ∈ R.

(6) right A -dimM ≤ t for all reduced D-injective right R-module M .

(7) Ext−1(M,N) = 0 for all M, N ∈R M and all k ≥ −1.
(8) Ext−1(M,N) = 0 for all M, N ∈R M.

(9) Ext−1(M,N) = 0 for all N ∈R M and all Warfield cotorsion left R-

module M .

(10) Ext−1(R/Ra,N) = 0 for all N ∈R M and all a ∈ R.

(11) Ext−1(R/Ra,R/Rb) = 0 for all a, b ∈ R.
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(12) Tt+k(M,N) = 0 for all M ∈ MR, N ∈R M and all k ≥ −1.
(13) Tt(M,N) = Tt−1(M,N) = 0 for all M ∈ MR, N ∈R M.

(14) Tt(R/aR,N) = Tt−1(R/aR,N) = 0 for all N ∈R M and all a ∈ R.

(15) Tt(M,R/Rb) = Tt−1(M,R/Rb) = 0 for all M ∈ MR and all b ∈ R.

(16) Tt(R/aR,R/Rb) = Tt−1(R/aR,R/Rb) = 0 for all a, b ∈ R.

(17) Et+k(M,N) = 0 for all M, N ∈ MR and all k ≥ −1.
(18) Et−1(M,N) = 0 for all reduced D-injective right R-module M and all

N ∈ MR.

(19) Et−1(R/aR,M) = 0 for all reduced D-injective right R-module M and

all a ∈ R.

(20) right Proj-dimR/aR ≤ t− 2 for all a ∈ R.

(21) H is a direct summand of Rt−2 for any right R-resolution of R/Ra and

any a ∈ R, where H = ker(Rt−2 → Rt−1).
(22) Extt+1(R/aR,M) = 0 for all M ∈ MR and all a ∈ R.

(23) Tort+1(R/aR,N) = 0 for all N ∈R M and all a ∈ R.

(24) fd(R/aR) ≤ t.
(25) pd(R/aR) ≤ t.

Hence we show that (1) and (2) in [13, Theorem 4.12] are equivalent. For
t = 0, R is a von Neumann regular ring; for t = 1, R is a right p.p. ring;
for t = 2, r(a) is cyclical generated and projective for any a ∈ R. Some new
descriptions of these rings are given in this section.

2. Resolutions and dimensions

Following [8, Proposition 8.4.1], the left C -dimension of a left R-module M ,
denoted by left C -dimM , is defined as inf{m : there is a left C -resolution of
the form 0 → Fm → · · · → F0 → M → 0 of M}; the right C -dimension of
a left R-module M , denoted by right C -dimM , is defined as inf{m: there is
a right C -resolution of the form 0 → M → F 0 → · · · → Fm → 0 of M}.
If there is no such m, set left (right) C -dimM = ∞. The global left (right)
C -dimension of RM, denoted by gl left (right) C -dimRM, is defined to be
sup{left (right) C -dimM : M ∈R M}. Similarly, we have these definitions for
right R-modules. In this section, we consider (m,n)-injective and (m,n)-flat
resolutions and dimensions.

Recall that, given a left R-module U with submodule U0, U0 is called (m,n)-
pure in U if the canonical map P ⊗U0 → P ⊗U for any (m,n)-presented right
R-module, or equivalently, for every (n,m)-presented left R-module V , the
canonical map Hom(V, U) → Hom(V, V/U0) → 0 is exact (see [19, Definition
1.3 and Theorem 1.5]). Similarly, we have the definition of right R-modules.

In view of [12, Theorem 2.3], if R is a right (m,n)-coherent ring, then every
left R-module has an (m,n)-flat preenvelope and an (m,n)-flat cover.

Theorem 2.1. Let R be a right (m,n)-coherent ring, k a nonnegative integer

and N a left R-module. Then the following are equivalent.

(1) left F(m,n)-dimN ≤ k.
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(2) For every right F(m,n)-resolution 0 → M → F 0 → F 1 → · · · of any

left R-module M , Hom(F k, N) → Hom(Lk, N) → 0 is exact, where Lk =
coker(F k−2 → F k−1).

(3) For every right F(m,n)-resolution 0 → M → F 0 → F 1 → · · · of any

(n,m)-presented left R-module M , Hom(F k, N) → Hom(Lk, N) → 0 is exact,

where Lk = coker(F k−2 → F k−1).

Proof. (2) ⇒ (3) is trivial.
We proceed by induction. Let 0 → K → F → N → 0 be an exact sequence

where F → N is an F(m,n)-cover and Ext1(G,K) = 0 for all left R-module
G ∈ F(m,n) by [16, Lemma 2.1.1].

Suppose k = 0. (1) ⇒ (2) is clear.
(3) ⇒ (1). Let M be any (n,m)-presented left R-module. Consider the

following commutative diagram:

Hom(F 0, F ) //

��

Hom(F 0, N) //

��

0

Hom(M,F ) //

��

Hom(M,N)

0

Since Hom(F 0, N) → Hom(M,N) → 0 is exact by (3),

Hom(M,F ) → Hom(M,N) → 0

is exact. This means that K is (m,n)-pure in F , that is, 0 → H ⊗K → H ⊗F
is exact for any right R-module (m,n)-presented H . Then we have an exact
sequence: Tor1(H,F ) → Tor1(H,N) → H ⊗ K → H ⊗ F . It follows that
Tor1(H,N) = 0, and hence N ∈ F(m,n).

Suppose k > 0. If left F(m,n)-dimK ≤ k−1, then left F(m,n)-dimN ≤ k. On
the other hand, if left F(m,n)-dimN ≤ k, then there is a left F(m,n)-resolution
of M : 0 → Fk → · · · → F0 → M → 0, where K0 = ker(F0 → M). Since
F → N is an F(m,n)-cover, F0

∼= F ⊕H0 and K0
∼= K ⊕H0. This implies that

left F(m,n)-dimK ≤ k − 1.
Consider the following commutative diagrams:

Hom(F k, F ) //

��

Hom(F k, N) //

��

0

Hom(Lk, F ) //

��

Hom(Lk, N)

0
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and

0

��

0

��

0

��

0 // Hom(Lk,K) //

��

Hom(F k−1,K) //

��

Hom(Lk−1,K)

��

0 // Hom(Lk, F ) //

��

Hom(F k−1, F ) //

��

Hom(Lk−1, F ) //

��

0

0 // Hom(Lk, N) // Hom(F k−1, N) //

��

Hom(Lk−1, N)

0

Hence left F(m,n)-dimN ≤ k if and only if left F(m,n)-dimK ≤ k − 1 if and

only if Hom(F k−1,K) → Hom(Lk−1,K) → 0 is exact by induction if and only
if Hom(Lk, F ) → Hom(Lk, N) → 0 is exact by the second diagram if and only
if Hom(F k, N) → Hom(Lk, N) → 0 is exact by the first diagram. �

Corollary 2.2. The following are equivalent for a right (m,n)-coherent ring
R and an integer k 6= 0:

(1) left F(m,n)-dimR+
R ≤ k;

(2) every right F(m,n)-resolution 0 → M → F 0 → F 1 → · · · of any left

R-module M is exact at F i for every i ≥ k − 1;
(3) every right F(m,n)-resolution 0 → M → F 0 → F 1 → · · · of any (n,m)-

presented left R-module M is exact at F i for every i ≥ k − 1;
(4) left F(m,n)-dimN ≤ k, where N is any injective cogenerator in RM.

Proof. (2) ⇒ (3) is trivial.
(1) ⇒ (2). By Theorem 2.1, Hom(F k, R+) → Hom(Lk, R+) is an epimor-

phism. So Lk → F k is a monomorphism. It means that F k−2 → F k−1 → F k

is exact. In addition, left F(m,n)-dimR+ ≤ t for any t ≥ k + 1 by (1), and
hence (2) holds.

(3) ⇒ (1) holds by Theorem 2.1.
(4) ⇔ (3) holds by the similar proof of (1) ⇔ (3). �

Remark 2.3. Clearly, we get [13, Theorem 4.7 and Corollary 4.8]. In particular,
we only inspect cyclical left R-modules in the preceding results.

Proposition 2.4. If R is right (m,n)-coherent, then every right R-module

admits an (m,n)-injective cover.

Proof. Let F be an (m,n)-injective right R-module and 0 → L → F → F/L →
0 be a pure exact sequence. This induced a split exact sequence 0 → (F/L)+ →
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F+ → L+ → 0. Thus (F/L)+ is (m,n)-flat since F+ is (m,n)-flat by [17,
Theorem 5.7]. So F/L is (m,n)-injective again by [17, Theorem 5.7]. Since
A(m,n) is closed under direct limits for a right (m,n)-coherent ring by [17,
Theorem 5.7], every right R-module has an F -cover by [11, Theorem 2.5]. �

Now we get the following corollary as in [13, Theorem 2.10].

Corollary 2.5. If R is right (1, 1)-coherent, then every right R-module admits

a P-injective cover.

Corollary 2.6. The following are equivalent for a right (m,n)-coherent ring
R:

(1) RR is (m,n)-injective;
(2) R+

R is (m,n)-flat;
(3) Every right R-module has an epic A(m,n)-cover;
(4) Every left R-module has a monic F(m,n)-preenvelope;
(5) Every (n,m)-presented left R-module has a monic F(m,n) (projective)-

preenvelope;
(6) Every (n,m)-presented left R-module embeds in a free left R-module.

Proof. (1) ⇔ (2) follows from [17, Theorem 5.7]. (2) ⇔ (4) ⇔ (5) come from
Corollary 2.2. (5) ⇔ (6) is trivial.

(1) ⇒ (3). Let M be a right R-module. Then M has an A(m,n)-cover g. On
the other hand, there is an exact sequence F → M → 0 with F free. Since F
is (m,n)-injective by (1), g is an epimorphism.

(3) ⇒ (1). Let f : N → R be an epic A(m,n)-cover of R. Then RR is
isomorphic to a direct summand of N , and so RR is (m,n)-injective. �

3. Derived functors

In ([18]), a ring R is right generalized morphic if, for every a ∈ R, there
is b ∈ R with r(a) ∼= R/bR (r(a) = {s ∈ R : as = 0}); in ([13]), a ring
R is right strongly P-coherent if every principal right ideal of R is cyclically
presented. Examples of right generalized morphic rings include not only von
Neumann regular rings, p.p. rings and domains, but also right morphic rings
(a ring R is called right morphic by [14], if r(a) ∼= R/aR for every a ∈ R).
Clearly, right generalized morphic ring is right strongly P-coherent. It is easy
to see that if R is commutative, then generalized morphic rings and strongly
P-coherent rings are the same. A right generalized morphic ring may not be
left generalized morphic (the example traces back to [18, Example 2.6]. Clearly,
any right generalized morphic ring is right (1,1)-coherent. But a right (1,1)-
coherent ring may not be right generalized morphic. Let R = Z4C2 be a group
ring, where C2 = {1, g} is a group. Since R is coherent, R is right generalized
morphic. However, it is not generalized morphic because r(2+2g) is not cyclical
generated. Note that over right generalized morphic rings R, each R/Ra have
a right R-resolution (see Lemma 3.2). In this section, over right generalized



RESOLUTIONS AND DIMENSIONS 17

morphic rings, the P-injective and P-flat dimensions are investigated by some
derived functors.

If R is a right (m,n)-coherent ring, then Hom(−,−) is left balanced on

RM ×R M by F(m,n) × F(m,n). We let Ext(−,−) denote the left balance

derived functors, and F⊥

(m,n) = {C ∈R M : Ext1(F,C) = 0, ∀F ∈ F(m,n)}

(in particular, a left R-module C is called Warfield cotorsion (see [9] and [10])
provided that Ext1(F,C) = 0 for every P-flat left R-module F ).

Proposition 3.1. Let R be a right (m,n)-coherent ring and t ≥ 2. Then the

following are equivalent for a left R-module N .

(1) left F(m,n)-dimN ≤ t.
(2) Ext+k(M,N) = 0 for all M ∈R M and all k ≥ −1.
(3) Ext−1(M,N) = 0 for all M ∈R M.

(4) Ext−1(M,N) = 0 for all left R-module M ∈ F⊥

(m,n).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is trivial.
(4) ⇒ (1). Let · · · → F1 → F0 → N → 0 be a minimal left F(m,n)-

resolution and C = ker(Ft−1 → Ft−2). Then C ∈ F⊥

(m,n) by [16, Lemma

2.1.1], and Ext−1(C,N) = 0 by (4). So we get that C is isomorphic to a direct
summand of Ft. Thus C ∈ F(m,n), as desired. �

Lemma 3.2. If R is right generalized morphic and a ∈ R, then there is a right

F -resolution:

0 → R/Ra → R0 → R1 → · · · → Rn → · · ·

where Ri = R, i = 0, 1, 2, . . . and each cokernel is cyclical presented (We call

that right R-resolution).

Proof. By [12, Theorem 3.1], there is an F -preenvelope of R/Ra: f : R/Ra →
Rt. Set f(1 + Ra) = (si), si ∈ R. Thus si ∈ r(a). But r(a) = bR for some
b ∈ R. Then si = bri for some ri ∈ R. Define g : R/Ra → R via g(1 +Ra) = b
and h : R → Rt via h(1) = (ri). Clearly, they are well-defined and f = hg.
This means that g is an F -preenvelope of R/Ra and coker(g) = R/Rb. If
repeat this procedure, we get the desired right R-resolution of R/Ra. �

Proposition 3.3. Let R be a right generalized morphic ring and t ≥ 2. Then

the following are equivalent for any a ∈ R.

(1) right F -dimR/Ra ≤ t− 2.
(2) Ext+k(R/Ra,N) = 0 for all N ∈R M and all k ≥ −1.
(3) Ext−1(R/Ra,N) = 0 for all N ∈R M.

(4) Ext−1(R/Ra,R/Rb) = 0 for any b ∈ R.

(5) right Proj-dimR/Ra ≤ t− 2.
(6) H is a direct summand of Rt−2 for any right R-resolution of R/Ra,

where H = ker(Rt−2 → Rt−1).

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (1) are trivial.
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(4) ⇒ (6). By Lemma 3.2, there is a right F -resolution: 0 → R/Ra → R0 →
R1 → · · · with Ri = R, i = 0, 1, 2, . . . and each cokernel is cyclical presented.
Let C = coker(Rt−2 → Rt−1). Then Ext−1(R/Ra,C) = 0 by (4). This implies
that C is isomorphic to a direct summand of Rt−1, and it is projective. Thus
D = Im(Rt−2 → Rt−1) is projective, and so is H = ker(Rt−2 → Rt−1). It
follows that H is a direct summand of Rt−2,

(6) ⇒ (5). Let

0 // R/Ra
d0

// R0
d1

// R1
// · · · // Rt−1

dt
// Rt

// · · ·

be a right R-resolution of R/Ra, A = Im(Rt−3 → Rt−2) and H = ker(Rt−2 →

Rt−1). Hence Rt−2 = H ⊕ H
′

for some left R-module H
′

by (6). Set i :

H/A → H/A⊕H
′

be an injection, π : H/A⊕H
′

→ H/A be a projection and
dt−1 : Rt−2/A → Rt−1 be the induced homomorphism of dt−1. We claim that

dt−1i is an F -preenvelope of H/A. In fact, for any left R-module G ∈ F and
any homomorphism g : H/A → G, there is h : G → Rt−1 such that gπ = hdt−1,
whence g = h(dt−1i). Note that H = ker(Rt−2 → Rt−1). Hence dt−1i = 0, and
so 0 → R/Ra → R0 → R1 → · · · → Rt−3 → H → 0 is a right F -resolution of
R/Ra. �

Proposition 3.4. If R is right (m,n)-coherent, then −⊗− on MR ×R M is

right balanced by A(m,n) × F(m,n).

Proof. If G ∈ A(m,n), then G+ ∈ F(m,n) by [17, Theorem 5.7]. For any left
R-module M , by [12, Theorem 3.1] there is a right F(m,n)-resolution 0 → M →

F 0 → F 1 → · · · , and then · · · → Hom(F 0, G+) → Hom(M,G+) → 0 is exact.
This means that 0 → G⊗M → G⊗ F 0 → G⊗ F 1 → · · · is exact.

Conversely, if F ∈ F(m,n), then F+ ∈ A(m,n). For any right R-module N , by

[12, Theorem 2.3], there is a right A(m,n)-resolution 0 → N → G0 → G1 → · · ·

which is exact. Hence · · · → Hom(G0, F+) → Hom(N,F+) → 0 is exact, which
means that 0 → N ⊗ F → G0 ⊗ F → G1 ⊗ F → · · · is exact. �

Now, we let Tt(−,−) denote the right balance derived functors of −⊗− on
MR ×R M by A(m,n) × F(m,n).

Lemma 3.5. A(m,n) is closed under (n,m)-pure submodules.

Proof. Let M ∈ A(m,n) and N be an (n,m)-pure submodule of M . Then M is
(n,m)-pure in its injective envelope E(M) by [19, Theorem 2.2]. And so N is
(n,m)-pure in E(M) by [19, Proposition 2.9]. Consider the following sequence:
Hom(P,E(M)) → Hom(P,N) → Ext1(P,N) → Ext1(P,E(M)), where P is
(m,n)-presented, we get that Ext1(P,N) = 0. Hence N ∈ A(m,n). �

Lemma 3.6 ([8, Lemma 8.4.23]). Let N be a right R-module. If M1 → M2 →
M3 → M4 is an exact sequence of left R-modules such that N⊗M1 → N⊗M2 →
N ⊗ M3 → N ⊗ M4 is exact, then 0 → N ⊗ K → N ⊗ M3 is exact, where

K = ker(M3 → M4).
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Proposition 3.7. Let R be a right (m,n)-coherent ring and t ≥ 2. Then the

following are equivalent for a right R-module M .

(1) right A(m,n)-dimM ≤ t.

(2) Tt+k(M,N) = 0 for all N ∈R M and all k ≥ −1.
(3) Tt(M,N) = Tt−1(M,N) = 0 for any N ∈R M.

(4) Tt(M,P ) = Tt−1(M,P ) = 0 for any (n,m)-finitely presented P ∈R M.

Proof. (1) ⇒ (2). Let 0 → M → G0 → G1 → · · · → Gt → 0 be a right A(m,n)-

resolution of M . Then Gt−2 ⊗ N → Gt−1 ⊗ N → Gt ⊗ N → 0 is exact and
so Tt(M,N) = Tt−1(M,N) = 0. But clearly Tt+k(M,N) = 0 for all k ≥ 1.
Hence (2) holds.

(2) ⇒ (3) ⇒ (4) is trivial.
(4) ⇒ (1). Let 0 → M → G0 → G1 → · · · be a right A(m,n)-resolution

of M . Then for any (n,m)-finitely presented left R-module P , Gt−2 ⊗ P →
Gt−1 ⊗ P → Gt ⊗ P → Gt+1 ⊗ P is exact. Hence K = ker(Gt → Gt+1) is
(n,m)-pure in Gt by Lemma 3.6, and so K ∈ A(m,n) by Lemma 3.5. It follows

that 0 → M → G0 → G1 → · · · → Gt−1 → K → 0 is a right A(m,n)-resolution
of M . �

We state [13, Propositions 4.13 and 4.14] or [18, Lemmas 3.6 and 3.8] as
lemmas below.

Lemma 3.8. Let R be a right generalized morphic ring and t a fixed non-

negative integer. The following are equivalent for a right R-module M :
(1) right A -dimM ≤ t;

(2) Extt+k(R/aR,M) = 0 for every a ∈ R and every k ≥ 1;
(3) Extt+1(R/aR,M) = 0 for every a ∈ R;
(4) If 0 → M → G0 → G1 → · · · → Gt−1 → H → 0 is exact with each Gi

P-injective, then H is P-injective.

Lemma 3.9. Let R be a right generalized morphic ring and t a fixed non-

negative integer. The following are equivalent for a left R-module N :
(1) left F -dimN ≤ t;
(2) Tort+k(R/aR,N) = 0 for every a ∈ R and every k ≥ 1;
(3) Tort+1(R/aR,N) = 0 for every a ∈ R;
(4) If 0 → K → Ft−1 → · · · → F1 → F0 → N → 0 is exact with each Fi

P-flat, then K is P-flat.

Proposition 3.10. Let R be a right generalized morphic ring and t ≥ 2. Then
the following are equivalent for any a ∈ R.

(1) right F -dimR/Ra ≤ t− 2.

(2) Tt+k(M,R/Ra) = 0 for all M ∈ MR and all k ≥ −1.
(3) Tt(M,R/Ra) = Tt−1(M,R/Ra) = 0 for all M ∈ MR.

(4) Tt(R/bR,R/Ra) = Tt−1(R/bR,R/Ra) = 0 for any b ∈ R.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) is trivial.
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(4) ⇒ (1). Let 0 → R/Ra → R0 → R1 → · · · → Rt → · · · be a right
R-resolution of R/Ra. Then for any b ∈ R, R/bR⊗ Rt−2 → R/bR⊗ Rt−1 →
R/bR ⊗ Rt → R/bR ⊗ Rt+1 is exact. Hence K = ker(Rt → Rt+1) is (1, 1)-
pure in Ft. Note the exact sequence Tor1(R/bR,Rt) → Tor1(R/bR,Rt/K) →
R/bR⊗K → R/bR⊗Rt. This implies that Rt/K is P-flat, and soK is P-flat by
Lemma 3.9. But Rt−2 → Rt−1 → K is exact. Therefore L = ker(Rt−2 → Rt−1)
and Rt−2/L are P-flat again by Lemma 3.9. Note that 0 → R/Ra → R0 →
R1 → · · · → Rt → · · · is a right R-resolution of R/Ra. Hence Rt−2/L is
isomorphic to a direct summand of Rt−1. This means that Rt−2/L is projective
and L is a direct summand of Rt−2. Thus 0 → R/Ra → R0 → R1 → · · · →
Rt−3 → L → 0 is a right F -resolution of R/Ra by Proposition 3.3. �

If R is right (m,n)-coherent, then Hom(−,−) is left balanced on MR×MR

by A(m,n) × A(m,n). We let Et(−,−) denote the left balance derived functors.

Proposition 3.11. Let R be a right (m,n)-coherent ring and t ≥ 2. Then the

following are equivalent for a right R-module M .

(1) right A(m,n)-dimM ≤ t.
(2) Et+k(M,N) = 0 for all N ∈ MR and all k ≥ −1.
(3) Et−1(M,N) = 0 for all N ∈ MR.

Proof. (1) ⇒ (2) ⇒ (3) is trivial.
(3) ⇒ (1). Let 0 → M → F 0 → F 1 · · · be a right A(m,n)-resolution of M

and C = coker(F t−2 → F t−1). Then Et−1(M,C) = 0. So we get that C is
isomorphic to a direct summand of F t and C ∈ A(m,n), as desired. �

Recall that a right R-module M is called reduced (see [8]) if M has no
nonzero injective submodules. M is called D-injective ([13, Definition 3.1]) if
Ext1(G,M) = 0 for every P-injective right R-module G.

Proposition 3.12. Let R be a right generalized morphic ring and t ≥ 2. Then
the following are equivalent for a right R-module N .

(1) left A -dimN ≤ t− 2.
(2) Et+k(M,N) = 0 for all M ∈ MR and all k ≥ −1.
(3) Et−1(M,N) = 0 for all reduced D-injective right R-module M .

Proof. (1) ⇒ (2) ⇒ (3) is trivial.
(3) ⇒ (1). If A is D-injective, by Proposition 2.4, A has an A -cover f :

F → M . There is an exact sequence 0 // F
i

// E // L // 0 with
E injective. Thus L is P-injective by Lemma 3.8. Then there exists g : E → A
such that gi = f , and so there exists ϕ : E → F such that fϕ = g since
f is a cover. Thus fϕi = f and ϕi is an isomorphism. It follows that F is
isomorphic to a direct summand of E, and so F is injective. From that, we get
the minimal left A -resolution of N : · · · → F1 → F0 → N → 0, where each Fi

(i ≥ 1) is injective. Let C = ker(Ft−1 → Ft−2). Then C is reduced D-injective
by [13, Proposition 3.4], and Et−1(C,N) = 0 by (3). Hence C is isomorphic
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to a direct summand of Ft, that is, C is injective, whence C = 0. This means
that Ft−1 → Ft−2 is injection. Note that Ft−2 → H is an A -cover of H , where
H = ker(Ft−3 → Ft−4). This implies that Ft−1 = 0, as desired. �

Remark 3.13. From the proof of Proposition 3.12, we get that if R is right
strongly P-coherent, then Proposition 3.12 holds by [13, Proposition 4.13 and
Proposition 3.4]. Hence, conditions (1) and (2) of [13, Theorem 4.12] are equiv-
alent.

Theorem 3.14. Let R be a right generalized morphic ring and t ≥ 2. Then

the following are equivalent.

(1) gl right A -dimMR ≤ t.
(2) gl left F -dimRM ≤ t.
(3) gl left A -dimMR ≤ t− 2.
(4) right F -dimR/Rb ≤ t− 2 for all b ∈ R.

(5) right A -dimR/aR ≤ t for all a ∈ R.

(6) right A -dimM ≤ t for all reduced D-injective right R-module M .

(7) Ext−1(M,N) = 0 for all M, N ∈R M and all k ≥ −1.
(8) Ext−1(M,N) = 0 for all M, N ∈R M.

(9) Ext−1(M,N) = 0 for all N ∈R M and all Warfield cotorsion left R-

module M .

(10) Ext−1(R/Ra,N) = 0 for all N ∈R M and all a ∈ R.

(11) Ext−1(R/Ra,R/Rb) = 0 for all a, b ∈ R.

(12) Tt+k(M,N) = 0 for all M ∈ MR, N ∈R M and all k ≥ −1.
(13) Tt(M,N) = Tt−1(M,N) = 0 for all M ∈ MR, N ∈R M.

(14) Tt(R/aR,N) = Tt−1(R/aR,N) = 0 for all N ∈R M and all a ∈ R.

(15) Tt(M,R/Rb) = Tt−1(M,R/Rb) = 0 for all M ∈ MR and all b ∈ R.

(16) Tt(R/aR,R/Rb) = Tt−1(R/aR,R/Rb) = 0 for all a, b ∈ R.

(17) Et+k(M,N) = 0 for all M, N ∈ MR and all k ≥ −1.
(18) Et−1(M,N) = 0 for all reduced D-injective right R-module M and all

N ∈ MR.

(19) Et−1(R/aR,M) = 0 for all right R-module M and all a ∈ R.

(20) right Proj-dimR/aR ≤ t− 2 for all a ∈ R.

(21) H is a direct summand of Rt−2 for any right R-resolution of R/Ra and

any a ∈ R, where H = ker(Rt−2 → Rt−1).
(22) Extt+1(R/aR,M) = 0 for all M ∈ MR and all a ∈ R.

(23) Tort+1(R/aR,N) = 0 for all N ∈R M and all a ∈ R.

(24) fd(R/aR) ≤ t.
(25) pd(R/aR) ≤ t.

Proof. (1) ⇔ (2) ⇔ (22) ⇔ (23) ⇔ (24) ⇔ (25) comes from [13, Theorem
4.15] or [18, Theorem 3.11]. (2) ⇔ (7) ⇔ (8) ⇔ (9) and (4) ⇔ (10) ⇔ (11) ⇔
(20) ⇔ (21) hold by Propositions 3.1 and 3.3, respectively. (1) ⇔ (12) ⇔
(13) ⇔ (15), (16) ⇔ (5) ⇔ (14) and (15) ⇔ (4) ⇔ (16) hold by Propositions
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3.7 and 3.10. (1) ⇔ (3) ⇔ (17) ⇔ (18) ⇔ (6) and (5) ⇔ (19) follow by
Propositions 3.11 and 3.12. �

When t = 0, we have:

Proposition 3.15. The following are equivalent for any ring R.

(1) R is von Neumann regular.

(2) R is a right generalized morphic and left P-injective ring with right F -

dimR/Rb < ∞ for any b ∈ R.

(3) gl right A -dimMR = 0.

Proof. (1) ⇔ (3) and (1) ⇒ (2) are clear.
(2) ⇒ (1). Since R is P-injective, R+ is P-flat by Corollary 2.6. In terms of

(2) and Corollary 2.2, there exists an exact right F -resolution: 0 → R/Ra →
F 0 → F 1 → · · · → F t → 0 for any a ∈ R. This implies that R/Ra is P-flat by
Lemma 3.9, and so R/Ra is isomorphic to a direct summand of R. Thus R/Ra
is projective and Ra is a direct summand of R. Hence, R is von Neumann
regular. �

Recall that a ring R is called right p.p. in case principal right ideals are all
projective. When t = 1, we have:

Proposition 3.16. The following are equivalent for any ring R.

(1) R is a right p.p. ring.

(2) R is a right generalized morphic ring with gl right A -dimMR ≤ 1.
(3) R is right generalized morphic and every left R-module has an epic P-flat

envelope.

(4) R is right generalized morphic and R/Ra has an epic P-flat envelope for

any a ∈ R.

(5) For any a ∈ R, r(a) = bR and Rb is projective for some b ∈ R.

In this case, for any a ∈ R, if r(a) = cR for some c ∈ R, then Rc is

projective and R/Ra → cR, 1 +Ra 7→ c is an epic P-flat envelope of R/Ra.

Proof. (1) ⇔ (2) follows by [13, Theorem 5.3]. (1) ⇔ (3) holds since (1) equiv-
alent to that every submodule P-flat left R-module is P-flat by [18, Corollary
3.12]. (3) ⇒ (4) is clear.

(4) ⇒ (1). Let N be a submodule of a P-flat left R-module M . For any
a ∈ R and any homomorphism f : R/Ra → N , there is a free left R-module
F , g : R/Ra → F and h : F → M such that if = hg, where i : N → M is
an inclusion map. By (4), R/Ra has an epic P-flat envelope α : R/Ra → P .
Then there is β : P → F such that g = βα. Thus if = (hβ)α, whence
ker(α) ⊆ ker(f). Define s : P → N via s(α(x)) = f(x) for any x ∈ R/Ra. It
is clear that s is well-defined and f = sα. This shows that N is P-flat and (1)
holds.

(4) ⇒ (5). For any a ∈ R, by (4), R/Ra has an epic P-flat envelope f :
R/Ra → F . Note that there exists a P-flat preenvelope of R/Ra g : R/Ra → R
via g(1 +Ra) = b, r(a) = bR by Lemma 3.2. Then there exist h : R → F and
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ϕ : F → R such that f = hg and g = ϕf . Thus f = hϕf , and so hϕ = id since
f is epic. It follows that F is projective. Since g = ϕf , Im(g) = Im(ϕ) = Rb,
whence F ∼= Rb and Rb is projective.

(5) ⇒ (4). Clearly, R is right generalized morphic. By Lemma 3.2, we can
define a P-flat preenvelope of R/Ra f : R/Ra → R such that Im(f) = Rb.
Since Rb is projective by (5), R/Ra → Rb is an epic P-flat envelope.

If r(a) = cR for some c ∈ R, by Lemma 3.2, there exists a P-flat preenvelope
of R/Ra g : R/Ra → R via g(1+Ra) = c. From the proof of (4) ⇒ (5), we get
that Rc is projective and R/Ra → cR, 1 + Ra 7→ c is an epic P-flat envelope
of R/Ra. �

When t = 2, we have:

Proposition 3.17. The following are equivalent for any ring R.

(1) For any a ∈ R, r(a) is cyclical generated and projective.

(2) For any a ∈ R, r(a) is isomorphic to a direct summand of R.

(3) R is right generalized morphic and R/Ra has a P-flat envelope with

unique mapping property for any a ∈ R.

(4) R is a right generalized morphic ring with gl right A -dimMR ≤ 2.
(5) For any a ∈ R, there exists b ∈ R such that r(a) = bR, and projective

left R-modules P, Q such that b ∈ P , R = P ⊕Q and r(b) ∩ r(Q) = 0.
In this case, if r(a) = bR or r(a) = cR for some b, c ∈ R, then Rc ∼= Rb.

Proof. (1) ⇔ (2) is trivial and (1) ⇔ (3) ⇔ (4) follows form Theorem 3.14.
(3) ⇒ (5). Let f : R/Ra → P be a P-flat envelope with unique mapping

property. By Lemma 3.2, there exists a P-flat preenvelope of R/Ra g : R/Ra →
R with g(1 + Ra) = b, r(a) = bR for some b ∈ R. Then there are h : P → R
and α : R → P such that g = hf and f = αg. Thus f = αhf , and hence
R = h(P )⊕Q for some projective left R-module Q. We identify P with h(P ).
Thus b ∈ P .

Now we let P = Rp and Q = R(1 − p) for some idempotent p ∈ R. Let
s ∈ r(b)∩ r(Q). Define β : P → R via β(p) = s. Clearly, β is well-defined. But
we see that βf(1 + Ra) = β(b) = β(bp) = bs = 0, that is, βf = 0. Since f is
an envelope with unique mapping property, β = 0. It follows that s = 0.

(5) ⇒ (3). Clearly, R is right generalized morphic. By (5), it is easy to
check that f : R/Ra → P via f(1 + Ra) = b is a P-flat preenvelope of R/Ra.
Let P = Rp and Q = R(1− p) for an idempotent p ∈ P . If g : P/Rb → Rn is
a P-flat preenvelope of P/Rb. Set g(p+ Rb) = (si), si ∈ R. Since bp = b and
qp = 0 for any q ∈ Q, each si ∈ r(b) ∩ r(Q). By (4), we have si = 0. Hence
0 → Hom(P,G) → Hom(R/Ra,G) → 0 is exact for any P-flat left R-module
G, and so (3) holds.

From the proof of (3) ⇒ (5), we get that if r(a) = bR or r(a) = cR for
some b, c ∈ R, then there are two direct summands of R: P and P1 such that
R/Ra → P (1 + Ra 7→ b) and R/Ra → P1 (1 + Ra 7→ c) are envelopes. It
follows that Rc ∼= Rb. �
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